1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Electric circuit theory: Circuit theorems - Nguyễn Công Phương

52 35 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 52
Dung lượng 490,05 KB

Nội dung

Lecture Electric circuit theory: Circuit theorems presents the following content: Source transformation, linearity and superposition, Thévenin Equivalent Subcircuits, Norton Equivalent Subcircuits, maximum power transfer.

Nguyễn Công Phương Electric Circuit Theory Circuit Theorems Contents I Basic Elements Of Electrical Circuits II Basic Laws III Electrical Circuit Analysis IV Circuit Theorems V Active Circuits VI Capacitor And Inductor VII First Order Circuits VIII.Second Order Circuits IX Sinusoidal Steady State Analysis X AC Power Analysis XI Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks Circuit Theorems - sites.google.com/site/ncpdhbkhn Circuit Theorems Source Transformation Linearity and Superposition Thévenin Equivalent Subcircuits Norton Equivalent Subcircuits Maximum Power Transfer Circuit Theorems - sites.google.com/site/ncpdhbkhn Source Transformation (1) R + R J – E E J= R E = RJ E = Ri + v E v i= − R R Circuit Theorems - sites.google.com/site/ncpdhbkhn Source Transformation (2) Ex a J = A; R1 = Ω; R2 = Ω; find i2? i2 R1 J E = R1 J = × = V R2 b E i2 = = = 0.8 A R1 + R2 + a + + J E R – R E J= R R1 E E = RJ Circuit Theorems - sites.google.com/site/ncpdhbkhn i2 R2 b – Source Transformation (3) R1 Ex R3 a Find the current i3 b i3 R2 + – E1 R4 J + – E2 c Circuit Theorems - sites.google.com/site/ncpdhbkhn Circuit Theorems Source Transformation Linearity and Superposition Thévenin Equivalent Subcircuits Norton Equivalent Subcircuits Maximum Power Transfer Circuit Theorems - sites.google.com/site/ncpdhbkhn Linearity and Superposition (1) E i –+ + R2 i R2 – R1 J E R1 –+ R1J i= R1 J + E R1 J E = + R1 + R2 R1 + R2 R1 + R2 = i E =0 E i E =0 J R1 R2 – + R1 Circuit Theorems - sites.google.com/site/ncpdhbkhn + i J =0 i J =0 R2 Linearity and Superposition (2) y = a1 x1 + a2 x2 + + an xn = y1 + y2 + + yn yi = y x = , k ≠ i k Circuit Theorems - sites.google.com/site/ncpdhbkhn Linear and Superposition (3) + + deactivated v=0 – – i=0 deactivated Circuit Theorems - sites.google.com/site/ncpdhbkhn 10 Norton Equivalent Subcircuits (1) i i + v + RL Jeq Req – v RL – Jeq : the short-circuit through the terminals Req : the input or equivalent resistance at the terminals when the independent sources are deactivated Circuit Theorems - sites.google.com/site/ncpdhbkhn 38 Norton Equivalent Subcircuits (2) Jeq : the short-circuit through the terminals + R1 – R2 E J eq = iR = R2 E R2 R3 Req R3 E 30 = R1 10 = 3A Req : the input or equivalent resistance at the terminals when the independent sources are deactivated R1 R1 + R1 = 10Ω, R2 = 20Ω, R3 = 30Ω, E = 30V Find the current of R3? – Ex Jeq  1  +  v = J eq Req    Req R3  → v = 13.36 V = 6.67Ω v → i3 = = 0.55 A R3 Circuit Theorems - sites.google.com/site/ncpdhbkhn 39 R1 × R2 = R1 + R2 Norton Equivalent Subcircuits (3) Ex a E = 16 V; J = A; R1 = Ω; R2 = Ω; R3 = Ω; Rt = Ω; find the Norton equivalent subcircuit? b R1 + E R2 R3 J – c Jeq : the short-circuit through the terminals b a b R1 + E Jeq R2 J R3 Jeq Req c c Circuit Theorems - sites.google.com/site/ncpdhbkhn 40 – Norton Equivalent Subcircuits (4) Ex J eq = i2 E = 16 V; J = A; R1 = Ω; R2 = Ω; R3 = Ω; Rt = Ω; find the Norton equivalent subcircuit?  1  E  +  va = + J R1  R1 R2  Jeq : the short-circuit through the terminals 16 1 1 →  +  va = + 4 6 i2 a b R1 + E → va = 14.40 V R2 J R3 Jeq c → i2 = va 14.40 = = 2.40 A R2 → J eq = 2.40 A Circuit Theorems - sites.google.com/site/ncpdhbkhn 41 – Norton Equivalent Subcircuits (5) Ex a E = 16 V; J = A; R1 = Ω; R2 = Ω; R3 = Ω; Rt = Ω; find the Norton equivalent subcircuit? b R1 + E R2 R3 J – c Req : the input or equivalent resistance at the terminals when the independent sources are deactivated a R1 b b R2 R3 Jeq Req Req c c Circuit Theorems - sites.google.com/site/ncpdhbkhn 42 Norton Equivalent Subcircuits (6) Ex E = 16 V; J = A; R1 = Ω; R2 = Ω; R3 = Ω; Rt = Ω; find the Norton equivalent subcircuit? Req = ( R1 + R2 ) // R3 R1 + R2 ) R3 ( = R1 + R2 + R3 Req : the input or equivalent resistance at the terminals when the independent sources are deactivated a R1 b R2 R3 Req (4 + 6)8 = 4+ 6+8 = 4.44 Ω c Circuit Theorems - sites.google.com/site/ncpdhbkhn 43 b R1 + E = 16 V; J = A; R1 = Ω; R2 = Ω; R3 = Ω; Rt = Ω; find the Norton equivalent subcircuit? a – Ex Norton Equivalent Subcircuits (7) E R2 R3 J c b J eq = 2.40 A Req = 4.44 Ω Jeq Req c Circuit Theorems - sites.google.com/site/ncpdhbkhn 44 Norton Equivalent Subcircuits (8) Ex b a + – E = 16 V; J = A; R1 = Ω; R2 = Ω; R3 = Ω; RL = Ω; find i2? R1 E R2 J i2 RL R3 c a R1 Req b i2 RL R3 c a i2 Jeq Req = ( R3 // RL ) + R1 R3 RL 8×5 = + R1 = + = 7.08 Ω R3 + RL 8+5 Circuit Theorems - sites.google.com/site/ncpdhbkhn Req R2 b 45 b a + E = 16 V; J = A; R1 = Ω; R2 = Ω; R3 = Ω; RL = Ω; find i2? – Ex Norton Equivalent Subcircuits (9) R1 E R2 J i2 RL R3 c b a + i1 R1 E Jeq J RL R3 a i2 – c J eq = i1 + J Jeq Req R2 1 1  E + + v = + J → va = 10.43V b   a R1  R1 R3 RL  E − va → i1 = = 1.39 A → J eq = 1.39 + = 3.39 A R1 Circuit Theorems - sites.google.com/site/ncpdhbkhn 46 Norton Equivalent Subcircuits (10) Ex b a R1 + E – E = 16 V; J = A; R1 = Ω; R2 = Ω; R3 = Ω; RL = Ω; find i2? R2 J i2 RL R3 c J eq = 3.39 A Req = 7.08Ω – = 24 V + Eeq = Req J eq a a Req Eeq i2 i2 R2 Jeq b Req R2 b Eeq 24 i2 = = = 1.84 A Req + R2 7.08 + Circuit Theorems - sites.google.com/site/ncpdhbkhn 47 Thévenin & Norton Equivalent Subcircuits (1) i + v RL – Req i i Eeq = Req Jeq + + – Eeq v – RL + Jeq Req = Eeq J eq Req v RL – vopen-circuit Eeq = vopen-circuit → Req = i short-circuit Jeq = ishort-circuit Circuit Theorems - sites.google.com/site/ncpdhbkhn 48 Thévenin & Norton Equivalent Subcircuits (2) a Ex R1 ishort-circuit = – Req = + E = 16 V; J = A; R1 = Ω; R2 = Ω; R3 = Ω; Rt = Ω; find Req? vopen-circuit b E R2 J R3 c Eeq J eq Eeq = 10.67 V → Req 10.67 = = 4.44 Ω 2.40 J eq = 2.40 A Circuit Theorems - sites.google.com/site/ncpdhbkhn 49 Circuit Theorems Source Transformation Linearity and Superposition Thévenin Equivalent Subcircuits Norton Equivalent Subcircuits Maximum Power Transfer Circuit Theorems - sites.google.com/site/ncpdhbkhn 50 Maximum Power Transfer (1) Req i + Eeq –  Eeq  → pL =  R  Req + RL  L   dpL =0 dRL + pL = i RL Eeq iL = Req + RL L v RL – ( R + R ) − RL ( Req + RL ) dpL eq L → = Eeq dRL ( Req + RL ) Req + RL − RL Req − RL 2 = Eeq = Eeq =0 3 ( Req + RL ) ( Req + RL ) RL = Req Circuit Theorems - sites.google.com/site/ncpdhbkhn 51 Maximum Power Transfer (2) Ex E = 16 V; R1 = Ω; R2 = Ω; R3 = Ω; R4 = 10 Ω; Find the value of RL for maximum power transfer? R1 E +– RL = Req R4 4.6 2.10 = + + + 10 = 4, 07 Ω Req Eeq – Req R1 R2 RR + R1 + R2 R3 + R4 R4 + R3 R2 RL R3 Req = R1 E R2 i + v RL – → RL = 4.07 Ω Circuit Theorems - sites.google.com/site/ncpdhbkhn 52 ... Elements Of Electrical Circuits II Basic Laws III Electrical Circuit Analysis IV Circuit Theorems V Active Circuits VI Capacitor And Inductor VII First Order Circuits VIII.Second Order Circuits... Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks Circuit Theorems - sites.google.com/site/ncpdhbkhn Circuit Theorems. .. Transfer Circuit Theorems - sites.google.com/site/ncpdhbkhn 20 Thévenin Equivalent Subcircuits (1) Req + – Eeq Circuit Theorems - sites.google.com/site/ncpdhbkhn 21 Thévenin Equivalent Subcircuits

Ngày đăng: 12/02/2020, 21:36

TỪ KHÓA LIÊN QUAN