1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Electric circuit theory: AC power analysis - Nguyễn Công Phương

38 59 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 38
Dung lượng 201,13 KB

Nội dung

Lecture Electric circuit theory: AC power analysis include all of the following content: Instantaneous and average power, RMS value, apparent power and power factor, complex power, power factor improvement.

Nguyễn Công Phương Electric Circuit Theory AC Power Analysis Contents I Basic Elements Of Electrical Circuits II Basic Laws III Electrical Circuit Analysis IV Circuit Theorems V Active Circuits VI Capacitor And Inductor VII First Order Circuits VIII.Second Order Circuits IX Sinusoidal Steady State Analysis X AC Power Analysis XI Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks AC Power Analysis - sites.google.com/site/ncpdhbkhn AC Power Analysis Instantaneous and Average Power Maximum Average Power Transfer RMS Value Apparent Power and Power Factor Complex Power Power Factor Improvement AC Power Analysis - sites.google.com/site/ncpdhbkhn Instantaneous Power (1) p(t ) = v(t )i (t ) v(t ) = Vm sin(ωt + φv ) i (t ) = I m sin(ωt + φi ) → p (t ) = Vm I m sin(ωt + φv ) sin(ωt + φi ) Vm I m = [cos(φv − φi ) − cos(2ωt + φv + φi )] Vm I m Vm I m = cos(φv − φi ) − cos(2ωt + φv + φi ) 2 AC Power Analysis - sites.google.com/site/ncpdhbkhn Instantaneous Power (2) Vm I m Vm I m p (t ) = cos(φv − φi ) − cos(2ωt + φv + φi ) 2 p(t) Vm I m Vm I m cos(φv − φi ) t AC Power Analysis - sites.google.com/site/ncpdhbkhn Average Power (1) P= T ∫ T p(t ) dt Vm I m Vm I m p (t ) = cos(φv − φi ) − cos(2ωt + φv + φi ) 2 1 → P = Vm I m cos(φv − φi ) T ∫ T 1 dt − Vm I m T ∫ T cos(2ωt + φv + φi )dt The average of a sinusoid over its period is zero → P = Vm I m cos(φv − φi ) AC Power Analysis - sites.google.com/site/ncpdhbkhn Average Power (2) V = Vm φv I = I m φi → VI* = Vm I m φv − φi → I* = I m − φi VI* = Vm I m φv − φi = Vm I m cos(φv − φi ) + jVm I m sin(φv − φi ) P = Vm I m cos(φv − φi ) * → P = Re(VI ) AC Power Analysis - sites.google.com/site/ncpdhbkhn Average Power (3) 1 * P = Re(VI ) = Vm I m cos(φv − φi ) 2 1 P = Vm I m cos(0) = Vm I m = I m R 2 φv = φi : φv − φi = ±90 : o P = Vm I m cos(90o ) = AC Power Analysis - sites.google.com/site/ncpdhbkhn Average Power (4) • Ex.: v(t) = 150sin(314t – 30o) V i(t) = 10sin(314t + 45o) A Find P? AC Power Analysis - sites.google.com/site/ncpdhbkhn AC Power Analysis Instantaneous and Average Power Maximum Average Power Transfer RMS Value Apparent Power and Power Factor Complex Power Power Factor Improvement AC Power Analysis - sites.google.com/site/ncpdhbkhn 10 AC Power Analysis Instantaneous and Average Power Maximum Average Power Transfer RMS Value Apparent Power and Power Factor Complex Power Power Factor Improvement AC Power Analysis - sites.google.com/site/ncpdhbkhn 24 RMS Value (1) i(t) + – e(t) (AC) R →P= T ∫ T R T i Rdt = ∫ i dt T → I eff I + – E (DC) R T = i dt ∫ T → P = I 2R Veff I is the effective/RMS value of i(t) X eff = X rms = T ∫ T = T ∫ T v dt x dt AC Power Analysis - sites.google.com/site/ncpdhbkhn 25 RMS Value (2) I rms = T ∫ T i 2dt → I rms i(t ) = I m sin ωt T = i dt = ∫ T T ∫ T [ I m sin ωt ]2 dt T − cos 2ωt = Im dt ∫ T I m2 = 2T I rms Im = ∫ T Im dt = Vrms Vm = AC Power Analysis - sites.google.com/site/ncpdhbkhn 26 AC Power Analysis Instantaneous and Average Power Maximum Average Power Transfer RMS Value Apparent Power and Power Factor Complex Power Power Factor Improvement AC Power Analysis - sites.google.com/site/ncpdhbkhn 27 Apparent Power P = Vm I m cos(φv − φi ) Vrms Vm = I rms Im = P = Vrms I rms cos(φv − φi ) S = VrmsIrms AC Power Analysis - sites.google.com/site/ncpdhbkhn 28 Power Factor P = Vrms I rms cos(φv − φi ) S = Vrms I rms P pf = = cos(φv − φi ) S • φv − φi = → pf = → P = S = Vrms I rms • φv − φi = ±90o → pf = → P = AC Power Analysis - sites.google.com/site/ncpdhbkhn 29 AC Power Analysis Instantaneous and Average Power Maximum Average Power Transfer RMS Value Apparent Power and Power Factor Complex Power Power Factor Improvement AC Power Analysis - sites.google.com/site/ncpdhbkhn 30 Complex Power (1) I + Z V – * S = VI V = Vm φv I = I m φi → I* = I m − φi 1 → S = Vm I m φv − φi = Vm I m cos(φv − φi ) + j Vm I m sin(φv − φi ) 2 AC Power Analysis - sites.google.com/site/ncpdhbkhn 31 Complex Power (2) * S = VI V = ZI  S =  →  S = ( )( )  V  VV * Vm φv Vm − φv Vrms V  = = = * * * Z Z Z Z 1 ZII* = Z I m φi I m − φi = ZI m2 = ZI rms 2 Z = R + jX * ( → S = ( R + jX ) I rms )( )  P = Re( S ) = RI  rms 2 → = RI rms + jXI rms   Q = Im(S) = XI rms AC Power Analysis - sites.google.com/site/ncpdhbkhn 32 Complex Power (3) * V S = VI = P + jQ = Vm I m φv − φi = Vrms I rms φv − φi = ZI rms = rms* 2 Z S = S = Vrms I rms = P + Q 2 P = Re(S) = S cos(φv − φi ) = RI rms Q = Im(S) = S sin(φv − φi ) = XI rms P pf = = cos(φv − φi ) S AC Power Analysis - sites.google.com/site/ncpdhbkhn 33 Complex Power (4) • Ex.: v(t) = 150sin(314t – 30o) V i(t) = 10sin(314t + 45o) A Find Vrms, Irms, S, S, P, Q, pf ? AC Power Analysis - sites.google.com/site/ncpdhbkhn 34 AC Power Analysis Instantaneous and Average Power Maximum Average Power Transfer RMS Value Apparent Power and Power Factor Complex Power Power Factor Improvement AC Power Analysis - sites.google.com/site/ncpdhbkhn 35 Power Factor Improvement (1) pf = cos φ R + – E pf > pf1 → φ2 < φ1 IL IC L φ1 I + – E R IL L φ2 E I C IC IL φ2 < φ1 → C = ? ( P = const) AC Power Analysis - sites.google.com/site/ncpdhbkhn 36 Power Factor Improvement (2) Q1 Q1 = P tan φ1 , Q2 = P tan φ2 ∆Q Erms ∆Q = = ωCErms → C = ω Erms XC tan φ1 − tan φ2 =P ω Erms φ φ1 Q2 P I E R + Q1 − Q2 P tan φ1 − P tan φ2 C= = 2 ω Erms ω Erms S1 – ∆Q = Q1 − Q2 ∆Q IL AC Power Analysis - sites.google.com/site/ncpdhbkhn C L IC 37 Ex Power Factor Improvement (3) A load is connected to a 220 V (rms), 50 Hz power line This load absorbs a power of 1000kW Its power factor is 0.8 Find the capacitor necessary to raise the pf to 0.9? tan φ1 − tan φ2 C=P ω Erms pf1 = 0.8 → cos φ1 = 0.8 → φ1 = 36.9o → tan φ1 = 0.75 pf = 0.9 → cos φ2 = 0.9 → φ2 = 25.8o → tan φ2 = 0.48 0.75 − 0.48 → C = 1000 × 10 = 0.0178 F 314 × (220) AC Power Analysis - sites.google.com/site/ncpdhbkhn 38 ... sites.google.com/site/ncpdhbkhn AC Power Analysis Instantaneous and Average Power Maximum Average Power Transfer RMS Value Apparent Power and Power Factor Complex Power Power Factor Improvement AC Power Analysis - sites.google.com/site/ncpdhbkhn... sites.google.com/site/ncpdhbkhn AC Power Analysis Instantaneous and Average Power Maximum Average Power Transfer RMS Value Apparent Power and Power Factor Complex Power Power Factor Improvement AC Power Analysis - sites.google.com/site/ncpdhbkhn... sites.google.com/site/ncpdhbkhn 34 AC Power Analysis Instantaneous and Average Power Maximum Average Power Transfer RMS Value Apparent Power and Power Factor Complex Power Power Factor Improvement AC Power Analysis - sites.google.com/site/ncpdhbkhn

Ngày đăng: 12/02/2020, 21:00

TỪ KHÓA LIÊN QUAN