1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lecture Applied econometrics course - Chapter 1: Simple regression model

25 63 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 817,43 KB

Nội dung

Lecture Applied econometrics course - Chapter 1: Simple regression model has content: What is simple regression model, how to estimate simple regression model, R – Square, assumption, variance and standard error of parameters,... and other contents.

APPLIED ECONOMETRICS COURSE CHAPTER I SIMPLE REGRESSION MODEL NGUYEN BA TRUNG - 2016 TODAY’S TALK  What is simple regression model  How to estimate simple regression model  R – Square  Assumption  Variance and Standard Error of Parameters  Measurement Unit  Function Form  Illustration by Computer NGUYEN BA TRUNG - 2016 I WHAT IS SIMPLE REGRESSION MODEL?  Linear simple regression: Y  i   1 X i  ui (1.1) Y: Dependent variable, Explained variable X: Independent variable, Explanatory variable U: Error term, disturbance β: Parameters need to be estimated  SIMPLE regression model = AN independent variable (X)  Why does error term (U) exist? NGUYEN BA TRUNG - 2016 I WHAT IS SIMPLE REGRESSION MODEL?  An important assumption: E(u/ x)  (1.2)  Take the expectation of (1.1) and use equation (1.2), we have: E (Y/ X)    1 X (1.3)  Equation (1.3) is so called population regression function (PRF)  Attention: distinction between PRF and SRF NGUYEN BA TRUNG - 2016 II ESTIMATION: ORDINARY LEAST SQUARE (OLS)  OLS method:   2 ˆ ˆ ˆ ˆ f  , 1   uˆ   (Y    1 X )  MIN (1.4)  Take derivative (1.4) respect to the parameters, we have:  f      f    ( ˆ0 , ˆ1 ) 0 ˆ  ( ˆ0 , ˆ1 ) 0 ˆ 1 ➨ n n  ˆ  ˆ n   X i   Yi   i 1 i 1  n n n  ˆ ˆ X   0 i  X i   X i Yi  i 1 i 1 i 1 NGUYEN BA TRUNG - 2016 II ESTIMATION: ORDINARY LEAST SQUARE (OLS)  we have: n ˆ1   X Y  nXY i i i 1 n X i   n X i 1 (1.5) ˆ0  Y  ˆ1 X (1.6)  Equation (1.5) can be expressed as: ˆ1 xy   x i i i (1.7) where yi  Yi  Y xi  X i  X NGUYEN BA TRUNG - 2016 II ESTIMATION: ORDINARY LEAST SQUARE (OLS)  The fitted Y is computed as: Yˆi  ˆ0  ˆ1 X i (1.8)  The disturbance is followed by : uˆi  Y  ˆ0  ˆ1 X i  Note that: S XY ˆ 1  SX (1.9) (1.10) NGUYEN BA TRUNG - 2016 EXAMPLE 1: EXPENDITURE.wf Suppose that we have the data expenditure (Y: $/week) and income (X: $/week) of 10 families as the table below: Yi 70 65 90 95 110 115 120 140 155 150 Xi 80 100 120 140 160 180 200 220 240 260 Let’s estimate a linear regression model describing the relationship between expenditure and income? NGUYEN BA TRUNG - 2016 SOLVE THE EXAMPLE BY HAND NGUYEN BA TRUNG - 2016 SOLVE THE EXAMPLE BY HAND Solution: ˆ xy   x i i i 16800   0.5091 33000 ˆ0  Y  ˆ1 X  111  (170 * 0.5091)  24.45 The linear regression model is expressed by: Yˆi  24.45  0.5091 X i Explain the meaning of your estimated parameters? NGUYEN BA TRUNG - 2016 ESTIMATION BY COMPUTER NGUYEN BA TRUNG - 2016 III R - SQUARE  n TSS   Yi  Y i 1 n    Y ESS   Yˆi  Y i 1 n i    n Y  ( ˆ1 ) (1.11) n 2 x  i (1.12) i 1 n RSS   uˆ   i i 1 i 1  Yi  Yˆi  (1.13) TSS = ESS + RSS (1.14) ESS RSS R   1 TSS TSS (1.15)  R2  (1.16) NGUYEN BA TRUNG - 2016 R – SQUARE BY HAND  n TSS   Yi  Y i 1 n    Y ESS   Yˆi  Y i 1 i  2   n Y = 132100 – 10*(111)2 = 8890 n  ( ˆ1 )  xi2 = (0.5091)2*33000 = 8553.0327 i 1 ESS RSS R   1 TSS TSS 2 = 8553.0327/ 8890 = 0.9620     xi yi  R  n i 1 n   rX2 ,Y = (16800)2/(33000*8890)= 0.9620 2 x y  i i n i 1 i 1 NGUYEN BA TRUNG - 2016 R – SQUARE BY COMPUTER NGUYEN BA TRUNG - 2016 IV ASSUMPTION  Assumption 1: Yi    1 X i  ui  Assumption : X,Y are random variables  Assumption 3:  X X 0 i  Assumption 4: E(u/ x)  Theorem 1: Unbiased estimator of the OLS method Under the assumptions from to 4, estimators of the OLS are unbiased, this is: E ( ˆ )   0 E ( ˆ1 )  1 NGUYEN BA TRUNG - 2016 EXAMPLE OF VIOLATION  The free lunch policy in US: math10    1luchprog  u  what is the signal of 1 that you expect?  Using MEAP93.wf, we estimate the above model, and we have: math10  32.14  0.319luchprog n  408, R  0.171  Explain the result and give the reason for that? NGUYEN BA TRUNG - 2016 V VARIANCE AND STANDARD ERROR OF PARAMETERS  Assumption 5: Homoskedasticity Var(ui )   Theorem 2: The Unbiasedness of estimator’s variance  Under the assumptions 1- 5, the variance of the estimators is unbiased, this is: E (ˆ )   NGUYEN BA TRUNG - 2016 V VARIANCE AND STANDARD ERROR OF PARAMETER n var( ˆ0 )  X  i i 1 n n  xi2 2 (2.17) se( ˆ0 )  var( ˆ0 ) (2.18) se( ˆ1 )  var( ˆ1 ) (2.20) i 1 var( ˆ1 )  2 (2.19) n x i i 1  where 2 is substituted by ˆ n ˆ  2 ˆ u  i i 1 n2 (2.21) ˆ  ˆ NGUYEN BA TRUNG - 2016 (2.22) V COMPUTE VARIANCE AND STANDARD ERROR BY HAND n ˆ  ˆ u  i i 1 n2   var ˆ0  se( ˆ0 )  var( ˆ1 )  = 337.27/(10-2)= 42.1591 X  i n  xi2  = (322000*42.1591)/ (10*33000)= 41.1371 var( ˆ0 ) 2 x  i = 6.4138 = 42.1591/33000= 0.00127 se( ˆ1 )  var( ˆ1 ) = 0.0357 NGUYEN BA TRUNG - 2016 STANDARD ERROR BY COMPUTER NGUYEN BA TRUNG - 2016 VI MEASUREMENT UNIT  Consider the two models below: Unit: 1000 $ NGUYEN BA TRUNG - 2016 Unit: $ VII FUNCTION FORM LOG - LIN  Consider the model:  Meaning:  Explain your estimated result? NGUYEN BA TRUNG - 2016 (1.23) VII FUNCTION FORM LOG - LOG  Consider the model: Log(sale) = 0 + 1log(price) (2.24)  Meaning: % sale  1 % price  Explain your estimated result? NGUYEN BA TRUNG - 2016 VII FUNCTION FORM LIN - LOG  Consider the model: GDP = 0 + 1log (M2) (2.25) GDP: Gross domestic Product (million $) M2: Money Supply (million $) GDPi = -2547585 + 283143.4 lnM2i + ei  Meaning: GDP  ( 1 / 100)% M  Explain your estimated result? NGUYEN BA TRUNG - 2016 APPLIED ECONOMETRICS COURSE END OF CHAPTER I NGUYEN BA TRUNG - 2016 ... Parameters need to be estimated  SIMPLE regression model = AN independent variable (X)  Why does error term (U) exist? NGUYEN BA TRUNG - 2016 I WHAT IS SIMPLE REGRESSION MODEL?  An important assumption:... Measurement Unit  Function Form  Illustration by Computer NGUYEN BA TRUNG - 2016 I WHAT IS SIMPLE REGRESSION MODEL?  Linear simple regression: Y  i   1 X i  ui (1.1) Y: Dependent variable, Explained...TODAY’S TALK  What is simple regression model  How to estimate simple regression model  R – Square  Assumption  Variance and Standard Error of Parameters

Ngày đăng: 04/02/2020, 10:42

TỪ KHÓA LIÊN QUAN