Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 51 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
51
Dung lượng
1,48 MB
Nội dung
ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao –– Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao GIỚI HẠN A - LÝ THUYẾT CHUNG GIỚI HẠN CỦA DÃY SỐ I Giới hạn hữu hạn dãy số Định nghĩa Định nghĩa 1: Ta nói dãy số un có giới hạn n dần đến dương vô cực viết lim un viết tắt lim un un , số hạng dãy số có giá trị tuyệt n đối nhỏ số dương bé tùy ý, kể từ số hạng trở Định nghĩa 2: Ta nói dãy số un có giới hạn số thực a n dần đến dương vô cực viết lim un a , viết tắt lim un a un a , lim un a n n Một vài giới hạn đặc biệt 1 a) lim ; lim k với k nguyên dương n n n b) lim q q c) Nếu un c ( c số) lim un lim c c II Định lý giới hạn hữu hạn Định lý 1: a) Nếu lim un a , lim b lim un a b lim un a b lim un a.b lim un a (nếu b ) b b) Nếu un với n lim un a a lim un a III Tổng cấp số nhân lùi vô hạn Cấp số nhân vô hạn u1 , u2 , u3 , .un , có cơng bội q với q gọi cấp số nhân lùi vô hạn Tổng S cấp số nhân là: S u1 u1q u1q u1 1 q IV Giới hạn vơ cực Định nghĩa: Ta nói dãy số un có giới hạn với số dương tùy ý, số hạng dãy số, kể từ số hạng trở đi, lớn số dương Khi ta viết lim un lim(un ) un Ta nói dãy số un có giới hạn với số âm tùy ý, số hạng dãy số, kể từ số hạng trở đi, nhỏ số âm Khi ta viết lim un lim un un Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao Một vài giới hạn đặc biệt a) lim nk với k nguyên dương b) lim qn q Định lý 2: a) Nếu lim un a lim lim un 0 b) Nếu lim un a , lim với n lim c) Nếu lim un lim a lim un un V Một số lưu ý: Khi làm tập trắc nghiệm, ta làm tập tự luận, sau tính tốn chọn kết phù hợp với yêu cầu toán Ngồi sử dụng nhận xét để có kết nhanh chóng, xác Có số tập nhận xét nhanh để loại trừ phương án không phù hợp GIỚI HẠN CỦA HÀM SỐ Định lý: a) Giả sử lim f x L lim g x M Khi đó: x x0 x x0 lim f x g x L M x x0 lim f x g x L M x x0 lim f x g x L.M x x0 lim x x0 f x L (nếu M ) g x M b) Nếu f x với x J \ x0 , J khoảng chứa x0 L lim x x0 f x L Một vài giới hạn đặc biệt lim x k với k nguyên dương x lim x k k số lẻ x lim x k k số chẵn x Một vài quy tắc giới hạn vơ cực Định lý giới hạn tích thương hai hàm số áp dụng hàm số có giới hạn hữu hạn Sau số quy tắc tính giới hạn tích thương hai hàm số hai hàm số có giới hạn vơ cực Nếu lim f x L lim g x x x0 x x0 lim f x g x (dấu “+” hai giới hạn dấu dấu “- “ hai giới hạn khác x x0 dấu Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao lim f x 0 g x lim g x (dấu “+” hai giới hạn dấu dấu “-“ hai giới hạn khác dấu f x x x0 x x0 Các quy tắc áp dụng cho trường hợp : x x0 , x x0 , x x HÀM SỐ LIÊN TỤC Hàm số liên tục điểm Định nghĩa: Giả sử hàm số f x xác định khoảng K x0 K Hàm số y f x gọi liên tục x x0 lim f x f x0 x x0 Hàm số không liên tục x x0 gọi gián đoạn x0 Hàm số liên tục khoảng, đoạn Hàm số y f x liên tục khoảng liên tục điểm khoảng Hàm số y f x gọi liên tục đoạn a; b liên tục khoảng a, b lim f x f a x a lim f x f b ; x b Một số định lý Định lý 1: Hàm số đa thức liên tục tập Hàm số phân thức hữu tỉ (thương hai đa thức) hàm số lượng giác y sin x , y cos x , y tan x , y cot x hàm số liên tục tập xác định chúng Định lý Giả sử y f x y g x hai hàm số liên tục điểm x0 Khi đó: a) Các hàm số y f x g x , y f x g x y f x g x liên tục điểm x0 b) Hàm số y f x liên tục x0 g x0 g x Định lý Nếu hàm số f x liên tục đoạn a; b f a f b tồn điểm c a; b cho f c B - BÀI TẬP n Câu Tìm lim un biết un k 1 A n2 k B C D C D Câu Tìm lim un biết un 2 n dau can A B Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao 1 Câu Tìm giá trị S 1 n A B C 2 D 1 Câu Tính giới hạn lim n n 1 1.2 2.3 A B C D Khơng có giới C D 1 1 Câu Tính lim n 2n 1 1.3 3.5 A B 1 1 Câu Tính giới hạn: lim n n 2 1.3 2.4 A B 1 Câu Tính giới hạn lim n(n 3) 1.4 2.5 11 A B 18 C D C D D 1 Câu Tính giới hạn: lim 1 1 1 n 1 A B C Câu Tính giới hạn dãy số un (1 A B Câu 10 Tính giới hạn dãy số un A n(n 1) 1 : )(1 ) (1 ) Tn T1 T2 Tn D D C D C 23 33 n3 .: 23 33 n3 B C 2k : 2k k 1 n Câu 11 Tính giới hạn dãy số un A B Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao n n : k 1 n k B Câu 12 Tính giới hạn dãy số un A C D Câu 13 Tính giới hạn dãy số un q 2q nq n với q : A B C 13 23 33 n3 a lim a, b n3 b Câu 14 Biết A 33 B 73 Câu 15 Tính giới hạn dãy số un A q 1 q Giá trị 2a b2 là: C 51 D q 1 q D 99 1 : 1 2 ( n 1) n n n B C D (n 1) 13 23 n3 : 3n3 n B C Câu 16 Tính giới hạn dãy số un A D Câu 17 Cho số thực a,b thỏa a 1; b Tìm giới hạn I lim A B C a a a n b b2 b n 1 b 1 a u0 2011 u3 Câu 18 Cho dãy số (un ) xác định bởi: Tìm lim n n un 1 un u n A B C D D u1 Câu 19 Cho dãy số un xác định Tính lim un 2 n 1 un1 nun n A lim un B lim un C lim un D lim un u Câu 20 Cho dãy số có giới hạn (un) xác định bởi: Tìm kết lim un un 1 , n un A B C 1 D Câu 21 Cho dãy số un u1 u , n thỏa mãn un 1 n un Tính u2018 Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A A u2018 B u2018 Giới Hạn Nâng Cao C u2018 D u2018 Câu 22 Cho dãy số ( xn ) xác định x1 , xn 1 xn2 xn ,n Đặt S n 1 x1 x2 Tính lim Sn xn B A Câu 23 Cho dãy ( xk ) xác định sau: xk C D 1 k 2! 3! (k 1)! n Tìm lim un với un n x1n x2n x2011 C B A Câu 24 Cho dãy ( xk ) xác định sau: xk 2012! D 2012! D 2012! k 2! 3! (k 1)! n Tìm lim un với un n x1n x2n x2011 B A C Câu 25 Cho hàm số f n a n b n c n n * 2012! với a, b, c số thỏa mãn a b c Khẳng định sau đúng? A lim f n 1 x Câu 26 Cho a, b B lim f n x C lim f n x D lim f n x , (a, b) 1; n ab 1, ab 2, Kí hiệu rn số cặp số (u, v) cho rn n n ab n au bv Tìm lim A B C ab D ab Câu 27 Cho dãy số (un ) xác định u1 3, 2un1 un với n Gọi Sn tổng n số hạng đàu tiên dãy số (un ) Tìm lim Sn A lim Sn C lim Sn Câu 28 Cho dãy số (un ) xác định u1 1, u2 2, un A B B lim Sn D lim Sn 1 un 1 un với n Tìm lim un C D 3 u Câu 29 Cho dãy số (un ) xác định u1 , un 1 un n với n Tìm lim un Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A A lim un C lim un Giới Hạn Nâng Cao B lim un D lim un Câu 30 Cho dãy số (un ) xác định u1 1, un1 un 2n với n Khi lim A B C Câu 31 Cho dãy số (un ) xác định u1 a, u2 b, un un 1 un D un 1 un với n , a b số thực cho trước, a b Tìm giới hạn (un ) C lim un A lim un a a 2b D lim un B lim un b 2a b 4n n Câu 32 Cho dãy số (un ) với un , a tham số Để (un ) có giới hạn an2 giá trị tham số a là? A -4 B C D Câu 33 Tìm hệ thức liên hệ số thực dương a b để: lim( n2 an n2 bn 3) A a b B a b C a b D a b Câu 34 Tìm số thực a b cho lim( n3 a n b) a 1 A b a B b n Câu 35 Cho dãy số (un ) Biết A uk k 1 B a 1 C b 1 3n2 9n với n Tìm nun C a D b n u k 1 k D 32 3k bằng: 5k k 1 n Câu 36 lim A B 17 100 C 17 200 D Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao GIỚI HẠN HÀM SỐ a0 x n an 1 x an , (a0 , b0 0) Câu 37 Tìm giới hạn A lim x b x m b m 1 x bm B A 3x 5sin x cos x bằng: x x2 A B C D Đáp án khác Câu 38 lim C D Câu 39 Cho a b số thực khác Tìm hệ thức liên hệ a b để giới hạn: a b lim hữu hạn: x 2 x x x 5x A a 4b B a 3b C a 2b x4 a4 bằng: x a x a C a D a b Câu 40 Cho a số thực khác Kết lim B 2a3 A 3a3 x mx m , m tham số thực Tìm m để C Câu 41 Cho C lim x 1 x2 1 A m B m 2 C m D 4a3 D m 1 x ax b Câu 42 Cho a b số thực khác Nếu lim a b bằng: x 2 x2 A B C 6 D Câu 43 Giới hạn lim x 3 A x 5x a (phân số tối giản) Giá trị a b b x 4x B C 1 D 8 x 11 x m m phân số tối giản, m n số nguyên x 3x n n dương Tổng 2m n bằng: A 68 B 69 C 70 D 71 Câu 44 Biết lim x 2 m x 27 x 54 m , phân số tối giản, m n số nguyên x 3 x n x 3x 18 n Câu 45 Biết lim dương Khi 3m n bằng: A 55 B 56 C 57 D 58 ax b x 5 x cx Câu 46 Cho a , b , c số thực khác Tìm hệ thức liên hệ a , b , c để lim Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A A a 3b c B a 3b 5 c C Giới Hạn Nâng Cao a 3b c D a 3b 5 c x 3x lim ax b 0, a b thỏa Câu 47 Cho a b tham số thực Biết x cx mãn hệ thức hệ thức đây? A a b B a b 9 C a b D a b 9 1 1 Câu 48 Cho a số thực dương Tính giới hạn lim x a x a x a 2 A a2 B C D không tồn n Câu 49 Cho n số nguyên dương Tính giới hạn lim n x 1 x 1 x n 1 n 1 n A B C 2 Câu 50 Tìm tất giá trị tham số thực k cho giới hạn lim( x 1 B k A k Câu 51 Tìm giới hạn B lim n x 0 B n x 0 B m x 0 m x 0 Câu 55 Tìm giới hạn G lim x 0 A m a n D n a C am bn D am bn C a b m n D C an bm mn D C a b m n D a b m n ax n bx : x 1 B A C ax n bx : x B A Câu 54 Tìm giới hạn N lim k ) hữu hạn x 1 x 1 D k ax với ab : bx A Câu 53 Tìm giới hạn N lim n2 ax (n *, a 0) : x A Câu 52 Tìm giới hạn A lim m C k D ax n bx : x B a b m n Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 10 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A a B lim x 0 n (1 ax)n1 n (1 ax)n2 n ax Giới Hạn Nâng Cao a n Cách 2: Đặt ẩn phụ t n 1 x t a t 1 t 1 a B a lim n a lim t 1 t t 1 (t 1)(t n 1 t n t 1) n Đặt t n ax x n Câu 52 Tìm giới hạn A lim m x 0 ax với ab : bx B A am bn Hướng dẫn giải C D am bn Chọn C Áp dụng tốn ta có: A lim n x 0 ax x a m am lim m x 0 bx x n b bn Câu 53 Tìm giới hạn N lim m x 0 ax n bx : x B A a b m n Hướng dẫn giải C D a b m n Chọn C Ta có: N lim x 0 m n ax 1 bx a b lim x 0 x x m n Câu 54 Tìm giới hạn N lim m x 0 ax n bx : x 1 B A an bm mn Hướng dẫn giải C D Chọn C m ax n bx x 2(an bm) a b Ta có: N lim x 0 x x mn x 1 m n Câu 55 Tìm giới hạn G lim x 0 A m ax n bx : x B a b m n Hướng dẫn giải C D a b m n Chọn D Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 37 ST&BS: Th.S Đặng Việt Đơng Trường THPT Nho Quan A m Ta có: G lim ax x 0 lim bx n x 0 x Câu 56 Tìm giới hạn F lim x 0 n m ax b a x n m (2 x 1)(3x 1)(4 x 1) : x B A Giới Hạn Nâng Cao C n D Hướng dẫn giải Chọn C Đặt y n (2 x 1)(3x 1)(4 x 1) y x yn 1 (2 x 1)(3x 1)(4 x 1) lim 9 Và: lim x 0 x x x yn 1 Do đó: F lim n n x 0 x y y y 1 n Câu 57 Tìm giới hạn B lim x 0 x x x 1 với : x C B B A D B Hướng dẫn giải Chọn D Ta có: x x x x x ( x 1) x (( x 1) ( x 1) B lim( x x ) x 0 1 x 1 1 x 1 1 x 1 lim x lim x 0 x 0 x x x 1 mx 1 nx V lim n Câu 58 Tìm giới hạn x 0 x2 : mn n m Hướng dẫn giải B A m C D mn n m Chọn C (1 nx)m (1 mnx) (1 mx)n (1 mnx) mn(n m) lim x 0 x 0 x2 x2 Ta có: V lim 1 x 1 x 1 x : Câu 59 Tìm giới hạn K lim x 1 A 1 x B n n 1 n! Hướng dẫn giải C D Chọn C Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 38 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Ta có: K lim x 1 (1 x )( x x 1) ( n x n 1 1) Câu 60 Tìm giới hạn L lim n x2 x x 0 x2 x x B A Giới Hạn Nâng Cao n! n : C 2n Hướng dẫn giải D Chọn C n n 2 x x 1 x x 1 2n L lim n x 0 x x2 x 1 mx 1 nx Câu 61 Tìm giới hạn V lim n x 0 x 3x B A m : an bm mn Hướng dẫn giải C D mn n m Chọn D 1 mx n (1 nx)m 1 mn(n m) x2 mn(n m) Ta có: V lim 2 x 0 x x x 3x Câu 62 Tìm tất giá trị tham số thực m cho hàm số f x mx x 3x có giới hạn hữu hạn x A m 3 B m 3 D m C m Hướng dẫn giải Đáp án Cách 1: Sử dụng MTCT tính tốn m 3 ta kết lim (3x x 3x 1) Vậy ta xét đáp án A D x 2 Lại sử dụng MTCT tính tốn m 1 ta kết lim ( x x 3x 1) x Vậy loại Chọn D Do đáp án A Cách 2: lim f ( x) lim (mx x 3x 1) x x + Nếu m lim f ( x) lim (mx x 3x 1) x x + Nếu m lim mx 9x2 3x lim x m x x2 x x Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 39 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Ta thấy m 3 lim m x x2 x Giới Hạn Nâng Cao lim (mx x 3x 1) Ngược lại m 3 lim (3x x 3x 1) x x Vậy đáp án A Câu 63 Giới hạn lim ( x 3x 5+ax) = + x B a A a D a C a Hướng dẫn giải Đáp án Cách 1: Sử dụng MTCT tính giới hạn a va` a , ta lim x2 x x ; lim x2 3x Từ suy đáp án D x x Cách : lim x2 3x ax lim x a x x2 x x V lim nên để lim x2 3x ax th a a x x a Câu 64 Cho A b lim (ax x bx 2) số thực khác Biết B 6 x C ab , th tổng D 5 Hướng dẫn giải Đáp án b Ta có lim ax x2 bx lim x a x x2 x x Do a th lim ax x bx Vậy a Khi x bx b lim x x2 bx lim x x x x2 bx b Vậy: b 6 Do a b 5 (ax+b- x x 2) số lớn hai số Câu 65 Cho a b số thực khác Biết xlim a b số số đây? A B C D Hướng dẫn giải Đáp án C Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 40 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A lim ax b x2 6x lim x a x x2 x x Do a th Giới Hạn Nâng Cao b lim ax b x2 6x Vậy a Khi ta có x 6x lim x b x2 6x lim b b b x x x x2 6x Vậy: b b DO số lớn hai số a b số m m phân số tối giản, m n x n n số nguyên dương T m bội số chung nhỏ m n A 135 B 136 C 138 D 140 Câu 66 Biết lim ( x x 27 x3 x 5) Hướng dẫn giải Đáp án Cách 1: Sử dụng MTCT tính giá trị hàm số x 1010 ta kết p dụng k thuật t m dạng phân số số thập phân vô hạn tuần hồn ta có , 185 27 m n 27 Từ chọn đáp án A Vậy Cách : 3 9x2 2x 27 x3 x2 9x2 2x 3x 27 x3 x2 3x 2x 9x2 2x 3x x2 27x 4x 2 3x 27 x x 9x Suy lim 9x 2x 27 x x 27 x 6 3 Câu 67 Cho a b số nguyên dương Biết lim ( x + ax 27 x bx 5) x b thỏa mãn hệ thức đây? A a 2b 33 B a 2b 34 C a 2b 35 , hỏi a 27 D a 2b 36 Hướng dẫn giải Đáp án Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 41 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao a b 2b 9a , ta có: lim x ax 27 x bx 54 x 27 àm tương tự câu Do 2b 9a 14 Suy a số chẵn Vậy a 2b số chẵn Từ loại đáp án a 2b 34 Giải hệ 2b 9a 14 a 2; b 16 a 2b 36 Giải hệ 2b 9a 14 a C 11 (loại) Câu 68 Tìm giới hạn C lim [ n ( x a1 )( x a2 ) ( x an ) x] : x B A a1 a2 an n Hướng dẫn giải C D a1 a2 an 2n Chọn C Đặt y n ( x a1 )( x a2 ) ( x an ) y x ( y x)( y n n lim ( y x) lim x x n1 y n xn y x x ) y x n1 y y n1 x x n1 n1 n1 y n xn y n1 y n2 x x n1 y n xn x n 1 C lim n 1 n x y y x x n 1 x n 1 b b b y n xn lim (a1 a2 an 32 nn1 ) n x x x x x x a1 a2 an Mà lim y k x n 1k y n 1 y n 2 x x n 1 lim k 0, , n n x x x n 1 x n1 a a an Vậy C n lim Câu 69 Cho a b số thực khác Giới hạn lim x 0 A a 2b B a 2b ax bằng: sin bx 2a C b D 2a b Hướng dẫn giải Chọn B ax 1 ax bx lim( ) x sin bx b x0 sin bx x0 Cách 1: lim ax a ax b a bx ; ; lim nên lim x 0 sin bx 2b x0 sin bx x0 sin bx Mà lim Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 42 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao Cách 2: Cho a b giá trị cụ thể, thay vào tính giới han Chẳng hạn với a b 1, 1 x 1 Từ chọn đáp án x 0 sin x sử dụng MTCT ta tính lim B Câu 70 Cho a, b, c số thực khác 0,3b 2c Tìm hệ thức liên hệ a, b, c để: lim x 0 A tan ax bx cx a 3b 2c 10 B a 3b 2c C a 3b 2c D a 3b 2c 12 Hướng dẫn giải Chọn D tan ax tan ax x a ax bx cx bx cx tan ax sin ax lim( ) 1 Lại có lim x 0 x ax ax cosax Cách 1: bx cx b c 3b 2c bx cx lim( ) x 0 x 0 x x x tan ax 6a Vậy lim x 0 bx cx 3b 2c 6a a Do hệ thức liên hệ a, b, c 3b 2c 3b 2c 12 Cách 2: Sử dụng MTCT Với đáp án, chọn giá trị cụ thể a, b, c thỏa mãn hệ thức lim th đáp án Chẳng hạn, với đáp án , chọn a 1; b 4; c , sử dụng MTCT tính thay vào để tính giới hạn Nếu giới hạn t m lim x 0 tan x 1 4x 1 x Vậy A đáp án Tương tự B C đáp án sin x 1 bằng: x 1 x m x n Câu 71 Cho m n số nguyên dương phân biệt Giới hạn lim A m n B n m C mn D nm Hướng dẫn giải Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 43 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao Chọn C Cách 1: Ta có si n( x 1) s in(x-1) x 1 m m n x x x 1 x xn xm xn si n( x 1) si n( x 1) m n ; lim nên lim m Mà lim n x 1 x 1 x x x 1 x 1 x 1 mn Cách 2: Cho m n giá trị cụ thể, thay vào sử dụng MTCT tính giới hạn Chẳng hạn si n( x 1) 1 với m 3; n ta tính lim x 1 x x mn Vậy đáp án C Câu 72 Tìm giới hạn A lim x 1 sin( x m ) : sin( x n ) B A n m Hướng dẫn giải C D Chọn C sin (1 x m ) sin (1 x m ) (1 x n ) xn lim lim lim x 1 sin (1 x n ) x 1 (1 x m ) x 1 sin (1 x n ) x 1 x m A lim xn (1 x)( x n1 x n2 1) n lim lim x 1 x m x 1 (1 x)( x m 1 x m 1) m cos ax m cos bx Câu 73 Tìm giới hạn H lim : x 0 sin x m B A b a 2n 2m Hướng dẫn giải C D Chọn C cos ax 1 n cos bx b a x2 x2 Ta có: H lim x 0 sin x 2n 2m x m n cos ax : x 0 x2 Câu 74 Tìm giới hạn M lim A B a 2n Hướng dẫn giải C D Chọn C Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 44 ST&BS: Th.S Đặng Việt Đơng Trường THPT Nho Quan A Ta có: n cos ax M lim x 0 Giới Hạn Nâng Cao cos ax cos ax ( cos ax ) ( n cos ax ) n 1 n n a a cos ax lim 2 n 1 n n n x x n 2n cos ax ( cos ax ) ( cos ax ) f ( x ) 11 f ( x) 15 12 Tính T lim x 3 x 3 x2 x x 3 B T C T D T 40 20 Hướng dẫn giải Câu 75 Cho f ( x) đa thức thỏa mãn lim A T 20 Chọn C Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 45 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao HÀM SỐ LIÊN TỤC eax khix Câu 76 Cho hàm số f x x , với a Tìm giá trị a để hàm số f x liên tục khix x0 B a A a C a 1 D a Hướng dẫn giải Chọn B 4x 1 x Câu 77 Tìm a để hàm số f ( x) ax (2a 1) x liên tục x 3 x A B Hướng dẫn giải: C D Chọn C Ta có : lim f ( x) lim x 0 lim x 0 x 0 4x 1 x ax 2a 1 ax 2a 1 4x 1 1 Hàm số liên tục x 2a 3 a 2a x2 , x 1 2x Câu 78 Cho hàm số f x , x Tìm khẳng định khẳng định sau: x x sin x , x A f x liên tục B f x liên tục \ 0 C f x liên tục \ 1 D f x liên tục \ 0;1 Hướng dẫn giải Chọn A TXĐ: D Với x ta có hàm số f x x liên tục khoảng 1; 1 Với x ta có hàm số f x x3 liên tục khoảng 0;1 1 x Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 46 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao Với x ta có f x x sin x liên tục khoảng ; Với x ta có f 1 ; lim f x lim x ; lim f x lim x 1 x 1 x 1 x 1 x3 1 1 x Suy lim f x f 1 x 1 Vậy hàm số liên tục x f 0 ; ta lim x lim sin x suy lim f x f x 0 x x 0 x 0 có x3 0; 1 x lim f x lim Với x x 0 x 0 lim f x lim x.sin x x 0 x 0 Vậy hàm số liên tục x Từ 1 , , suy hàm số liên tục 1 x 1 x x x Câu 79 Tìm tất giá trị m để hàm số f x liên tục x m x x 1 x A m B m 2 C m 1 D m Hướng dẫn giải Chọn B x 2x 1 x Câu 80 Tìm m để hàm số f ( x) liên tục x 1 3m x B m A m C m D m Hướng dẫn giải: Chọn B x 2x 1 nên hàm số liên tục khoảng x 1 Do hàm số liên tục hàm số liên tục x Ta có: f (1) 3m Với x ta có f ( x) lim f ( x) lim x 1 x 1 3 \ 1 x 2x 1 x 1 x3 x lim x 1 2 3 ( x 1) x x x ( x 2) x2 x lim 1 2 x 1 x x x ( x 2)2 Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 47 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Nên hàm số liên tục x 3m m Vậy m Giới Hạn Nâng Cao 4 giá trị cần tìm 2x x Câu 81 Tìm m để hàm số f ( x) liên tục x 1 x x 2mx 3m A m B m C m D m Hướng dẫn giải: Chọn C Với x ta có hàm số liên tục Để hàm số liên tục hàm số phải liên tục khoảng ; liên tục x Hàm số liên tục ; tam thức g ( x) x2 2mx 3m 0, x ' m2 3m 17 17 m TH 1: 2 g (2) m m 3m ' m 3m m TH 2: x1 m ' ' (m 2) 17 17 m m6 m Nên 17 m (*) g ( x) 0, x 2 lim f ( x) lim x 2 x 2 2x x 1 x 2 x x 2mx 3m 6m m (thỏa (*)) Hàm số liên tục x 6m lim f ( x) lim x x neá u x 2 x 4 Câu 82 Cho hàm số f x x 3b neá u x liên tục x Tính I a b ? 2a b neá u x 2 9 93 19 173 A I B I C I D I 30 16 32 16 Hướng dẫn giải Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 48 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Giới Hạn Nâng Cao Chọn C Câu 83 Chon hàm số f x số liên tục x A m x 3 x Tìm tất giá trị tham số thực m để hàm x 3 m x B m D m 1 C m Hướng dẫn giải Chọn A Hàm số cho xác định Ta có lim f x lim x 3 x 3 x 3 x3 lim x 3 x 3 x 3 lim lim 1 1 x 3 x x3 x Tương tự ta có lim f x (có thể dùng MTCT để tính giới hạn hàm số) x3 Vậy lim f x lim f x nên lim f x không tồn Vậy với m , hàm số cho x3 x3 x3 không liên tục x Do đáp án A Ta tam khảo thêm đồ thị hàm số x để hiểu rõ ax (a 2) x x Câu 84 Cho hàm số f ( x) Có tất giá trị a để hàm x3 2 8 a x số liên tục x ? A B C D Hướng dẫn giải Chọn D Ta có x 1 ax a 2 lim ax a ax (a 2) x lim x 1 x 1 x 1 x3 2 x3 2 lim x a 1 a Hàm số liên tục x lim f x f 1 a 1 a x 1 a Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 49 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A 12 x Câu 85 Cho hàm số f x ax 2b 12 x 1 x 9 Giới Hạn Nâng Cao Biết a, b giá trị thực để hàm số liên tục x0 Tính giá trị P a b A P C P 17 B P D P Hướng dẫn giải Chọn D Câu 86 Cho phương tr nh x ax bx c 1 a, b, c tham số thực Chọn khẳng định khẳng định sau A Phương tr nh 1 vô nghiệm với a, b, c B Phương tr nh 1 có nghiệm với a, b, c C Phương tr nh 1 có hai nghiệm với a, b, c D Phương tr nh 1 có ba nghiệm với a, b, c Hướng dẫn giải Chọn B Dễ thấy a b c th phương tr nh 1 trở thành x x Vậy A, C, D sai Do B Giải thích thêm: Xét tốn “Chứng minh phương tr nh x ax bx c 1 ln có nghiệm với a, b, c ” Ta có lời giải cụ thể sau: Đặt f x x ax bx c Ta có: + lim x3 ax bx c với a, b, c nên tồn giá trị x x1 cho x f x1 + lim x3 ax bx c với a, b, c nên tồn giá trị x x2 cho x f x2 Vậy f x1 f x2 mà f x liên tục nên suy f x có nghiệm khoảng x1 ; x2 Từ suy ĐPCM Câu 87 Phương tr nh x5 x x3 x x có nghiệm A B C D Hướng dẫn giải Chọn D Câu 88 Tìm tất giá trị tham số thực m cho phương tr nh sau có nghiệm Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 50 ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A 2m 5m x 1 A m 1 \ ; 2 2 2017 x 2018 Giới Hạn Nâng Cao x 1 1 B m ; 2; C m ; 2 2 D m Hướng dẫn giải Chọn D + Nếu 2m2 5m th phương tr nh cho trở thành x x + Nếu 2m2 5m 0, phương tr nh cho đa thưc bậc lẻ (bậc 4035) nên theo kết biết, phương tr nh có nghiệm Vậy với m , phương tr nh cho ln có nghiệm Hoctai.vn – Webiste chuyên cung cấp Tài liệu, Đề + Thi online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 51 ... Trường THPT Nho Quan A Giới Hạn Nâng Cao GIỚI HẠN A - LÝ THUYẾT CHUNG GIỚI HẠN CỦA DÃY SỐ I Giới hạn hữu hạn dãy số Định nghĩa Định nghĩa 1: Ta nói dãy số un có giới hạn n dần đến dương vô... dãy số un có giới hạn với số dương tùy ý, số hạng dãy số, kể từ số hạng trở đi, lớn số dương Khi ta viết lim un lim(un ) un Ta nói dãy số un có giới hạn với số. .. Định lý giới hạn tích thương hai hàm số áp dụng hàm số có giới hạn hữu hạn Sau số quy tắc tính giới hạn tích thương hai hàm số hai hàm số có giới hạn vơ cực Nếu lim f x L lim g x