1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lecture Applied econometrics course - Chapter 3: Statistic inference and hypothesis testing

33 40 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 871,66 KB

Nội dung

Lecture Applied econometrics course - Chapter 3: Statistic inference and hypothesis testing has content: The distribution of the parameters, hypotheses testing, testing multiple linear restrictions,... and other contents.

APPLIED ECONOMETRICS COURSE Chapter III Statistic Inference and Hypothesis Testing NGUYEN BA TRUNG ­ 2016 I THE DISTRIBUTION OF THE PARAMETERS Assumpt 6. Ui ~ N(0,  2) Theorem 4.1: Normal Distribution of the  parametors  ˆ −β β βˆ0 ~ N ( β , σ ) � Z = ~ N (0,1) σ βˆ βˆ0 ˆ −β β βˆ1 ~ N ( β1 , σ ) � Z = 1 ~ N (0,1) σ βˆ βˆ1 NGUYEN BA TRUNG ­ 2016 I THE DISTRIBUTION OF THE PARAMETERS • Under the assumptions from 1-6, we have the following theorem: Theorem 4.2: Student Distribution βˆ j − β j t= ~ t(n − k − 1) se( βˆ ) j NGUYEN BA TRUNG ­ 2016 II HYPOTHESES TESTING 2.1. Testing against One­Sided Alternatives:  Right Hand Side H : β1 = (1) Manifest the hypothesis: H1 : β1 > βˆ1 − β1 (2). Compute t­statistics: t = se( βˆ ) (3).  Search  to  find  t  (n­k­1),  for  example,    α=5%,  n­k­1=28,    t0.05  (28)=1.701 ( excel: TINV(0.1,28))  (4). Decision Rule:  Nếu t >  t  (n­k­1) thì có thể bác bo gia thiê ̉ ̉ ́t H0 Nếu  t  NGUYEN BA TRUNG ­ 2016 II HYPOTHESES TESTING βˆ1 − β1 0.509 (2). Compute s­statistics: t = se( βˆ ) = 0.035 = 14.54 (3). Search to find: t0.05 (8) = 1.86 (4). Decision Rule: t­statistics = 14.54  >  t0.05 (8)=1.86, we therefore  can reject the null hypothesis H0. In other word, we can accept the  alternative hypothesis H1:  1 > 0 NGUYEN BA TRUNG ­ 2016 II. HYPOTHESES TESTING  2.2 Testing against One-Sided Alternatives: Left Hand (1) Side Suppose the hypothesis: H : β1 = H1 : β1 < (2).Compute t­statistics: βˆ1 − β1 t= se( βˆ1 ) (3).Search to find t  (n­k­1) (4). Decision Rule :  Nếu t   t /2(n­k­1), we can reject the null hypothesis H0 if   t     t /2(n­k­1), we can accept the null hypothesis H0 NGUYEN BA TRUNG ­ 2016 Example: Whether income affects to expenditure? Solution: (1) Manifest the hypothesis: H : β1 = H1 : β1 (2) Compute s-statistics: βˆ − β 0.5091 − t= = = 14.243 0.035742 se( βˆ1 ) (3) With = 5%, we have: t0.025(n-k-1) = t0.025(8) = 2.306 (4) Because t =14.243 > t0.025(8) = 2.36, we can reject the null hypothesis H0: β1= This means that income significantly impacts to expenditure NGUYEN BA TRUNG ­ 2016 We can utilize confident interval in testing hypothesis, for instance • H : β1 = 0.3 H1 : β1 v 0.3  The confident interval for  1:   (0.4268  F0.05 (1,8)= 5.32, we can reject H0 v EVIEWs provide the p­value of F­test(next slide) NGUYEN BA TRUNG ­ 2016 Thí dụ: expenditure.wf NGUYEN BA TRUNG ­ 2016 V Test the simple linear combination the parameters (1) Assume that we of want to H test: :β =β (2). Compute t­statistics as: v  Where: Se( βˆ1 − βˆ2 ) = H1 : β1 β2 βˆ1 − βˆ2 t= se( βˆ1 − βˆ2 ) ( se(βˆ ) ( − cov( βˆ1 , βˆ2 ) + se( βˆ2 (3). With α = 5%, search to find: tα/2(n­k­1) (4). Decision: If |t| > tα/2(n­k­1), We can reject H0 NGUYEN BA TRUNG ­ 2016 ) Example:Twoyears.wf • We have the following model: log(wage) = β + β1 jc + β 2univ + β exp er + u Where:  Jc: trình độ cao đẳng (2 năm đại học)  v  Unive: trình độ đại học (4 năm đại học)  v  Exper: kinh nghiệm (tháng) Question: whether wage differs between who those graduated from  colleague and university?  NGUYEN BA TRUNG ­ 2016 v  From the estimate result, the different wage:  θ1 = βˆ1 − βˆ2 = −0.0102 v  Is this difference statistically significant?  NGUYEN BA TRUNG ­ 2016 H : β1 = β (1) Set up the hypothesis: H1 : β1 < β v v  Suppose that: ˆ − βˆ ) = Se ( β  This implies:  = ( se( βˆ1 ) ( − cov( βˆ1 , βˆ2 ) + se( βˆ2 (0.0068) + (0.0023) = 0.00717 βˆ1 − βˆ2 0.0102  (2). Then we have: t = se( βˆ − βˆ ) = 0.00717 = −1.42 (3). With α = 5%, t0.025(6759) = 1.96 (4). Because |t| = 1.42                           , we can reject H0 NGUYEN BA TRUNG ­ 2016 r Example: BWGHT.wf • Compute F-statistics as: RSS r − RSS ur / q (0.0387 − 0.0364) / F= = = 1.42 RSS ur / n − k − (1 − 0.0387) / (1185) v  Search to find:  F0.05(2,1185) = 3 v  Because F =1.42  t /2(n-k-1) => Reject H0 If NGUYEN BA TRUNG ­ 2016 t t /2(n-k-1) => Accept... alternative hypothesis H1:  1 > 0 NGUYEN BA TRUNG ­ 2016 II. HYPOTHESES TESTING 2.2 Testing against One-Sided Alternatives: Left Hand (1) Side Suppose the hypothesis: H : β1 = H1 : β1 < (2).Compute t­statistics:... 2.5 Compute P-value for t-tests • • • • With confident level α, P-value is the probability of mistake if we reject the null hypothesis H0 P-value: Prob(|T|>|t|) Thus, if small P-value provides

Ngày đăng: 04/02/2020, 01:17