Lecture Electric circuit theory: Capacitor and inductor include all of the following: Capacitor, inductor, the Dc steady state. Inviting ypu refer lecture for more details.
Nguyễn Công Phương Electric Circuit Theory Capacitor & Inductor Contents I Basic Elements Of Electrical Circuits II Basic Laws III Electrical Circuit Analysis IV Circuit Theorems V Active Circuits VI Capacitor And Inductor VII First Order Circuits VIII.Second Order Circuits IX Sinusoidal Steady State Analysis X AC Power Analysis XI Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks Capacitor & Inductor - sites.google.com/site/ncpdhbkhn Capacitor & Inductor Capacitor Inductor The Dc Steady State Capacitor & Inductor - sites.google.com/site/ncpdhbkhn Capacitor (1) q i, q C + v q = Cv dq i= dt Slope = C – v dv →i =C dt t v(t ) = ∫ i (α ) dα C −∞ Capacitor & Inductor - sites.google.com/site/ncpdhbkhn Capacitor (2) i, q + v – i, q i1, q1 i2, q2 C1 C2 + v – Ceq = C1 + C2 i = i1 + i2 dv i1 = C1 dv dv dv dv = (C1 + C2 ) = Ceq dt → i = C1 + C2 dt dt dt dt dv i2 = C2 dt Ceq = C1 + C2 + + Cn Capacitor & Inductor - sites.google.com/site/ncpdhbkhn i, q + Capacitor (3) v1 + v2 C2 – + + C1 v i, q – – v – v = v1 + v2 Ceq = 1 + C1 C2 C1C2 = C1 + C2 t t t v1 (t ) = ∫ i (α ) dα → v = ∫ i(α ) dα + i (α ) dα C1 −∞ ∫ −∞ −∞ C1 C2 t v2 (t ) = i(α )dα 1 t t ∫ −∞ C2 = + ∫ i (α ) dα = i(α )dα ∫ −∞ −∞ Ceq C1 C2 1 1 = + + + Ceq C1 C2 Cn Capacitor & Inductor - sites.google.com/site/ncpdhbkhn Inductor (1) i + λ L v λ = Li dλ v= dt Slope = L – i di →v= L dt Capacitor & Inductor - sites.google.com/site/ncpdhbkhn Inductor (2) i + v – + v1 L1 i – + L2 v2 – v = v1 + v2 di v1 = L1 dt di v2 = L2 dt + v Leq = L1 + L2 – di di di di → v = L1 + L2 = ( L1 + L2 ) = Leq dt dt dt dt Leq = L1 + L2 + + Ln Capacitor & Inductor - sites.google.com/site/ncpdhbkhn Inductor (3) i i + i1 v L1 – i2 L2 + Leq = v – = i = i1 + i2 t i1 (t ) = ∫ v (α )dα L1 −∞ i2 (t ) = L2 ∫ t −∞ v(α )dα 1 + L1 L2 L1 L2 L1 + L2 t t → i = ∫ v(α )dα + ∫ v (α )dα L1 −∞ L1 −∞ 1 t = + ∫ v (α )dα = Leq L1 L2 −∞ ∫ t −∞ v(α )dα 1 1 = + + + Leq L1 L2 Ln Capacitor & Inductor - sites.google.com/site/ncpdhbkhn Capacitor & Inductor Capacitor Inductor The Dc Steady State Capacitor & Inductor - sites.google.com/site/ncpdhbkhn 10 The Dc Steady State (1) i L i v + – v=0 + – di v=L dt → v = i = const i, q C + v dv i=C dt v = const i=0 – + v – →i=0 Capacitor & Inductor - sites.google.com/site/ncpdhbkhn 11 The Dc Steady State (2) Ex R1 Solve the circuit? R3 + R2 – E E i1 = i2 = iL = R1 + R2 i3 = iC = L i1 i2 + iL uL – – E Capacitor & Inductor - sites.google.com/site/ncpdhbkhn R3 i3 + + E = R2i2 = R2 R1 + R2 R2 uC – R1 vL = vC = vR C iC 12 ... Elements Of Electrical Circuits II Basic Laws III Electrical Circuit Analysis IV Circuit Theorems V Active Circuits VI Capacitor And Inductor VII First Order Circuits VIII.Second Order Circuits... )dα 1 1 = + + + Leq L1 L2 Ln Capacitor & Inductor - sites.google.com/site/ncpdhbkhn Capacitor & Inductor Capacitor Inductor The Dc Steady State Capacitor & Inductor - sites.google.com/site/ncpdhbkhn... Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks Capacitor & Inductor - sites.google.com/site/ncpdhbkhn Capacitor & Inductor