1. Trang chủ
  2. » Giáo án - Bài giảng

GA 12NC-Chương3 (GT)

64 192 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 64
Dung lượng 2,44 MB

Nội dung

Tổ : Tốn ChươngIII§1  NGUN HÀM (Tiết 1, 2 , ngày soạn: 9.8.2008) I. M ụ c đích bài d ạ y: - Ki ế n th ứ c c ơ b ả n : khái niệm ngun hàm, các tính chất của ngun hàm, sự tồn tại của ngun hàm, bảng ngun hàm của các hàm số thường gặp, - K ỹ n ă ng : biết cách tính ngun hàm của một số hàm số đơn giản - Thái độ: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong q trình tiếp cận tri thức mới, thấy được lợi ích của tốn học trong đời sống - Tư duy: hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong q trình suy nghĩ. II : Chuẩn bị • GV : Bảng phụ , Phiếu học tập • HS : Kiến thức về đạo hàm II. Ph ươ ng pháp : - Thuyết giảng , kết hợp thảo luận nhóm và hỏi đáp. III. N ộ i dung và ti ế n trình lên l ớ p: 1/ Kiểm tra bài cũ : (10 phút) Câu hỏi 1 : Hồn thành bảng sau : (GV treo bảng phụ lên u cầu HS hồn thành , GV nhắc nhở và chỉnh sửa ) f(x) f / (x) C x α lnx e kx a x (a > 0, a ≠ 1) cos kx sin kx tanx cotx Câu hỏi 2 : Nêu ý nghĩa cơ học của đạo hàm 2/ Nội dung bài mới: TG Hoạt động của GV Hoạt động của HS Nội dung ghi bảng 10 / 10 / HĐI : Giới thiệu k/n nguyên hàm. Bài tốn mở đầu (sgk) Hỏi : 1) Nếu gọi s(t) là qng đường đi được của viên đạn bắn được t giây , v(t) là vận tốc của viên đạn tại thời điểm * HS đọc sgk Trò trả lời 1) v(t) = s / (t) 1. Khái niệm ngun ham Bài tốn mở đầu (sgk) 5 / 10 / t thì quan hệ giữa hai đại lượng đó như thế nào ? 2) Theo bài tốn ta cần phải tìm gì? Dẫn dắt đến khái niệm ngun hàm * Cho hàm số y = f(x) thì bằng các quy tắc ta luôn tìm được đạo hàm của hàm số đó. Vấn đề đặt ra là :” Nếu biết được f’(x) thì ta có thể tìm lại được f(x) hay không ? * Giới thiệu đònh nghóa.Ghi lên bảng * Cho HS đọc chú ý (sgk Tr 136) Cho ví dụ : Tìm nguyên hàm của : a/ f(x) = x 2 . b/ g(x) = x 2 cos 1 .với x ∈ ; 2 2 π π   −  ÷   c) h(x) = x trên [ ) +∞ ;0 *Gọi HS đứng tại chỗ trả lời ,GV chỉnh sửa và ghi lên bảng Củng cố : Cho HS thực hiện 2) Tính s(t) biết s / (t) Trò trả lời a/ F(x) = 3 3 x b/G(x) = tanx c)H(x) = xx 3 2 Thực hiện HĐ 1 F 1 (x) = - 2cos2x là ngun hàm của hàm số f(x) = 4sin2x a/ Đ ënh nghéa : * Hm säú F(x) âỉåüc gi l ngun hm ca f(x) trãn K nãúu: ∀ x ∈ K ta cọ: F (x) = f(x)’ Chú ý : Hm F(x) âỉåüc gi l ngun hm ca f(x) trãn [a,b] nãúu F'(x) f (x), x (a,b) = ∀ ∈ v F / (a) = f(a) ; .v F / (b) = f(b) Vê dủ: a. F(x) = 3 3 x l mäüt ngun hm ca f(x) = x 2 trãn R b. G(x) = tgx l mäüt ngun hm ca g(x) = x 2 cos 1 trãn khoảng       − 2 ; 2 ππ c) H(x) = xx 3 2 l mäüt ngun hm ca h(x) = x trên [ ) +∞ ;0 T 2 10 / 10 / HĐ 2: (SGK) • Gọi HS đứng tại chỗ trả lời * GV nhận xét và chỉnh sủa Hỏi : Nếu biết F(x) là một nguyên hàm của f(x) thì ta còn chỉ ra được bao nhiêu nguyên hàm của f(x). Từ đó ta có định lý 1 HĐ 3: Định lý 1 * Ghi định lý 1 lên bảng Hỏi 1 : Em hãy dựa vào tính chất F’(x) = f (x) ở hoạt động trên để chứng minh phần a của định lý vừa nêu. Hỏi 2 : Nếu f / (x) = 0 , có nhận xét gì về hàm số f(x) Xét [ ] / )()( xFxG − = G / (x) – F / (x) = f(x) – f(x) = 0 , vậy G(x) – F(x) =C (C là hằng số ) Gv giới thiệu với Hs phần chứng minh SGK, trang 137, để Hs hiểu rõ nội dung định lý vừa nêu. Cho HS làm ví dụ 2 ( Trang 138, sgk) * GV nhận xét và chỉnh sửa GV ghi bảng phần nhận xét (sgk) . . . * Giới thiệu cho HS : Sự tồn F 2 (x) = - 2cos2x + 2 là ngun hàm của hàm số f(x) = 4sin2x HS trả lời Vä säú, âọ l : F(x) +C, C l hàòng säú Đứng tại chỗ trả lời . f(x) là hàm hằng HS lên bảng trình bày Thảo luận nhóm để b/ Âënh l:1 Nãúu F(x) l mäüt ngun hm ca f(x) trãn K thç: a) Våïi mi hng säú C, F(x) + C cng l ngun hm ca f(x) trãn K b)Ngược lại với mi ngun hm G(x) ca f(x) trãn K thì tồn tại một hằng số C sao cho G(x) = F(x) + C våïi mọi x thuộc K . Chứng minh: (sgk) Vê dủ:Tìm ngun hàm của hàm số 2 f (x) 3x= trên R thoả mãn điều kiện F(1) = - 1 F(x) = 2 3 3x dx x C = + ∫ F(1) = - 1 nên C = - 2 Vậy F(x) = x 2 – 2 Tóm lại, ta có: Nếu F là một ngun hàm của f trên K thì mọi ngun hàm của f trên K đều có dạng F(x) + C , C ∈ R Vây F(x) + C là họ tất cả các ngun hàm của f trên K , kí hiệu ∫ f(x)dx. ( ) ( )f x dx F x C = + ∫ Với f(x)dx là vi phân của ngun hàm F(x) của f(x), vì dF(x) = F’(x)dx = f(x)dx. “Mọi hàm số liên tục trên K đều có ngun hàm trên K” 2) Bảng các ngun hàm của một số hàm số thường gặp * Treo bảng các ngun hàm cơ bản (trang 139) 10 / 12 / ti ca nguyờn hm: Ta tha nhn nh lý sau: (Gv ghi bng ) Hot ng 4 : Hóy hon thnh bng sau: (Phiu hc tp 1) * Hotng nhúm * Gi i din nhúm lờn bng trỡnh by , gi i din nhúm khỏc nhn xột , GV chnh sa T ú cú bng nguyờn hm * Giồùi tióỷu baớng caùc nguyón haỡm cồ baớn.(treo bng ph lờn) Cho vờ duỷ aùp duỷng Tỗm nguyón haỡm cuớa caùc haỡm sọỳ sau : (GV ghi lờn baớng) Gi HS lờn bng trỡnh by , GV nhn xột v chnh sa Hot ng 5 : Tớnh cht ca nguyờn hm * Ghi tớnh cht ca nguyờn hm lờn bng Gv gii thiu vi Hs phn chng minh SGK, trang 140, Hs hiu rừ ni dung tớnh cht 2 va nờu Cng c : Cho vờ duỷ aùp duỷng Tỗm nguyón haỡm cuớa caùc haỡm sọỳ sau : (GV ghi lỏn baớng) * Gi HS lờn bng trỡnh bay , GV hng dn , chnh sa hon thnh bng nguyờn hm ó cho v lm cỏc vớ d sau HS trỡnh by Chi a tổớ cho maợu x Vớ d : Tỗm nguyón haỡm cuớa caùc haỡm sọỳ sau 1) 4x 4 dx = 5 4 x 5 + C 2) x dx = 3 3 2 x + C 3) cosx/2 dx =2sin 2 x + C 3. Caùc tờnh chỏỳt cuớa nguyón haỡm Nu f v g l hai hm s liờn tc trờn K thỡ : a) [ ( ) ( )] ( ) ( )f x g x dx f x dx g x dx = b) Vi mi s thc k 0 ta cú ( ) ( ) ( 0)kf x dx k f x dx k = Vớ d : 1) ( x x 2 2 + )dx = dxxdxx + 2 1 2 1 2 2 1 = xx 4 3 1 3 + + C 2) (x 1) (x 4 + 3x ) dx= dxxxxx )33( 445 + C x x xx ++ 2 3 56 2 3 56 3) 4 sin 2 xdx = dxx)2cos1(2 = 2x sin2x + C *. x xx 2 3 + dx = * Hướng dẫn HS làm bài Tìm : ∫ x xx 2 3 + dx Hỏi : Âãø tçm nguyãn haìm cuía haìm säú 3 x 2 x f (x) x + = ta laìm nhæ thãú naìo ?(x > 0) H Đ 6 ) : Củng cố bài học • Phát phiếu học tập • Treo bảng phụ ghi nội dung phiếu học tập • Đại diện nhóm lên bảng trình bày , Gv nhận xét , chỉnh sửa ∫ x xx 2 3 + dx = ∫ dx x xx 2 1 3 1 2 + = ∫ ( dxxx )2 2 1 3 2 − − + = 2 1 3 1 4xx + + C = xx 43 3 + + C Thảo luận nhóm dx x xx 2 1 3 1 2 + = ∫ ( dxxx )2 2 1 3 2 − − + = 2 1 3 1 4xx + + C= xx 43 3 + + C Nội dung phiếu học tập IV. Củng cố ( 2 / ) + Gv nhắc lại các khái niệm và quy tắc trong bài để Hs khắc sâu kiến thức. + Dặn BTVN: Hoàn thành các bài tập 1 4 SGK, trang 141 + Xem trước bài : Một số phương pháp tìm nguyên hàm Nội dung các phiếu học tập : Phiếu học tập 1 : (5 phút ) 1) Hoàn thành bảng : f’(x) f(x) + C 0 αx α - 1 1 x e kx a x lna (a > 0, a ≠ 1) coskx sinkx 2 1 osc x 2 1 sin x − Phiếu học tập 2 (10 phút ) : Tính các nguyên hàm : 1) * ∫ (5x 2 - 7x + 3)dx = 2) ∫ ∫ + 2 4cos1 x dx = 3) ∫ 2 x xxx + dx = Bảng nguyên hàm các hàm số thường gặp sau: 0dx C = ∫ (0 1) ln x x a a dx C a a = + < ≠ ∫ dx x C = + ∫ ∫ sinkxdx = - k 1 coskx + C 1 ( 1) 1 x x dx C α α α α + = + ≠ − + ∫ ∫ coskxdx = k 1 sinkx + C ln ( 0) dx x C x x = + ≠ ∫ 2 os dx tgx C c x = + ∫ ∫ e kx dx = k e kx + C 2 cot sin dx gx C x = − + ∫ Tiết :1,2 ChươngIII§2 CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM Ngày soạn: I. Mục tiêu 1.Về kiến thức: - Hiểu được phương pháp đổi biến số và lấy nguyên hàm từng phần . 2. Về kĩ năng: - Giúp học sinh vận dụng được 2 phương pháp tìm nguyên hàm của một số hàm số không quá phức tạp. 3. Về tư duy thái độ: - Phát triển tư duy linh hoạt. -Học sinh tích cực tham gia vào bài học, có thái độ hợp tác. II. Chuẩn bị của giáo viên và học sinh 1. Giáo viên: - Lập các phiếu học tập, bảng phụ. 2. Học sinh: Các kiến thức về : - Vận dụng bảng các nguyên hàm, tính chất cơ bản của nguyên hàm, vi phân. III. Phương pháp: Gợi mở vấn đáp IV.Tiến trình bài học TIẾT 1 Kiểm tra bài cũ: (5 phút) Câu hỏi: a/ Phát biểu định nghĩa nguyên hàm . b/ Chứng minh rằng hàm số F(x) = 5 )12( 52 + x là một nguyên hàm của hàm số f(x) = 4x(2x 2 +1) 4 . - Cho học sinh khác nhận xét bài làm của bạn. - Nhận xét, kết luận và cho điểm. Hoạt động 1: Xây dựng phương pháp đổi biến số. Tg Hoạt động của học sinh Hoạt động của giáo viên Ghi bảng 5’ 5’ - Nếu đặt u = 2x 2 + 1, thì ∫ + dxxx 42 )12(4 = ∫ ++ dxxx )'12()12( 242 = ∫ duu 4 = 5 5 u + C = - Thông qua câu hỏi b/ , hướng dẫn hsinh đi đến phương pháp đổi biến số. ∫ + dxxx 42 )12(4 = = ∫ ++ dxxx )'12()12( 242 -Nếu đặt u = 2x 2 + 1, thì biểu thức ở trên trở thành như thế nào, kết quả ra sao? 5 )12( 52 + x + C - Phát biểu định lí 1. -Định lí 1 : (sgk) Hoạt động 2 :Rèn luyện kỹ năng tìm nguyên hàm bằng PPĐBS. Tg Hoạt động của học sinh Hoạt động của giáo viên Ghi bảng 7’ 7’ 6’ - HS suy nghĩ cách biến đổi về dạng ∫ dxxuxuf )(')]([ - Đ1: ∫ + dx x x 3 2 1 2 = ∫ ++ − dxxx )'1()1( 2 3 1 2 Đặt u = x 2 +1 , khi đó : ∫ ++ − dxxx )'1()1( 2 3 1 2 = ∫ − duu 3 1 = 2 3 u 3 2 + C = 2 3 (x 2 +1) 3 2 + C - HS suy nghĩ cách biến đổi về dạng ∫ dxxuxuf )(')]([ Đ2: ∫ + dxxx )1sin(2 2 = ∫ ++ dxxx )'1)(1sin( 22 Đặt u = (x 2 +1) , khi đó : ∫ ++ dxxx )'1)(1sin( 22 = ∫ udusin = -cos u + C = - cos(x 2 +1) +C -HS suy nghĩ cách biến đổi về dạng ∫ dxxuxuf )(')]([ Đ3: ∫ xdxe x sin cos = = - ∫ dxxe x )'(cos cos Đặt u = cos x , khi đó : ∫ xdxe x sin cos = - ∫ dxxe x )'(cos cos = - ∫ due u = -e u +C = - e cosx +C H1:Có thể biến đổi ∫ + dx x x 3 2 1 2 về dạng ∫ dxxuxuf )(')]([ được không? Từ đó suy ra kquả? - Nhận xét và kết luận. H2:Hãy biến đổi ∫ + dxxx )1sin(2 2 về dạng ∫ dxxuxuf )(')]([ ? Từ đó suy ra kquả? - Nhận xét và kết luận. H3:Hãy biến đổi ∫ xdxe x sin cos về dạng ∫ dxxuxuf )(')]([ ? Từ đó suy ra kquả? - Nhận xét và kết luận. Vd1: Tìm ∫ + dx x x 3 2 1 2 Bg: ∫ + dx x x 3 2 1 2 = ∫ ++ − dxxx )'1()1( 2 3 1 2 Đặt u = x 2 +1 , khi đó : ∫ ++ − dxxx )'1()1( 2 3 1 2 = ∫ − duu 3 1 = 2 3 u 3 2 + C = 2 3 (x 2 +1) 3 2 + C Vd2:Tìm ∫ + dxxx )1sin(2 2 Bg: ∫ + dxxx )1sin(2 2 = ∫ ++ dxxx )'1)(1sin( 22 Đặt u = (x 2 +1) , khi đó : ∫ ++ dxxx )'1)(1sin( 22 = ∫ udusin = -cos u + C = - cos(x 2 +1) +C Vd3:Tìm ∫ xdxe x sin cos Bg: ∫ xdxe x sin cos = - ∫ dxxe x )'(cos cos Đặt u = cos x , khi đó : ∫ xdxe x sin cos = - ∫ dxxe x )'(cos cos = - ∫ due u = -e u + c = - e cosx + c * chú ý: có thể trình bày cách khác: ∫ xdxe x sin cos = - )( cos osxcde x ∫ = - e cosx + C [...]... như thế nào Vd5: Tìm ∫sin Đ :Không được Trước hết : Đặt t = 7’ x ⇒ dt = Suy ra ∫sin x dx 1 2 x dx =2 ∫t sin tdt Đặt u = t, dv = sint dt ⇒ du = dt, v = - cost ⇒ ∫t sin tdt =-t.cost+ H : Có thể sử dụng ngay pp từng phần được không ? ta phải làm như thế nào ? + Gợi ý : dùng pp đổi biến số trước, đặt t = x +2sin Suy ra ∫sin x dx 1 2 x dx =2 ∫t sin tdt Đặt u = t, dv = sint dt ⇒ du = dt, v = - cost ⇒ ∫t . biết đối với dxxx ∫ ln 2 thì ta đặt u, dv như thế nào. H : Có thể sử dụng ngay pp từng phần được không ? ta phải làm như thế nào ? + Gợi ý : dùng pp đổi

Ngày đăng: 16/09/2013, 00:10

HÌNH ẢNH LIÊN QUAN

2) Bảng các nguyên hàm của một số hàm số thường gặp - GA 12NC-Chương3 (GT)
2 Bảng các nguyên hàm của một số hàm số thường gặp (Trang 3)
1) Hình phẳng giới hạn  bởi các đ ường: - GA 12NC-Chương3 (GT)
1 Hình phẳng giới hạn bởi các đ ường: (Trang 40)
2. Hình phẳng giới hạn bởicác - GA 12NC-Chương3 (GT)
2. Hình phẳng giới hạn bởicác (Trang 43)
Bảng phụ  (có Hvẽ) - GA 12NC-Chương3 (GT)
Bảng ph ụ (có Hvẽ) (Trang 49)
Hình phẳng cần tìm diện tích có trục đối xứng là Oy - GA 12NC-Chương3 (GT)
Hình ph ẳng cần tìm diện tích có trục đối xứng là Oy (Trang 52)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w