1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Digital logic design - Lecture 5: More boolean algebra

32 40 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 709,99 KB

Nội dung

The main contents of the chapter consist of the following: Expressing boolean functions; relationships between algebraic equations, symbols, and truth tables; simplification of boolean expressions; minterms and maxterms; AND-OR representations.

Lecture More Boolean Algebra A B Overvie w ° Expressing Boolean functions ° Relationships between algebraic equations, symbols, and truth tables ° Simplification of Boolean expressions ° Minterms and Maxterms ° AND-OR representations • Product of sums • Sum of products Axioms and Graphical representation of DeMorgan's Law 10A) X Y Y X 10B) X 11A) X YZ 11B) X 12A) XY 12B) X Y W 13A) X XY X Y 13B) X XY X Y 13C) X XY X Y 13D) X XY X Y 14A) XY 14B) X Y Y X XY Z Y Z Z X Y Commutative Law X Y XY Z Y X Y Z Associative Law XZ XW XZ YW Consensus Theorem YZ Distributiv e Law Simplification Using the Laws Boolean Functions ° Boolean algebra deals with binary variables and logic operations ° Function results in binary or x 0 0 1 1 y 0 1 0 1 z 1 1 F 0 0 1 x y z z’ y+z’ F = x(y+z’) F = x(y+z’) Boolean Functions ° Boolean algebra deals with binary variables and logic operations ° Function results in binary or x 0 0 1 1 y 0 1 0 1 z 1 1 xy 0 0 0 1 yz 0 0 G 0 0 1 x xy y G = xy +yz z yz We will learn how to transition between equation, symbols, and truth table Representation Conversion ° Need to transition between boolean expression, truth table, and circuit (symbols) ° Converting between truth table and expression is easy ° Converting between expression and circuit is easy ° More difficult to convert to truth table Boolean Expression Circuit Truth Table Truth Table to Expression ° Converting a truth table to an expression • Each row with output of becomes a product term • Sum product terms together x 0 0 1 1 y 0 1 0 1 z 1 1 G 0 0 1 Any Boolean Expression can be represented in sum of products form! xyz + xyz’ + x’yz ° Complementing Functions Step 1: assign temporary names • b + c -> z G = a + b+ c G’ = (a + b + c)’ • (a + z)’ = G’ ° Step 2: Use DeMorgans’ Law • (a + z)’ = a’ z’ ° Step 3: Resubstitute (b+c) for z • a’ z’ = a’ (b + c)’ ° Step 4: Use DeMorgans’ Law • a’ (b + c)’ = a’ (b’ c’) ° Step 5: Associative rule • a’ (b’ c’) = a’ b’ c’ G = a + b+ c G’ = a’ b’ c’ = a’b’c’ Complementation Example ° Find complement of F = x’z + yz • F’ = (x’z + yz)’ ° DeMorgan’s • F’ = (x’z)’ (yz)’ ° DeMorgan’s • F’ = (x’’+z’)(y’+z’) ° Reduction -> eliminate double negation on x • F’ = (x+z’)(y’+z’) This format is called product of sums Conversion Between Canonical Forms ° Easy to convert between minterm and maxterm representations ° For maxterm representation, select rows with 0’s x 0 0 1 1 y 0 1 0 1 z 1 1 G 0 0 1 G = xyz + xyz’ + x’yz G = m7 + m6 + m3 = Σ(3, 6, 7) G = M0M1M2M4M5 = Π(0,1,2,4,5) G = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)(x’+y+z’) Representation of Circuits ° All logic expressions can be represented in 2level format ° Circuits can be reduced to minimal 2-level representation ° Sum of products representation most common in industry Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Example 1: AB + A(B+C) +B(B+C) = Solution: AB + A(B+C) +B(B+C) = AB+AB+AC+BB+BC = AB+AB+AC+B+BC = AB+AC+B+BC = AB+AC+B = B+AC Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Gate Network for Example 1: AB+A(B+C)+B(B+C) A AB B A B A(B+C) B+C AB+A(B+C)+B(B+C) C B B(B+C) Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Gate Network for Example 1: B+AC B A C AC B+AC Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Gate Network for Example 1: AB+A(B+C)+B(B+C) ≡ B+AC A AB B B A A(B+C) B B+C C B ≡ AB+A(B+C)+B(B+C) B+AC A C AC B(B+C) (a) (b) Equivalent Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Example 2: Using Boolean algebra techniques, simplify the following expression: [AB(C + BD) + AB]C Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Example 2: Solution: [ A B(C BD ) A B]C ( A BC A BBD A B)C ( A BC A.0.D A B )C A B )C ( A BC ( A BC A B )C Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Example 2: Solution: ( A BC A B )C A BCC A BC A BC A BC BC ( A A) BC.1 BC Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Example 3: Using Boolean algebra techniques, simplify the following expression: ABC + ABC + ABC + ABC + ABC ABC + ABC + ABC + ABC + ABC + ABC ABC + ABC + ABC + ABC + ABC + ABC BC(A + A) + BC(A + A) + AC(B + B) BC + BC + AC C(B + A) + BC Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Example 4: Using Boolean algebra techniques, simplify the following expression: AB AC ABC AB AC + A BC ( A + B).( A + C ) + A BC A A + AC + A B + BC + A BC A + AC + A B + BC + A BC A + A BC + A B + BC A(1 + BC ) + A B + BC A + A B + BC A(1 + B) + BC A + BC A + BC Boolean Algebra and Logic Simplification Example 4: Simplify the following Boolean functions T1 and T2 to a minimum number of literals: T1 = ∑ (0,1, 2) = ∏ (3, 4, 5, 6, 7) T2 = ∑ (3, 4, 5, 6, 7) = ∏ (0,1, 2) Summary ° Truth table, circuit, and boolean expression formats are equivalent ° Easy to translate truth table to SOP and POS representation ° Boolean algebra rules can be used to reduce circuit size while maintaining function ° All logic functions can be made from AND, OR, and NOT ° Easiest way to understand: Do examples! ° Next time: More logic gates! ... Equivalent Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Example 2: Using Boolean algebra techniques, simplify the following expression: [AB(C + BD) + AB]C Boolean Algebra. .. Using Boolean Algebra Example 2: Solution: ( A BC A B )C A BCC A BC A BC A BC BC ( A A) BC.1 BC Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Example 3: Using Boolean. .. Boolean Algebra and Logic Simplification Simplification Using Boolean Algebra Gate Network for Example 1: AB+A(B+C)+B(B+C) A AB B A B A(B+C) B+C AB+A(B+C)+B(B+C) C B B(B+C) Boolean Algebra and Logic

Ngày đăng: 12/02/2020, 15:12

TỪ KHÓA LIÊN QUAN