1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Digital logic design - Lecture 9: NAND and XOR Implementations

28 44 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 902,14 KB

Nội dung

The main contents of the chapter consist of the following: Developing NAND circuits, two-level implementations, multi-level NAND implementations, convert from a network of AND/ORs, exclusive OR, comparison with SOP, parity checking and detecting circuitry.

Lecture 09 NAND and XOR Implementations Overvie w ° Developing NAND circuits ° Two-level implementations • Convert from AND/OR to NAND (again!) ° Multi-level NAND implementations • Convert from a network of AND/ORs ° Exclusive OR • Comparison with SOP ° Parity checking and detecting circuitry • Efficient with XOR gates! Gates AND OR A X B X=A•B or X = AB A X X=A+B B I A X X = A’ Buffer A X X=A NAND A X X = (AB)’ B NOR A X X = (A + B)’ X X=A B or X = A’B + AB’ X X = (A B)’ or X = A’B’+ AB B XOR Exclusive OR XNOR Exclusive NOR or Equivalence A B A B A 0 1 A 0 1 A 0 1 A 0 1 A 0 1 A 0 1 B 1 B 1 A A B 1 B 1 B 1 B 1 X 0 X 1 X X X 1 X 0 X 1 X 0 Axioms and Graphical representation of DeMorgan's Law 10A) X Y Y X 10B) X 11A) X YZ 11B) X 12A) XY 12B) X Y W 13A) X XY X Y 13B) X XY X Y 13C) X XY X Y 13D) X XY X Y 14A) XY 14B) X Y Y X XY Z Y Z Z X Y Commutative Law X Y XY Z Y X Y Z Associative Law XZ XW XZ YW Consensus Theorem YZ Distributiv e Law Network Conversion Using Alternate Gate Symbols • Recall that symbolic DeMorgan’s duals exist for all gate primitives nand nor and or not • The above alternate symbols can be used to facilitate the analysis and design of NAND and NOR gate networks NA NDNA DeMorgan’s Law: ND & (a + b)’ = a’ b’ NO a + b = (a’ b’)’ RNO R = Net wor ks = (a b)’ = a’ + b’ (a b) = (a’ + b’)’ = = push bubbles or introduce in pairs or remove pairs NAND-NAND & NOR-NOR Networks = = = = NAND-NAND Networks ° Mapping from AND/OR to NAND/NAND a) b) c) d) a b c d NAND-NAND Networks a) b) c) a) d) b) c) d) a b c d a b c d Impl eme °ntat Sum-of-products ion • AND gates to form product terms s of (minterms) Two • OR gate to form sum leve l Log °ic Product-of-sums • OR gates to form sum terms (maxterms) • AND gates to form product Con ver °sio Convert from networks of ANDs and ORs to nnetworks of NANDs and NORs Bet• Introduce appropriate inversions ("bubbles") wee °nEach introduced "bubble" must be matched by a corresponding "bubble" For ms• Conservation of inversions • Do not alter logic function ° Example: AND/OR to NAND/NAND A A B B C D Z C D NAND NAND NAND Z Con ver °sio Example: verify equivalence of two forms n Bet wee An A For NAND B B ms Z NAND (co C C NAND Dnt’d D ) Z = [ (A  •  B)'  • (C   • D)'  ]'    = [ (A' + B')  •  (C' + D')  ]'    = [ (A' + B')' + (C' + D')'  ]    =   (A  •  B)   + (C  • D)  Z Con ver °sio Start with SOP (Sum of Products) n to NA• circle 1s in K-maps °ND Find network of OR and AND gates Gat es Mult i° x =leve ADF + AEF + BDF + BEF + CDF + CEF + G l• Reduced sum-of-products form – already simplified Log • x 3-input AND gates + x 7-input OR gate (may not exist!) ic • 25 wires (19 literals plus internal wires) ° x = (A + B + C) (D + E) F + G • Factored form – not written as two-level S-o-P • x 3-input OR gate, x 2-input OR gates, x 3-input AND gate • 10 wires (7 literals plus internal wires) A B C D E F G X Conversion of Multi-level Logic to NAND ° FGates = A (B + C D) + B C' Level 1 original AND­OR  network introduction and conservation of  bubbles redrawn in terms of conventional NAND gates C D B A B C’ C D B A B C’ C D B’ A B C’ Level 2 Level 3 Level 4 F F F Con ver °sio Example n Bet A (a) wee B n C X D For msOriginal circuit A B C X D Add double bubbles at inputs F B C D’ F A A (c) (b) X X’ Distribute bubbles some mismatches F B C D’ X’ Insert inverters to fix mismatches F (d) Making NAND circuits (Ex) ° The easiest way to make a NAND circuit is to start with a regular, primitive gate-based diagram ° Two-level circuits are trivial to convert, so here is a slightly more complex random example Converting to a NAND ° Step 1: Convert all AND gates to NAND gates and convert all OR gates to NAND gates AND AND OR OR AND AND Converting to NAND ° Step 2: Cancel all pairs of inverters ((x’)’ = x) Exclusive-OR and Exclusive-NOR Circuits Exclusive­OR (XOR)  produces a HIGH output whenever the two  inputs are at opposite levels.  Exclusive-NOR Circuits Exclusive­NOR (XNOR) : Exclusive­NOR (XNOR)  produces a HIGH output whenever the two  inputs are at the same level.  Exclusive-NOR Circuits XNOR gate may be used to simplify circuit implementation XOR Function ° XOR function can also be implemented with AND/OR gates (also NANDs) Parity Generation and Checking FIGURE 4­25    XOR gates used to implement the parity generator and the parity  checker for an even­parity system Summary ° Follow rules to convert between AND/OR representation and symbols ° Conversions are based on DeMorgan’s Law ° NOR gate implementations are also possible ° XORs provide straightforward implementation for some functions ° Used for parity generation and checking • ° XOR circuits could also be implemented using AND/Ors Next time: Hazards ... NAND- NAND & NOR-NOR Networks = = = = NAND- NAND Networks ° Mapping from AND/ OR to NAND/ NAND a) b) c) d) a b c d NAND- NAND Networks a) b) c) a) d) b) c) d) a b c d a b c d Impl eme °ntat Sum-of-products... alter logic function ° Example: AND/ OR to NAND/ NAND A A B B C D Z C D NAND NAND NAND Z Con ver °sio Example: verify equivalence of two forms n Bet wee An A For NAND B B ms Z NAND (co C C NAND Dnt’d... slightly more complex random example Converting to a NAND ° Step 1: Convert all AND gates to NAND gates and convert all OR gates to NAND gates AND AND OR OR AND AND Converting to NAND ° Step 2: Cancel

Ngày đăng: 13/02/2020, 00:36

TỪ KHÓA LIÊN QUAN