1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Electric circuit theory: Two-port networks - Nguyễn Công Phương

93 52 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 93
Dung lượng 519,81 KB

Nội dung

Lecture Electric circuit theory - Two-port networks presents the following content: Parameters, relationships between parameters, two-port network analysis, interconnection of networks, equivalent two-port networks of magnetically coupled circuits,...

Nguyễn Công Phương Electric Circuit Theory Two-port Networks Contents I Basic Elements Of Electrical Circuits II Basic Laws III Electrical Circuit Analysis IV Circuit Theorems V Active Circuits VI Capacitor And Inductor VII First Order Circuits VIII.Second Order Circuits IX Sinusoidal Steady State Analysis X AC Power Analysis XI Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks Two-port Networks - sites.google.com/site/ncpdhbkhn Two-port Network Introduction Parameters Relationships between Parameters Two-port Network Analysis Interconnection of Networks T & П Networks Equivalent Two-port Networks of Magnetically Coupled Circuits Input Impedance Transfer Function Two-port Networks - sites.google.com/site/ncpdhbkhn Introduction I1 I2 + + Linear Network – I1 V2 – V1 I2 Two-port Networks - sites.google.com/site/ncpdhbkhn Two-port Network Introduction Parameters a) b) c) d) e) f) Impedance z Admittance y Hybrid h Inverse Hybrid g Transmission T Inverse Transmission t Relationships between Parameters Two-port Network Analysis Interconnection of Networks T & П Networks Equivalent Two-port Networks of Magnetically Coupled Circuits Input Impedance Transfer Function Two-port Networks - sites.google.com/site/ncpdhbkhn Impedance Parameters (1) I1 I2 + + Linear Network V1 – I1 V2 –  V1 = z11I1 + z12I   V2 = z 21I1 + z 22I I2  V1   z11 z12   I1   I1  = [z ]    V  = z       21 z 22   I  I2  Two-port Networks - sites.google.com/site/ncpdhbkhn Impedance Parameters (2) I1 I2 – I1 I2 I1 I2 = Linear Network I Two-port Networks - sites.google.com/site/ncpdhbkhn V2 – V1 – I2 =0 I2 = – V2 I1 V2 + V1 I1 Linear Network V1 +   z11 =  V1 = z11I1  → →  V2 = z 21I1 z =  21  + +  V1 = z11I1 + z12I   V2 = z 21I1 + z 22I I2 = Impedance Parameters (3) I1 I2 Linear Network V2 – V1 – I1 I2 I1 = I2 + Linear Network – Two-port Networks - sites.google.com/site/ncpdhbkhn V2 I2 – V1 +  V1  z12 = I I =0  V1 = z12I  → →  V2 = z 22I  z = V2  22 I I1 =0  + +  V1 = z11I1 + z12I   V2 = z 21I1 + z 22I I1 = Impedance Parameters (4) I1 I2 I2 =0 V2 I1 I2 =0   I1 =0   V2  z 22 = I I =0   – V1 I1 Linear Network V1 I1 V2 –   z11 =   z =  21  + +  V1 = z11I1 + z12I   V2 = z 21I1 + z 22I I2 V1 z12 = I2 Two-port Networks - sites.google.com/site/ncpdhbkhn Impedance Parameters (5) Ex Find [z]? I1 10Ω I2 = 30Ω 20Ω + 30Ω V2 20Ω I1 + + [z] V1 V2 – V1 z11 = I1 I2 I =0 V1 = (10 + 20)I1 = 30I1 30I1 → z11 = = 30 Ω I1 – 10Ω – + – V1 I1 I2  V1 = z11I1 + z12 I2   V2 = z 21I1 + z 22I2 Two-port Networks - sites.google.com/site/ncpdhbkhn 10 Input Impedance (5) ( Z + Z a ) Zc + Zb Z + Z a + Zc E – Method Z eq = V1 V2 I1 I2 Z + Z2 = Z*eq + What Z2 will absorb maximum power from the circuit? I2 + Z = 15 + j 25 Ω I1 – E = 220 V  30 20 z= ;   20 50  – Ex Z a = 10 Ω Z c = 20 Ω Z Z b = 30 Ω → Z eq = Za Z2 Zb Zc (15 + j 25 + 10)20 + 30 = 43.21 + j 3.77 Ω → Z = 43.21 − j 3.77 Ω 15 + j 25 + 10 + 20 Two-port Networks - sites.google.com/site/ncpdhbkhn 79 Input Impedance (6) – I2 I1 I2 V1 – I1 Linear Network Two-port Networks - sites.google.com/site/ncpdhbkhn V2 – Z2 + → Z 2in −DZ1 − B = CZ1 + A I1 + V2 DV1 − BI1 Z 2in = = − I2 −CV1 + AI1 V1 = − Z1I1 Z2 V2 – → Z1in Linear Network V1 AZ − B = CZ − D I2 + V1 AV2 − BI2 = I1 CV2 − DI2 V2 = Z2I Z1in = I1 +  V1 = AV2 − BI   I1 = CV2 − DI I2 80 Input Impedance (7) Z1in AZ − B = CZ − D → Z1sc Z2 = (short-circuit) AZ − B Z1in = CZ2 − D Z → ∞ (open-circuit) Z 2in = −DZ1 − B CZ1 + A B = D → Z1oc = A C → Z 2sc Z1 = (short-circuit) −DZ1 − B Z 2in = CZ1 + A Z1 → ∞(open-circuit) −B = A → Z2oc −D = C Two-port Networks - sites.google.com/site/ncpdhbkhn 81 Input Impedance (8) Z1sc B = D Z1oc A = C Z 2sc = Z 2oc −B A −D = C  Z1sc Z1oc A =  Z 2sc ( Z1oc − Z1sc )   B = − AZ sc  → A C = Z 1oc   B D = − Z  1sc Two-port Networks - sites.google.com/site/ncpdhbkhn 82 Input Impedance (9) Z1 Ex Find T? V1 A= V2 a Z3 d Z7 e Z4 Z6 Z2 I =0 b Z1sc Z1oc Z2sc ( Z1oc − Z1sc ) A= c Z8 Z5 b Z1sc = ? B = − AZ2 sc C= A Z1oc D=− Z1sc = Zab = {[(Z7//Z6//Z5)+Z3]//Z4//Z2}+Z1 B Z1sc Two-port Networks - sites.google.com/site/ncpdhbkhn 83 Input Impedance (10) Z1 Ex Find T? a c Z3 d Z7 e Z4 Z6 Z2 b Z1sc Z1oc Z2sc ( Z1oc − Z1sc ) A= Z8 Z5 b Z1oc = ? B = − AZ2 sc C= A Z1oc D=− Z1oc = Zab = [{[(Z7+Z8)//Z6//Z5]+Z3}//Z4//Z2]+Z1 B Z1sc Two-port Networks - sites.google.com/site/ncpdhbkhn 84 Input Impedance (11) Z1 Ex Find T? a c Z3 d Z7 e Z4 Z6 Z2 b Z1sc Z1oc Z2sc ( Z1oc − Z1sc ) A= Z8 Z5 b Z2sc = ? B = − AZ2 sc C= A Z1oc D=− Z2sc = Zeb = [{[(Z1//Z2//Z4)+Z3]//Z5//Z6}+Z7]//Z8 B Z1sc Two-port Networks - sites.google.com/site/ncpdhbkhn 85 Input Impedance (12) Z1 Ex Find T? a c Z3 d Z7 e Z4 Z6 Z2 Z1sc Z1oc Z2sc  Z1sc Z1oc A = Z 2sc ( Z1oc − Z1sc )   B = − AZ sc  → A C =  Z1oc   B D = −  Z1sc  b Z8 Z5 Two-port Networks - sites.google.com/site/ncpdhbkhn b 86 Two-port Network Introduction Parameters Relationships between Parameters Two-port Network Analysis Interconnection of Networks T & П Networks Equivalent Two-port Networks of Magnetically Coupled Circuits Input Impedance Transfer Function Two-port Networks - sites.google.com/site/ncpdhbkhn 87 Transfer Function (1) • Voltage transfer function: V2 Kv = V1 • Current transfer function: I2 Ki = I1 • Voltage – current transfer function: V2 K vi = I1 Two-port Networks - sites.google.com/site/ncpdhbkhn 88 Transfer Function (2) I2 + E [z] V2 ZL –  V1 = z11I1 + z12 I   V2 = z 21I1 + z 22 I V1 = E V2 = − Z L I I1 + 30 20 E = 220 V z= ;   20 50  Z L = 15 + j 25 Ω Find Kv, Ki, Kvi? – Ex I1 I2 z 22 + Z L  I1 = z z − z z + z Z E  11 22 12 21 11 L  E = z11I1 + z12 I →  → − z 21 I =  − Z L I = z 21I1 + z 22 I E  z11z 22 − z12 z 21 + z11Z L Two-port Networks - sites.google.com/site/ncpdhbkhn 89 Transfer Function (3) V2 = − Z L I E [z] V2 ZL – − z 21 I2 = E z11z 22 − z12 z 21 + z11Z L I2 + z 22 + Z L I1 = E z11z 22 − z12 z 21 + z11Z L I1 + 30 20 E = 220 V z= ;   20 50  Z L = 15 + j 25 Ω Find Kv, Ki, Kvi? – Ex I1 I2 z 21Z L → V2 = E z11z 22 − z12 z 21 + z11Z L z 21Z L V2 → Kv = = = 0.28 + j 0.19 V1 z11z 22 − z12z 21 + z11Z L Two-port Networks - sites.google.com/site/ncpdhbkhn 90 Transfer Function (4) I2 + E [z] V2 ZL – z 22 + Z L I1 = E z11z 22 − z12 z 21 + z11Z L I1 + 30 20 E = 220 V z= ;   20 50  Z L = 15 + j 25 Ω Find Kv, Ki, Kvi? – Ex I1 I2 − z 21 I2 = E → K = − z 21 = −0.27 + j 0.10 i z11z 22 − z12 z 21 + z11Z L Z22 + Z L I2 Ki = I1 Two-port Networks - sites.google.com/site/ncpdhbkhn 91 Transfer Function (5) I2 + E [z] V2 ZL – z 22 + Z L I1 = E z11z 22 − z12 z 21 + z11Z L I1 + 30 20 E = 220 V z= ;   20 50  Z L = 15 + j 25 Ω Find Kv, Ki, Kvi? – Ex I1 I2 z 21Z L V2 = E → K = z 21Z L vi z11z 22 − z12 z 21 + z11Z L z 22 + Z L V2 = 6.60 + j 5.15 Ω K vi = I1 Two-port Networks - sites.google.com/site/ncpdhbkhn 92 Transfer Function (6) Ex I1 I2 + E = 380 V; Z L = 15 + j 25 Ω; K v = 0.28 + j 0.19; Find V2? + E [z] V2 ZL – – I1 V2 Kv = V1 V1 = E I2 → V2 = K v E = (0.28 + j 0.19) × 380 = 107.7 + j 70.5 V → V2 = 128.7 V Two-port Networks - sites.google.com/site/ncpdhbkhn 93 ... XI Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks Two-port Networks - sites.google.com/site/ncpdhbkhn Two-port Network... Parameters Two-port Network Analysis Interconnection of Networks T & П Networks Equivalent Two-port Networks of Magnetically Coupled Circuits Input Impedance Transfer Function Two-port Networks - sites.google.com/site/ncpdhbkhn... Parameters Two-port Network Analysis Interconnection of Networks T & П Networks Equivalent Two-port Networks of Magnetically Coupled Circuits Input Impedance Transfer Function Two-port Networks - sites.google.com/site/ncpdhbkhn

Ngày đăng: 13/02/2020, 00:31

TỪ KHÓA LIÊN QUAN