1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Digital logic design - Lecture 11: Combinational design procedure

35 49 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 35
Dung lượng 564,74 KB

Nội dung

The main contents of the chapter consist of the following: Design digital circuit from specification, digital inputs and outputs known, need to determine logic that can transform data, start in truth table form, create k-map for each output based on function of inputs, determine minimized sum-of-product representation, draw circuit diagram.

Lecture 11 Combinational Design Procedure Overvie w ° Design digital circuit from specification ° Digital inputs and outputs known • Need to determine logic that can transform data ° Start in truth table form ° Create K-map for each output based on function of inputs ° Determine minimized sum-of-product representation ° Draw circuit diagram Design Procedure (Mano) Design a circuit from a specification Determine number of required inputs and outputs Derive truth table Obtain simplified Boolean functions Draw logic diagram and verify correctness A B C RS 0 0 0 1 0 S=A+B+C R = ABC 1 1 0 1 1 1 0 1 1 1 Previously, we have learned… ° Boolean algebra can be used to simplify expressions, but not obvious: • how to proceed at each step, or • if solution reached is minimal ° Have seen five ways to represent a function: • Boolean expression • truth table • logic circuit • minterms/maxterms • Karnaugh map Combinational logic design ° Use multiple representations of logic functions ° Use graphical representation to assist in simplification of function ° Use concept of “don’t care” conditions ° Example - encoding BCD to seven segment display ° Similar to approach used by designers in the field BCD to Seven Segment Display ° Used to display binary coded decimal (BCD) numbers using seven illuminated segments ° BCD uses 0’s and 1’s to represent decimal digits Need four bits to represent required 10 digits ° Binary coded decimal (BCD) represents each decimal digit with four bits 0 0 0 0 1 0 0 a f g e b c d BCD to seven segment display ° List the segments that should be illuminated for each digit a,b,c,d,e,f b,c a,b,d,e,g a,b,c,d,g b,c,f,g a,c,d,f,g a,c,d,e,f,g a,b,c a,b,c,d,e,f,g a,b,c,d,f,g a f g e b c d BCD to seven segment display ° Derive the truth table for the circuit ° Each output column in one circuit Inputs Outputs Dec w x y z a b c d e 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 BCD to seven segment display ° Find minimal sum-of-products representation for each output For segment “a” : yz wx 00 01 11 10 00 1 01 1 11         10 1     Note: Have only  filled in ten  squares,  corresponding to  the ten numerical  digits we wish to  represent Don’t care conditions (BCD display) ° Fill in don’t cares for undefined outputs • Note that these combinations of inputs should never happen ° Leads to a reduced implementation For segment “a” : yz 00 01 11 10 wx 00 1 01 1 11 X X X X 10 1 Put in “X” (don’t  care), and interpret as  either 1 or 0 as  desired … X X 10 For segment “b” : yz wx 00 01 11 10 00 1 1 01 1 11 X   X   X  X   X  X   10 Fb = YZ 21 For segment “b” : yz wx 00 01 11 10 00 1 1 01 1 11 X   X   X  X   X  X   10 F = W + Y Z + W X + YZ F = W + W X + YZ + Y Z F = W + X +Y ⊕ Z 22 BCD-to-Excess-3 Code converter ° BCD is a code for the decimal digits 0-9 ° Excess-3 is also a code for the decimal digits 23 Spec ifica °tion  Inputs: a BCD input, A,B,C,D with A as the most  of  significant bit and D as the least significant bit BC °D­ Outputs: an Excess­3 output W,X,Y,Z that corresponds  to the BCD input to­ °Exc Internal operation – circuit to do the conversion in  ess3 combinational logic 24 Formulation of BCD-to-Excess-3 ° Excess-3 code is easily formed by adding a binary to the binary or BCD for the digit ° There are 16 possible inputs for both BCD and Excess-3 ° It can be assumed that only valid BCD inputs will appear so the six combinations not used can be treated as don’t cares 25 Optimization – BCD-to-Excess-3 ° Lay out K-maps for each output, W X Y Z ° A step in the digital circuit design process 26 Placing on K-maps ° Where are the minterms located on a K-Map? 27 Expressions for W X Y Z ° W(A,B,C,D) = Σm(5,6,7,8,9) +d(10,11,12,13,14,15) ° X(A,B,C,D) = Σm(1,2,3,4,9) +d(10,11,12,13,14,15) ° Y(A,B,C,D) = Σm(0,3,4,7,8) +d(10,11,12,13,14,15) ° Z(A,B,C,D) = Σm(0,2,4,6,8) +d(10,11,12,13,14,15) 28 Minimize K-Maps ° W minimization ° Find W = A + BC + BD 29 Minimize K-Maps ° X minimization ° Find X = BC’D’+B’C+B’D 30 Minimize K-Maps ° Y minimization ° Find Y = CD + C’D’ 31 Minimize K-Maps ° Z minimization ° Find Z = D’ 32 Two level circuit implementation ° Have equations • W = A + BC + BD = A + B(C+D) • X = B’C + B’D + BC’D’ = B’(C+D) + BC’D’ • Y = CD + C’D’ • Z = D’ ° Factoring out (C+D) and call it T ° Then T’ = (C+D)’ = C’D’ • W = A + BT • X = B’T + BT’ • Y = CD + T’ • Z = D’ 33 Create the digital circuit ° Implementing the second set of equations where T=C+D results in a lower gate count ° This gate has a fanout of 34 34 Summary ° Need to formulate circuits from problem descriptions Determine number of inputs and outputs Determine truth table format Determine K-map Determine minimal SOP o There may be multiple outputs per design o Solve each output separately o Current approach doesn’t have memory o This will be covered next week 35 ... °Exc Internal operation – circuit to do the conversion in  ess3 combinational logic 24 Formulation of BCD-to-Excess-3 ° Excess-3 code is easily formed by adding a binary to the binary or BCD... output based on function of inputs ° Determine minimized sum-of-product representation ° Draw circuit diagram Design Procedure (Mano) Design a circuit from a specification Determine number of required... function: • Boolean expression • truth table • logic circuit • minterms/maxterms • Karnaugh map Combinational logic design ° Use multiple representations of logic functions ° Use graphical representation

Ngày đăng: 12/02/2020, 14:29

TỪ KHÓA LIÊN QUAN