1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Electric circuit theory: Active circuits - Nguyễn Công Phương

38 37 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 38
Dung lượng 209,24 KB

Nội dung

Lecture Electric circuit theory - Active circuits presents the following content: Dependent sources, analysis of circuits with dependent sources, the operational amplifier: Basic concepts and subcircuits, analysis of circuits with Op Amps.

Nguyễn Công Phương Electric Circuit Theory Active Circuits Contents I Basic Elements Of Electrical Circuits II Basic Laws III Electrical Circuit Analysis IV Circuit Theorems V Active Circuits VI Capacitor And Inductor VII First Order Circuits VIII.Second Order Circuits IX Sinusoidal Steady State Analysis X AC Power Analysis XI Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks Active Circuits - sites.google.com/site/ncpdhbkhn Active Circuits Dependent Sources Analysis of Circuits with Dependent Sources The Operational Amplifier: Basic Concepts and Subcircuits Analysis of Circuits with Op Amps Active Circuits - sites.google.com/site/ncpdhbkhn Dependent Voltage Source i vc + – + v – Voltage-controlled voltage source (VCVS): vc = µvx Current-controlled voltage source (CCVS): vc = rmix Active Circuits - sites.google.com/site/ncpdhbkhn Dependent Current Source i + ic v – Voltage-controlled current source (VCCS): ic = gmvx Current-controlled current source (CCCS): ic = βix Active Circuits - sites.google.com/site/ncpdhbkhn Active Circuits Dependent Sources Analysis of Circuits with Dependent Sources a b c d Branch Current Method Node Voltage Method Mesh Current Method Equivalent Subcircuits The Operational Amplifier: Basic Concepts and Subcircuits Analysis of Circuits with Op Amps Active Circuits - sites.google.com/site/ncpdhbkhn Branch Current Method (1) a Ex – 4Ω ix + i − ic + = 4A vx + ix + i − 2ix + = → 4ix − 6i = 12 – ic = 0.5v x = 0.5 × 4ix = 2ix 0.5vx 6Ω ic ix + 4ix − 6i = 12 i 12V b  −ix + i = −4 ix = A → →  4ix − 6i = 12 i = A Active Circuits - sites.google.com/site/ncpdhbkhn Branch Current Method (2) R2 Ex +– b : ic − i2 − i3 = c : i1 + i3 − J = A : R1i1 − R3i3 + R2 i2 − E = ic = β i1 E i2 βi1 a R1 ic i1 i3 b R3 J c  β i1 − i2 − i3 =  → i1 + i3 − J = R i − R i + R i − E = 3 2  11 Active Circuits - sites.google.com/site/ncpdhbkhn Node Voltage Method (1) a Ex vx i 0.5vx 6Ω ic ix + – 4A + 12 1 1  +  va = + − ic 4 6 ic = 0.5vx = 0.5(12 − va ) – 4Ω 12V b 12 1 1 →  +  va = + − 0.5(12 − va ) 4 6 12 − va 12 − ( −12)  = 6A ix = = → va = −12 V →  i = − va = − −12 = A  6 Active Circuits - sites.google.com/site/ncpdhbkhn Node Voltage Method (2) 1  va R1  E +– βi1 a R1 v ic = β i1 = β a R1  1 + +β   R1 R2 →  − + β    R2  R2 Ex  1  E + v − v = J − i +   a b c R R R R2     1  E  − v + + v = i −   b c a  R R R R2    ic i1 b R3 J c − E vb = J + R2 R2  1   E v + + v = −  b  a  R1  R R R2   Active Circuits - sites.google.com/site/ncpdhbkhn 10 The Operational Amplifier (1) + Output – Input vo v+ + – v– µ(v+ – v–) µ=∞ Active Circuits - sites.google.com/site/ncpdhbkhn 24 The Operational Amplifier (2) J vo = v− + RJ R vo – + vo = µ (v+ − v− ) = µ ( E − v− ) – E J R vo v– v+ – Active Circuits - sites.google.com/site/ncpdhbkhn – E + + v− = v+ = E → vo = E + RJ + µ E − RJ → v− = 1+ µ µ ( E + RJ ) → vo = 1+ µ µ =∞ io io µ(v+ – v–) 25 The Operational Amplifier (3) i+ v+ + vo – v– i– io i+ = i− = v+ = v− Ri = ∞ Ro = Active Circuits - sites.google.com/site/ncpdhbkhn 26 The Operational Amplifier (4) vi = R1ii R2 → vo = − vi R1 R2 vi ii – vo + vo = − R2ii R1 io + io vo –  R2  R1 vi = vo → vo = 1 +  vi R1 + R2  R1  vi ii R1 Active Circuits - sites.google.com/site/ncpdhbkhn R2 27 The Operational Amplifier (5) + vi – vo = vi v1 v2 + R1 R2 v1 R1 v1 R1 R2 v2 v2 R2 Active Circuits - sites.google.com/site/ncpdhbkhn Ro – vo +  v1 v2  vo =  +  Ro  R1 R2  vo 28 The Operational Amplifier (6) R1 R2 v1 R3 v1 − v− v− − vo = R1 R2 v2 − v+ v+ = R3 R4 – vo + v2 v– v+ R4  R2  R4 R2 → vo =  + 1 v2 − v1 = k2v2 − k1v1 R1  R1  R3 + R4 v+ = v− Active Circuits - sites.google.com/site/ncpdhbkhn 29 Active Circuits Dependent Sources Analysis of Circuits with Dependent Sources The Operational Amplifier: Basic Concepts and Subcircuits Analysis of Circuits with Op Amps Branch Current Method Node Voltage Method Mesh Current Method Active Circuits - sites.google.com/site/ncpdhbkhn 30 Analysis of Circuits with Op Amps i+ v+ + – v– vo io i– + v+ + – v– µ(v+ – v–) v o µ →∞ – ix + + rmix rm → ∞ i+ = i− = v+ = v− io v+ gm(v+ – v–) gm → ∞ v– ix io βix β→∞ vo – Active Circuits - sites.google.com/site/ncpdhbkhn 31 – Branch Current Method (1) Ex R1 E1 + + R5 vo µvx + – R4 + v+ – + – E2 R3 v– Active Circuits - sites.google.com/site/ncpdhbkhn – + vx – E1 R4 + R2 vo R5 – – R1 R3 – + E2 –+ E3 R2 + E1 = V; E2 = V; E3 = V; R1 = R2 = R3 = kΩ; R4 = kΩ; R5 = kΩ; solve the circuit? –+ E3 µ(v+ – v–) v o µ →∞ – 32 Branch Current Method (2) i1 – R1i1 − R2i2 = E1 − E2 R2i2 + vx + R4i4 = E2 R3i3 + R5i4 − vx = E3 R5 R4 i4 vo µvx + E2 vx – i2 R3 + E1 + i1 + i2 − i3 = R2 –+ E3 – R1 + E1 = V; E2 = V; E3 = V; R1 = R2 = R3 = kΩ; R4 = kΩ; R5 = kΩ; solve the circuit? i3 – Ex µ + 12 → i1 = 2µ + → i1 = 0.5 mA µ →∞ ( R4 + R5 )i4 = µ vx Active Circuits - sites.google.com/site/ncpdhbkhn 33 Node Voltage Method (1) Ex R1 E1 + + R5 vo µvx + – R4 + v+ – + – E2 R3 v– Active Circuits - sites.google.com/site/ncpdhbkhn – + vx – E1 R4 + R2 vo R5 – – R1 R3 – + E2 –+ E3 R2 + E1 = V; E2 = V; E3 = V; R1 = R2 = R3 = kΩ; R4 = kΩ; R5 = kΩ; solve the circuit? –+ E3 µ(v+ – v–) v o µ →∞ – 34 Node Voltage Method (2) E1 vx R5 v2 – R4 i4 i5 vo µvx + E2 – i2 R3 + R2 –+ E3 + i1 + i2 − i3 = i4 + i5 = E1 − v1 E2 − v1 i1 = ; i2 = R1 R2 E3 − vo + v1 i3 = R3 v2 − vo v2 i4 = ; i5 = R4 R5 R1 + E1 = V; E2 = V; E3 = V; R1 = R2 = R3 = kΩ; R4 = kΩ; R5 = kΩ; solve the circuit? i3 v1 – i1 – Ex  E1 − v1 E2 − v1 E3 − vo + v1 =0  R + R − R3    v2 + v2 − vo =  R4 R5 Active Circuits - sites.google.com/site/ncpdhbkhn 35 Node Voltage Method (3) E1 vx R5 v2 R4 i4 i5 vo µvx + E2 – i2 R3 + R2 –+ E3 + –  E1 − v1 E2 − v1 E3 − vo + v1 =0  R + R − R3    v2 + v2 − vo =  R4 R5 vo = µ vx = µ (v1 − v2 ) R1 + E1 = V; E2 = V; E3 = V; R1 = R2 = R3 = kΩ; R4 = kΩ; R5 = kΩ; solve the circuit? i3 v1 – i1 – Ex 2µ + 7−6 → v1 = → v = V → i = = 0.5 mA µ +3 1 µ→∞ Active Circuits - sites.google.com/site/ncpdhbkhn 36 Mesh Current Method (1) Ex R1 E1 vo – + R5 – – E2 R3 + R2 + E1 = V; E2 = V; E3 = V; R1 = R2 = R3 = kΩ; R4 = kΩ; R5 = kΩ; solve the circuit? –+ E3 R4 R1 –+ E3 R2 E1 ix + + ix R5 – – E2 R3 vo R4 io βix β→∞ ic = βix Active Circuits - sites.google.com/site/ncpdhbkhn 37 Mesh Current Method (2) Ex i1 R1 R2 E1 + iA – – E2 R3iD + R5 (iD − ic ) = E3 ic = β ix = β (iB − iD ) ix iB R3 iD R5 vo R4 R1i A + R2 (i A − iB ) = E1 − E2 R2 (iB − i A ) + R4 (iB − ic ) = E2 –+ E3 + E1 = V; E2 = V; E3 = V; R1 = R2 = R3 = kΩ; R4 = kΩ; R5 = kΩ; solve the circuit? ic = βix → iA = 9β − 80 18β − 70 → iA = 0.5 mA β →∞ → i1 = 0.5 mA Active Circuits - sites.google.com/site/ncpdhbkhn 38 ... J c Active Circuits - sites.google.com/site/ncpdhbkhn 13 Active Circuits Ex a rmix + E – R1 +– J c b R2 ix R3 + vy – d R4 gmvy e Active Circuits - sites.google.com/site/ncpdhbkhn 14 Active Circuits. .. XI Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks Active Circuits - sites.google.com/site/ncpdhbkhn Active Circuits. .. Elements Of Electrical Circuits II Basic Laws III Electrical Circuit Analysis IV Circuit Theorems V Active Circuits VI Capacitor And Inductor VII First Order Circuits VIII.Second Order Circuits

Ngày đăng: 13/02/2020, 01:01

TỪ KHÓA LIÊN QUAN