1. Trang chủ
  2. » Giáo án - Bài giảng

Chuyen De Ve Phep Bien Hinh

35 468 4
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 35
Dung lượng 1,66 MB

Nội dung

Chun Đề Về Phép Biến Hình CHƯƠNG I : PHÉP DỜI HÌNHPHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG Vấn đề 1 : PHÉP DỜI HÌNH A. KIẾN THỨC CƠ BẢN ′ ′ 1 Phép biến hình . ª ĐN : Phép biến hình là một quy tắc để với mỗi điểm M của mặt phẳng xác đònh được một điểm duy nhất M của mặt phẳng , điểm M gọi là ảnh của M qua phé ′ ′ ′ ′ ′ → → f p biến hình đó . ª Kí hiệu : f là một phép biến hình nào đó và M là ảnh của M qua phép f thì ta viết : M = f(M) hay f(M) = M hay f : M M hay M M . Điểm M gọi là tạoI I ⇔ ∀ ∈ o 1 2 2 1 ª ảnh . f là phép biến hình đồng nhất f(M) = M , M H . Điểm M gọi là điểm bất động , kép , bất biến . f ,f là các phép biến hình thì f f là phép biến hình . Nếu H l ′ ′ ∈ ′ à một hình nào đó thì tập hợp các điểm M = f(M), với M H, tạo thành một hình H được gọi là ảnh của H qua phép biến hình f và ta viết : H = f(H) . ′ ′ 2 Phép dời hình . ĐN : Phép dời hìnhphép biến hình không làm thay đổi khoảng cách giữa hai điểm bất kì , tức là với hai điểm bất kì M,N và ảnh M , N của chúng , ta luôn c ′ ′ g ó M N = MN . ( Bảo toàn khoảng cách ) . 3 Tính chất : ( của phép dời hình ) . ĐL : Phép dời hình biến ba điểm thẳng hàng thành ba điểm thẳng hàng , ba điểm không thẳng hàng g thành ba điểm không thẳng hàng . HQ:Phép dời hình biến : 1. Đường thẳng thành đường thẳng . 2. Tia thành tia . 3. Đoạn thẳng thành đoạn thẳng bằng nó . 4. Tam giác thành t → → → ′ ′ am giác bằng nó . ( Trực tâm trực tâm , trọng tâm trọng tâm ) 5. Đường tròn thành đường tròn bằng nó . ( Tâm biến thành tâm : I I , R = R ) 6. Góc thành góc I I I bằng nó . B . BÀI TẬP ′  − ′ →  ′  − − ′ ′ x = 2x 1 1 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = . y = y + 3 Tìm ảnh của các điểm sau : a) A(1;2) b) B( 1;2) c) C(2; 4) Giải : a) A = f(A) = (1;5) b) B = I − ′ − ′  − + ′ →  ′ −  − − f(B) = ( 7;6) c) C = f(C) = (3; 1) x = 2x y 1 2 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = . y = x 2y + 3 Tìm ảnh của các điểm sau : a) A(2;1) b) B( 1;3) c) C( 2 I ′ ′ − − ′ − − ′ → ;4) Giải : a) A = f(A) = (4;3) b) B = f(B) = ( 4; 4) c) C = f(C) = ( 7; 7) 3 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (3x;y) . Đây có phải là phép dời hình hay I không ? ′ → ′ → 1 1 2 2 1 1 1 1 2 2 2 2 Giải : Lấy hai điểm bất kì M(x ;y ),N(x ;y ) Khi đó f : M(x ;y ) M = f(M) = (3x ; y ) . f : N(x ;y ) N = f(N) = (3x ; y ) I I GV: Nguyễn Cảnh Chiến 1 Trường THPT Thanh Chương 1 Chun Đề Về Phép Biến Hình ′ ′ − + − − + − ′ ′ ≠ ≠ 2 2 2 2 2 1 2 1 2 1 2 1 1 2 Ta có : MN = (x x ) (y y ) , M N = 9(x x ) (y y ) Nếu x x thì M N MN . Vậy : f không phải là phép dời hình . (Vì có 1 số điểm f không bảo toàn khoảng cách) . { { { { ′ ′ ′ ′ ′ ′ → − → y x x y 4 Trong mpOxy cho 2 phép biến hình : a) f : M(x;y) M = f(M) = ( y ; x 2) b) g : M(x;y) M = g(M) = ( 2x ; y+1) . Phép biến hình nào trên đây là phép dời hình I I ′ ′ ≠ ≠ ′ → − 1 2 ? HD : a) f là phép dời hình b) g không phải là phép dời hình ( vì x x thì M N MN ) 5 Trong mpOxy cho 2 phép biến hình : a) f : M(x;y) M = f(M) = (y + 1 ; x) I ′ → b) g : M(x;y) M = g(M) = ( x ; 3y ) . Phép biến hình nào trên đây là phép dời hình ? Giải : a) f là phép dời hình b) g không phải là phép dời hình ( I ′ ′ ≠ ≠ 1 2 vì y y thì M N MN ) ′ → − + ∆ − − 6 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = ( 2x ;y 1) . Tìm ảnh của đường thẳng ( ) : x 3y 2 = 0 qua phép biến hình f . Giải : Cách 1: Dùng biểu thức toạ độ I ′  − ′  −  = ′ → ⇔   ′ = +   ′ = −  ′ − ′ ′ ′ ′ ′ ′ ′ ∈ ∆ ⇔ − − − = ⇔ + − = ⇔ ∈ ∆ + − = ∈ ∆ ≠ g x x = 2x x Ta có f : M(x;y) M = f(M) = 2 y y 1 y y 1 x Vì M(x;y) ( ) ( ) 3(y 1) 2 0 x 6y 2 0 M (x ;y ) ( ) : x 6y 2 0 2 Cách 2 : Lấy 2 điểm bất kì M,N ( ) : M N . M I ′ ∈ ∆ → = = − ′ ∈ ∆ − − → = =g ( ) : M(2;0) M f(M) ( 4;1) N ( ) : N( 1; 1) N f(N) (2;0) I I ′  − − ′ ′ ′ ′ ′ ∆ ≡ → ∆ = → ∆ + − =  ′ ′ − = −  g uuuuur g Qua M ( 4;1) x+ 4 y 1 ( ) (M N ): PTCtắc ( ) : PTTQ ( ) :x 6y 2 0 6 1 VTCP : M N (6; 1) ′ → + + ′ − → 2 2 7 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (x 3;y 1) . a) CMR f là phép dời hình . b) Tìm ảnh của đường tròn (C) : (x + 1) + (y 2) = 4 . (C ) : (x I I − − 2 2 2) + (y 3) = 4 ′ → − + ∆ − 8 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (x 3;y 1) . a) CMR f là phép dời hình . b) Tìm ảnh của đường thẳng ( ) : x + 2y 5 = 0 . c) Tìm ảnh của đường tròn (C) : (x I − ′ → − + 2 2 2 2 1 1 2 2 1 1 1 1 + 1) + (y 2) = 2 . x y d ) Tìm ảnh của elip (E) : + = 1 . 3 2 Giải : a) Lấy hai điểm bất kì M(x ;y ),N(x ;y ) Khi đó f : M(x ;y ) M = f(M) = (x 3; y 1) . f : N I ′ → − + ′ ′ − + − 2 2 2 2 2 2 2 1 2 1 (x ;y ) N = f(N) = (x 3; y 1) Ta có : M N = (x x ) (y y ) = MN Vậy : f là phép dời hình . I GV: Nguyễn Cảnh Chiến 2 Trường THPT Thanh Chương 1 Chun Đề Về Phép Biến Hình ′ ′   − = + ′ → ⇔   ′ ′ = + = −   ′ ′ ′ ′ ′ ′ ′ ∈ ∆ ⇔ + + − − = ⇔ + − = ⇔ ∈ b) Cách 1: Dùng biểu thức toạ độ x = x 3 x x 3 Ta có f : M(x;y) M = f(M) = y y 1 y y 1 Vì M(x;y) ( ) (x 3) 2(y 1) 5 0 x 2y 4 0 M (x ;y ) ( I ′ ∆ + − =) : x 2y 4 0 ∈ ∆ ≠ ′ ∈ ∆ → = = ′ ∈ ∆ → = = g g Cách 2 : Lấy 2 điểm bất kì M,N ( ) : M N . M ( ) : M(5 ;0) M f(M) (2;1) N ( ) : N(3 ; 1) N f(N) (0;2) I I ′  − − ′ ′ ′ ′ ′ ∆ ≡ → ∆ = → ∆ + − =  ′ ′ − = −  ∆ g uuuuur g Qua M (2;1) x 2 y 1 ( ) (M N ): PTCtắc ( ) : PTTQ( ): x 2y 4 0 2 1 VTCP : M N ( 2;1) Cách 3: Vì f là phép dời hình nên f biến đường thẳng ( ) thành đường thẳng ′ ∆ ∆ ′ ∈ ∆ → = = ′ ′ ′ ′ ′ ∆ ∆ ⇒ ∆ + ≠ − ∆ ∋ ⇒ − ⇒ ∆ + − = g g ( ) // ( ) . Lấy M ( ) : M(5 ;0) M f(M) (2;1) Vì ( ) // ( ) ( ): x + 2y m = 0 (m 5) . Do : ( ) M (2;1) m = 4 ( ): x 2y 4 0 c) Cách 1: Dùng biểu thức toạ độ I ′ ′   − = + ′ → ⇔   ′ ′ = + = −   ′ ′ ∈ − ⇔ + + − = ⇔ ′ ′ ′ ⇔ 2 2 2 2 x = x 3 x x 3 Ta có f : M(x;y) M = f(M) = y y 1 y y 1 Vì M(x;y) (C) : (x + 1) + (y 2) = 2 (x 4) (y 3) 2 M (x ;y I ′ ∈ + + − = ′   − − = − ′ ′ → → + + − =   ′ + +   2 2 f 2 2 ) (C ) : (x 4) (y 3) 2 + Tâm I( 1;2) + Tâm I = f[I( 1;2)] ( 4;3) Cách 2 : (C) (C ) (C ) : (x 4) (y 3) 2 BK : R = 2 BK : R = R = 2 ′ ′   − = + ′ → ⇔   ′ ′ = + = −   d) Dùng biểu thức toạ độ x = x 3 x x 3 Ta có f : M(x;y) M = f(M) = y y 1 y y 1 I ′ ′ − − ′ ′ ′ ′ ∈ ⇔ ⇔ ∈ 2 2 2 2 2 2 x y (x + 3) (y 1) (x + 3) (y 1) Vì M(x;y) (E) : + = 1 + = 1 M (x ;y ) (E ) : + = 1 3 2 3 2 3 2 ′ → + − ∆ − + 9 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (x 1;y 2) . a) CMR f là phép dời hình . b) Tìm ảnh của đường thẳng ( ) : x 2y 3 I − − − + − 2 2 2 2 2 2 = 0. c) Tìm ảnh của đường tròn (C) : (x + 3) + (y 1) = 2 . d) Tìm ảnh của parabol (P) : y = 4x . ĐS : b) x 2y 2 = 0 c) (x + 2) + (y 1) = 2 d) (y + 2) = 4(x 1) ′ → −10 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = ( x ;y) . Khẳng đònh nào sau đây sai ? I ∈ A. f là 1 phép dời hình B. Nếu A(0 ; a) thì f(A) = A C. M và f(M) đối xứng nhau qua trục hoành D. f[M(2;3)] đường thẳng 2x + y + 1 = 0 → ĐS : Chọn C . Vì M và f(M) đối xứng nhau qua trục tung C sai . ′ ′ → − → − − − 1 1 2 2 1 2 12 Trong mpOxy cho 2 phép biến hình : f : M(x;y) M = f (M) = (x + 2 ; y 4) ; f : M(x;y) M = f (M) = ( x ; y) . Tìm toạ độ ảnh của A(4; 1) qua f rồi f , nghóa là tì I I ′ ′′ − → − → − 1 2 2 1 f f m f [f (A)] . ĐS : A(4; 1) A (6; 5) A ( 6 ; 5 ) .I I ′ → − ∈ x 11 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = ( ; 3y) . Khẳng đònh nào sau đây sai ? 2 A. f (O) = O (O là điểm bất biến) B. Ảnh của A Ox thì I ′ ∈ ′ ′ ∈ ∈ − − ảnh A = f(A) Ox . C. Ảnh của B Oy thì ảnh B = f(B) Oy . D. M = f[M(2 ; 3)] = (1; 9) ′ − ĐS : Chọn D . Vì M = f[M(2 ; 3)] = (1; 9) GV: Nguyễn Cảnh Chiến 3 Trường THPT Thanh Chương 1 Chun Đề Về Phép Biến Hình Vấn đề 2 : PHÉP TỊNH TIẾN A. KIẾN THỨC CƠ BẢN ′ ′ = uuuuur r r 1 ĐN : Phép tònh tiến theo vectơ u là một phép dời hình biến điểm M thành điểm M sao cho MM u. ′ ′ = ⇔ = uuuuur r r r g Kí hiệu : T hay T .Khi đó : T (M) M MM u u u Phép tònh tiến hoàn toàn được xác đònh khi biết vectơ tònh tiến của nó . Nếu T (M) M , M thì T là phép đồng nhất . o o 2 Biểu thức tọa độ : Cho u = (a;b) và phép tònh tiến T u = ∀ r r g r r ′  ′ ′ ′ → =  ′  r x = x + a M(x;y) M =T (M) (x ;y ) thì u y = y + b I g g 3 Tính chất : ĐL : Phép tònh tiến bảo toàn khoảng cách giữa hai điểm bất kì . HQ : 1. Bảo toàn tính thẳng hàng và thứ tự của các điểm tương ứng . 2. Biến một tia thành tia . 3. Bảo toàn tính thẳng hàng và thứ tự của các điểm tương ứng . 5. Biến một đoạn thẳng thành đoạn thẳng bằng nó . 6. Biến một đường thẳng thành một đường thẳng song song hoặc trùng với đường thẳng đã cho . → → Biến 7. tam giác thành tam giác bằng nó . (Trực tâm trực tâm , trọng tâm trọng tâm )I I ′ ′ → 8. Đường tròn thành đường tròn bằng nó . (Tâm biến thành tâm : I I , R = R )I  PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT ĐIỂM ′  ′ ′ ′ → =  ′  r x = x + a M(x;y) M =T (M) (x ;y ) thì u y = y + b I  PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT HÌNH (H) . ′ ′ ∈ → ∈ ′ ≡ → ≡ g g Cách 1 : Dùng tính chất (cùng phương của đthẳng , bán kính đường tròn : không đổi ) 1. Lấy M (H) M (H ) 2. (H) đường thẳng (H ) đường thẳng cùng phương I ′   + + ′ ′ ′ ≡ → ≡   ′   ′ ′ Tâm I Tâm I (H) (C) (H ) (C ) (cần tìm I ) . + bk : R + bk : R = R Cách 2 : Dùng biểu thức tọa độ . Tìm x theo x , tìm y theo y rồi thay vào biểu thức tọa độ . Cách 3 II ′ ′ ′ ∈ → ∈ : Lấy hai điểm phân biệt : M, N (H) M , N (H )I B, BÀI TẬP ′ − ′ ′   − = = ′ ′ ′ ′ ⇔ = ⇔ − + = ⇔ ⇔   ′ ′ + = = −   r uuuuur r r 1 Trong mpOxy . Tìm ảnh của M của điểm M(3; 2) qua phép tònh tiến theo vectơ u = (2;1) . Giải x 3 2 x 5 Theo đònh nghóa ta có : M = T (M) MM u (x 3;y 2) (2;1) u y 2 1 y 1 ′ ⇒ − − r r M (5; 1) 2 Tìm ảnh các điểm chỉ ra qua phép tònh tiến theo vectơ u : a) A( 1;1) , u = (3;1) ′ ⇒ − r A (2;3) b) B(2;1) , u = ( 3;2) ′ ⇒ − ′ − − ⇒ r B ( 1;3) c) C(3; 2) , u = ( 1;3) C (2;1) GV: Nguyễn Cảnh Chiến 4 Trường THPT Thanh Chương 1 Chun Đề Về Phép Biến Hình ′ ′ ′ ′ ′ ′ = = r uuur uuuur r r 3 Trong mpOxy . Tìm ảnh A ,B lần lượt của điểm A(2;3), B(1;1) qua phép tònh tiến theo vectơ u = (3;1) . Tính độ dài AB , A B . Giải Ta có : A = T (A) (5;4) , B = T (B) u u ′ ′ ′ ′ = = = = = = ⇔ = = ⇔ = uuur uuuur r r r r r r uuuuur uuuuuuur r r r 1 2 1 2 (4;2) , AB = |AB| 5 , A B = |A B | 5 . 4 Cho 2 vectơ u ;u . Gỉa sử M T (M),M T (M ). Tìm v để M T (M) . 1 2 1 u 2 u 1 2 v Giải Theo đề : M T (M) MM u , M T (M ) M M 1 u 1 1 2 u 1 1 2 = ⇔ = ⇒ = = + = = r uuuuuur uuuuuur uuuuur uuuuuuur r r r r r r r r u . 2 Nếu : M T (M) MM v v MM MM M M u + u .Vậy : v u + u 2 v 2 2 1 1 2 1 2 1 2 ′ ∆ − ∆ ∆ − r 5 Đường thẳng cắt Ox tại A( 1;0) , cắt Oy tại B(0;2) . Hãy viết phương trình đường thẳng là ảnh của qua phép tònh tiến theo vectơ u = (2; 1) . ′ ′ = = − = = ′  −  = + ′ ′ ′ ′ ′ ′ ∆ = ∆ ⇒ ∆ ∆ ⇒ ∆   = − + ′ ′   r r g r uuuuur g Giải Vì : A T (A) (1; 1) , B T (B) (2;1) . u u qua A (1; 1) x 1 t Mặt khác : T ( ) đi qua A ,B . Do đó : ptts : u y 1 2t VTCP : A B = (1;2) ′ ∆ ∆ ∆ − − ′ = = − r r 6 Đường thẳng cắt Ox tại A(1;0) , cắt Oy tại B(0;3) . Hãy viết phương trình đường thẳng là ảnh của qua phép tònh tiến theo vectơ u = ( 1; 2) . Giải Vì : A T (A) (0; 2) , u ′ = = − ′  −  = − ′ ′ ′ ′ ′ ′ ∆ = ∆ ⇒ ∆ ∆ ⇒ ∆   = − + ′ ′ −   ∆ − − r g r uuuuur g r B T (B) ( 1;1) . u qua A (0; 2) x t Mặt khác : T ( ) đi qua A ,B . Do đó : ptts : u y 2 3t VTCP : A B = ( 1;3) 7 Tương tự : a) : x 2y 4 = 0 , u = (0 ; 3) ′ ⇒ ∆ − + = ′ ∆ + − − − ⇒ ∆ + + = r : x 2y 2 0 b) : 3x y 3 = 0 , u = ( 1 ; 2) : 3x y 2 0 8 Tìm ảnh c + − = − ′ ′   − ⇔   ′ ′ −   ∈ r r 2 2 ủa đường tròn (C) : (x + 1) (y 2) 4 qua phép tònh tiến theo vectơ u = (1; 3) . Giải x = x + 1 x = x 1 Biểu thức toạ độ của phép tònh tiến T là : u y = y 3 y = y + 3 Vì : M(x;y) ( ′ ′ ′ ′ ′ ′ + − = ⇔ + + = ⇔ ∈ + + = ′ + + = 2 2 2 2 2 2 C) : (x + 1) (y 2) 4 x (y 1) 4 M (x ;y ) (C ) : x (y 1) 4 2 2 Vậy : Ảnh của (C) là (C ) : x (y 1) 4 ′ → + − ∆ − + 9 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (x 1;y 2) . a) CMR f là phép dời hình . b) Tìm ảnh của đường thẳng ( ) : x 2y 3 I − − − + − 2 2 2 2 2 2 = 0. c) Tìm ảnh của đường tròn (C) : (x + 3) + (y 1) = 2 . d) Tìm ảnh của parabol (P) : y = 4x . ĐS : b) x 2y 2 = 0 c) (x + 2) + (y 1) = 2 d) (y + 2) = 4(x ′ → − 1) 10 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = ( x ;y) . Khẳng đònh nào sau đây sai ? A. f là 1 phép dời hình B. I ∈ Nếu A(0 ; a) thì f(A) = A C. M và f(M) đối xứng nhau qua trục hoành D. f[M(2;3)] đường thẳng 2x + y + 1 = 0 ĐS : Chọn C . Vì M và f(M) đối xứng nhau qua t → rục tung C sai . − + + = − ′ ′   − ⇔   ′ ′ + −   r r 2 2 9 Tìm ảnh của đường tròn (C) : (x 3) (y 2) 1 qua phép tònh tiến theo vectơ u = ( 2;4) . x = x 2 x = x + 2 Giải : Biểu thức toạ độ của phép tònh tiến T là : u y = y 4 y = y 4 ′ ′ ′ ′ ′ ′ ′ ′ ∈ − + + = ⇔ − + − = ⇔ ∈ − + − = ′ − + − = 2 2 2 2 2 2 Vì : M(x;y) (C) : (x 3) (y 2) 1 (x 1) (y 2) 1 M (x ;y ) (C ) : (x 1) (y 2) 1 2 2 Vậy : Ảnh của (C) là (C ) : (x 1) (y 2) 1 GV: Nguyễn Cảnh Chiến 5 Trường THPT Thanh Chương 1 Chun Đề Về Phép Biến Hình ′ − + + = ⇒ − + − = ′ + − + − = − r r 2 2 2 2 BT Tương tự : a) (C) : (x 2) (y 3) 1, u = (3;1) (C ) : (x 1) (y 2) 1 2 2 b) (C) : x y 2x 4y 4 0, u = ( 2;3) (C ) + + − − = − − g 2 2 : x y 2x 2y 7 0 10 Trong hệ trục toạ độ Oxy , xác đònh toạ độ các đỉnh C và D của hình bình hành ABCD biết đỉnh A( 2;0), đỉnh B( 1;0) và giao điểm các đường chéo là I(1;2) . Giải = − − = = −   − = = ⇔ = ⇔ ⇔ ⇒   − = =   uur uur uur g uur uur uur g Gọi C(x;y) .Ta có : IC (x 1;y 2),AI (3;2),BI (2; 1) Vì I là trung điểm của AC nên : x 1 3 x 4 C = T (I) IC AI C(4;4) AI y 2 2 y 4 Vì I là trung điểm của AC nên : D =   − = =   ⇔ = ⇔ ⇔ ⇒   − = =     − ⇒ − ′ uur uur uur x 1 2 x 3 D D T (I) ID BI D(3;4) BI y 2 2 y 4 D D Bài tập tương tự : A( 1;0),B(0;4),I(1;1) C(3;2),D(2; 2) . 11 Cho 2 đường thẳng song song nhau d và d . Hãy chỉ ra một ′ ′ ′ ∈ ∈ ′ ′ ∈ ⇔ = uuuuur uuur uuur phép tònh tiến biến d thành d . Hỏi có bao nhiêu phép tònh tiến như thế ? Giải : Chọn 2 điểm cố đònh A d , A d Lấy điểm tuỳ ý M d . Gỉa sử : M = T (M) MM AB AB ′ ′ ′ ′ ′ ⇒ = ⇒ ⇒ ∈ ⇒ ′ ′ ′ uuuur uuuur uuur MA M B M B/ /MA M d d = T (d) AB Nhận xét : Có vô số phép tònh tiến biến d thành d . 12 Cho 2 đường tròn (I,R) và (I ,R ) .Hãy chỉ ra một phép tònh tiến biến (I,R) ′ ′ ′ ′ ′ ⇔ = ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ⇒ = ⇒ = = ⇒ ∈ ⇒ ′ uuuuur uur uur uuur uuuur uur thành (I ,R ) . Giải : Lấy điểm M tuỳ ý trên (I,R) . Gỉa sử : M = T (M) MM II II IM I M I M IM R M (I ,R ) (I ,R ) = T [(I,R)] II 13 Cho hình bình hành ABCD , hai đỉnh A,B cố đònh , tâm I thay đổi di động trên đường tròn (C) .Tìm quỹ tích trung điểm M của cạnh BC. Giải Gọi J là trung điểm cạnh AB . Khi đó d = uuur uur uur uur ễ thấy J cố đònh và IM JB . Vậy M là ảnh của I qua phép tònh tiến T . Suy ra : Quỹ tích của M là JB ảnh của đường tròn (C) trong phép tònh tiến theo vectơ JB ′ r 2 14 Trong hệ trục toạ độ Oxy , cho parabol (P) : y = ax . Gọi T là phép tònh tiến theo vectơ u = (m,n) và (P ) là ảnh của (P) qua phép tònh tiến đó . Hãy viết phương trình của ′ ′ ′ ′ ′ ′ ′ ′ → − − ′ ′   − − ′ ⇔ ⇔   ′ ′ − −   ′ ′ ′ ∈ = ⇔ − − ⇔ r uuuuur uuuuur r g uuuuur r u (P ) . Giải : T M(x;y) M (x ;y ) , ta có : MM = u , với MM = (x x ; y y) x x = m x = x m Vì MM = u y y = n y = y n 2 2 Mà : M(x;y) (P):y ax y n = a(x m) y = I ′ ′ ′ ′ ′ − + ⇔ ∈ − + ′ − + ⇔ − + + ∆ − ≠ ∆ ∆ r r r r 2 2 a(x m) n M (x ;y ) (P ) : y = a(x m) n 2 2 2 Vậy : Ảnh của (P) qua phép tònh tiến T là (P ) : y = a(x m) n y = ax 2amx am n . u 15 Cho đt : 6x + 2y 1= 0 . Tìm vectơ u 0 để = T ( ) . u Gi ∆ − ∆ ∆ ⇔ − = − ⇒ − − − r r r r r r ải : VTCP của là a = (2; 6) . Để : = T ( ) u cùng phương a . Khi đó : a = (2; 6) 2(1; 3) u chọn u = (1; 3) . 16 Trong hệ trục toạ độ Oxy , cho 2 điểm A( 5;2) , C( 1;0) . Bi r r r r ết : B = T (A) , C = T (B) . Tìm u và v u v để có thể thực hiện phép biến đổi A thành C ? Giải GV: Nguyễn Cảnh Chiến 6 Trường THPT Thanh Chương 1 T u+v r r Chun Đề Về Phép Biến Hình − → → − r r u v T T A( 5;2) B C( 1;0)I I . Ta có : AB u,BC v AC AB BC u v (4; 2)= = ⇒ = + = + = − uuur uuur uuur uuur uuur r r r r − − − →  → r r r r r r u v 17 Trong hệ trục toạ độ Oxy , cho 3 điểm K(1;2) , M(3; 1),N(2; 3) và 2 vectơ u = (2;3) ,v = ( 1;2) . Tìm ảnh của K,M,N qua phép tònh tiến T rồi T . u v T T HD :Gỉa sử : A(x;y) BI I ′ ′  = = ⇒ = + = + = ′ ′   − = = ′ ′ ′ ⇔ = ⇔ ⇔ ⇒   + ′ ′ − = =   ′ ′ uuur uuur uuur uuur uuur r r r r uuuur r r C(x ;y ) . Ta có : AB u,BC v AC AB BC u v (1;5) x 1 1 x 2 Do đó : K =T (K) KK (1;5) K (2;7) . u v y 2 5 y 7 Tương tự : M (4;4) , N (3;2) . 18 Trong hệ trụ ∆ − − ∆ ′ ≠ ′ ′ ′ → − → r r r r r u u c toạ độ Oxy , cho ABC : A(3;0) , B( 2;4) , C( 4;5) . G là trọng tâm ABC và phép tònh tiến theo vectơ u 0 biến A thành G . Tìm G = T (G) . u Giải T T A(3;0) G( 1;3) G (x ;yI I ′ ′   + = − = − ′ ′ = − = = ⇔ ⇔ ⇒ −   ′ ′ − = =   ′ − + + = + − + + = uuur uuuur r r ) x 1 4 x 5 Vì AG ( 4;3) u . Theo đề : GG u G ( 5;6). y 3 3 y 6 2 2 2 2 19 Trong mặt phẳng Oxy , cho 2 đường tròn (C) : (x 1) (y 3) 2,(C ): x y 10x 4y 25 0. Có hay không phe ′ ′ ′ ′ − − ′ r r ùp tònh tiến vectơ u biến (C) thành (C ) . HD : (C) có tâm I(1; 3), bán kính R = 2 ; (C ) có tâm I (5; 2), bán kính R = 2 . Ta thấy : R = R = 2 nên có phép tònh tiến theo vectơ u ′ − ∈∆ − − = uuur g = (4;1) biến (C) thành (C ) . 20 Trong hệ trục toạ độ Oxy , cho hình bình hành OABC với A( 2;1) và B :2x y 5 = 0 . Tìm tập hợp đỉnh C ? Giải Vì OABC là hình bình hành nên : BC = − ⇒ = − ′ ′   − = = − ′ ′ → = ⇔ ⇔   ′ ′ − = − = +   ′ ′ ′ ′ ′ ∈∆ ⇔ − − ⇔ − − ⇔ ∈∆ − − ∆ r uuur r r uuur r g g u AO (2; 1) C T (B) với u = (2; 1) u T x x 2 x x 2 B(x;y) C(x ;y ) . Do : BC u y y 1 y y 1 B(x;y) 2x y 5 = 0 2x y 10 = 0 C(x ;y ) : 2x y 10 = 0 21 Cho ABC . Gọi A ,B ,C 1 1 1 I lần lượt là trung điểm các cạnh BC,CA,AB. Gọi O ,O ,O và I ,I ,I 1 2 3 1 2 3 tương ứng là các tâm đường tròn ngoại tiếp và các tâm đường tròn nội tiếp của ba tam giác AB C , 1 1 BC A 1 ∆ = ∆ → → → ⇒ ∆ →∆ → → ⇒ uuur uuur uuur uuur 1 1 1 AB AB AB 2 2 2 , và CA B . Chứng minh rằng : O O O I I I . 1 1 1 1 2 3 1 2 3 HD : Xét phép tònh tiến : T biến A C,C B,B A . 1 1 1 1 AB 2 T T T AB C C BA ;O O ;I I . 1 1 1 1 1 2 1 2 I I I I I I w = ⇒ = = = ⇒ = = ⇒ ∆ = ∆ uuuuuur uuuur uuur uuur uuuuuur uuuur uuuuuur uuuur O O I I O O I I . 1 2 1 2 1 2 1 2 Lý luận tương tự : Xét các phép tònh tiến T ,T suy ra : 1 1 BC CA 2 2 O O I I và O O I I O O I I ,O O I I O O O I I I ( 2 3 2 3 3 1 3 1 2 3 2 3 3 1 3 1 1 2 3 1 2 3 w c.c.c). µ µ µ · = = = = → ⇔ = = uuur o o o uuuur uuur BC 22 Trong tứ giác ABCD có AB = 6 3cm ,CD 12cm , A 60 ,B 150 và D 90 . Tính độ dài các cạnh BC và DA . HD : T Xét : A M AM BC.Ta có : ABCM là hình bình hành và BCM 3Iw µ = o o 0 (vì B 150 ) GV: Nguyễn Cảnh Chiến 7 Trường THPT Thanh Chương 1 Chun Đề Về Phép Biến Hình · · = − + + = ⇒ = ∆ = + − = + − = ⇒ ⇒ ∆ o o o o o o o Lại có : BCD 360 (90 60 150 ) 60 MCD 30 . Đònh lý hàm cos trong MCD : 3 2 2 2 2 2 MD MC DC 2MC.DC.cos30 (6 3) (12) 2.6 3.12. 36 2 MD = 6cm . 1 Ta có : MD = CD và MC = MD 3 MDC là tam giác 2 · · · · · ⇒ ∆ ⇒ = = = = = ⇒ ∆ o o o đều MCD là nửa tam giác đều DMC 90 và MDA 30 . Vậy : MDA MAD MAB 30 AMD là tam giác cân tại M . ⊥ ⇒ ⇒ = ⇒ = o 6 3 Dựng MK AD K là trung điểm của AD KD=MDcos30 cm AD 6 3cm 2 Tóm lại : BC = AM = MD = 6cm , AD = AB = 6 3cm Vấn đề 3 : PHÉP ĐỐI XỨNG TRỤC A , KIẾN THỨC CƠ BẢN 1 ĐN1:Điểm M gọi là đối xứng với điểm M qua đường thẳng a nếu a là đường trung trực của đoạn MM . Phép đối xứng qua đường thẳng còn gọi là phép đối xứng trục . Đườ ′ ′ ng thẳng a gọi là trục đối xứng. ĐN2 : Phép đối xứng qua đường thẳng a là phép biến hình biến mỗi điểm M thành điểm M đối xứng với M qua đường thẳng a . Kí hiệ ′ a o o o u : Đ (M) M M M M M , với M là hình chiếu của M trên đường thẳng a . ′ ′ = ⇔ = − uuuuuur uuuuuur Khi đó : ∈ =g a Nếu M a thì Đ (M) M : xem M là đối xứng với chính nó qua a . ( M còn gọi là điểm bất động ) ′ ′ ∉ = ⇔ g a M a thì Đ (M) M a là đường trung trực của MM a a Đ (M) M thì Đ (M ) M ′ ′ = =g a a Đ (H) H thì Đ (H ) H , H là ảnh của hình H . ′ ′ ′ = =g ⇔ =g g d ĐN : d là trục đối xứng của hình H Đ (H) H . Phép đối xứng trục hoàn toàn xác đònh khi biết trục đối xứng của nó . Chú ý : Một hình có thể không có trục đối xứng ,có thể có một hay nhiều trục đối xứng . ′ ′ ′ → = = ′ ′   − ≡ ≡   ′ ′ −   d 2 Biểu thức tọa độ : M(x;y) M Đ (M) (x ;y ) x = x x = x ª d Ox : ª d Oy : y = y y = y I g 3 ĐL : Phép đối xứng trục là một phép dời hình . 1.Phép đối xứng trục biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự của các điểm tương ứ HQ : → ng . 2. Đường thẳng thành đường thẳng . 3. Tia thành tia . 4. Đoạn thẳng thành đoạn thẳng bằng nó . 5. Tam giác thành tam giác bằng nó . (Trực tâm trực tâm , trọn I → ′ ′ → g tâm trọng tâm ) 6. Đường tròn thành đường tròn bằng nó . (Tâm biến thành tâm : I I , R = R ) 7. Góc thành góc bằng nó . I I a PP : Tìm ảnh M = Đ (M) 1. (d) M , d a 2. H = d a 3. H là trung điểm của MM M ? ′ • ∋ ⊥ ∩ ′ ′ → GV: Nguyễn Cảnh Chiến 8 Trường THPT Thanh Chương 1 Chun Đề Về Phép Biến Hình ′ ∆ ∆ ∆ ∈ ∆ ≠ ′ ′ ′ ′ ′ ∆ ∋ ∆ → ∆ a a ª PP : Tìm ảnh của đường thẳng : = Đ ( ) TH1:( )// (a) 1. Lấy A,B ( ) : A B 2. Tìm ảnh A = Đ (A) 3. A , // (a) w ∆ ∆ ∩ ∈∆ ≠ ′ ∆ ≡ a TH2 : // a 1. Tìm K = a 2. Lấy P : P K .Tìm Q = Đ (P) 3. (KQ) w ª PP : ∈ ∆ min Tìm M ( ) : (MA + MB) . ∈ ∆ ∆ ′ ∆ ′ ′ ∀ ∈ ∆ = ≥ ′ ′ ⇔ ∩ ∆ min min Tìm M ( ) : (MA+ MB) Loại 1 : A, B nằm cùng phía đối với ( ) : 1) gọi A là đối xứng của A qua ( ) 2) M ( ), thì MA + MB MA + MB A B Do đó: (MA+MB) = A B M = (A B) ( ) w ∆ ∀ ∈ ∆ ≥ ⇔ ∩ ∆ min Loại 2 : A, B nằm khác phía đối với ( ) : M ( ), thì MA + MB AB Ta có: (MA+MB) = AB M = (AB) ( ) w B . BÀI TẬP ′ ′′ → − → − − Đ Đ Oy Ox 1 Trong mpOxy . Tìm ảnh của M(2;1) đối xứng qua Ox , rồi đối xứng qua Oy . HD : M(2;1) M (2; 1) M ( 2; 1) 2 Trong mpOxy . Tìm ảnh của M(a;b) đối xứng qua Oy , rồi đối xứ I I ′ ′′ → − → − − ′ ′′ − − → → ′ ′′ − → → Đ Đ Oy Ox Đ Đ a b Đ Đ a b ng qua Ox . HD : M(a;b) M ( a;b) M ( a; b) 3 Cho 2 đường thẳng (a) : x 2 = 0 , (b) : y + 1 = 0 và điểm M( 1;2) . Tìm : M M M . HD : M( 1;2) M (5;2) I I I I I I − − ′′ ′ ′ ′ ′′ ′′ ′′ → → ′  = − ′ →  ′ =  Đ Đ a b Đ Đ a b tđ(m;y) tđ( M (5; 4) [ vẽ hình ] . 4 Cho 2 đường thẳng (a) : x m = 0 (m > 0) , (b) : y + n = 0 (n > 0). Tìm M : M(x;y) M (x ;y ) M (x ;y ). x 2m x HD : M(x;y) M y y I I − − ′′  = − ′′ →  ′′ = − −  − ′ ′ − ∩ → − → − − − 2m x; n) x 2m x M y 2n y 5 Cho điểm M( 1;2) và đường thẳng (a) : x + 2y + 2 = 0 . HD : (d) : 2x y + 4 = 0 , H = d a H( 2;0) , H là trung điểm của MM M ( 3; 2) 6 Cho điểm M( 4; ′ ⇒ = − ′ ∆ − − ∆ ∆ − ≠g a a 1) và đường thẳng (a) : x + y = 0 . M = Đ (M) ( 1;4) 7 Cho 2 đường thẳng ( ) : 4x y + 9 = 0 , (a) : x y + 3 = 0 . Tìm ảnh = Đ ( ) . HD : 4 1 Vì 1 ⇒ ∆ → = ∆ ∩ → − − ′ ′ − ∈∆ → ∋ ⊥ → + − = → → = = ′ ′ ∆ ≡ − g g a cắt a K a K( 2;1) 1 M( 1;5) d M, a d : x y 4 0 H(1/ 2;7/ 2): tđiểm của MM M Đ (M) (2;2) KM : x 4y + 6 = 0 ∩ − ′ ≡ ∈ − − ′ ≡ + g g g a a a 8 Tìm b = Đ (Ox) với đường thẳng (a) : x + 3y + 3 = 0 . HD : a Ox = K( 3;0) . 3 9 M O(0;0) Ox : M = Đ (M) = ( ; ) . 5 5 b KM : 3x + 4y 9 = 0 . 9 Tìm b = Đ (Ox) với đườ −ng thẳng (a) : x + 3y 3 = 0 . GV: Nguyễn Cảnh Chiến 9 Trường THPT Thanh Chương 1 Chun Đề Về Phép Biến Hình ∩ ≡ ∈  ∆ → ∆ − =  ⊥  ∩ ∆ → → ≡ − g g g g g HD : a Ox = K(3;0) . P O(0;0) Ox . + Qua O(0;0) :3x y 0 + a 3 9 3 9 E = a E( ; ) là trung điểm OQ Q( ; ) . 10 10 5 5 b KQ : 3x + 4y 9 = 0 . 1 − ∩ → ∈ ⇒ − g g Ox Ox 0 Tìm b = Đ (a) với đường thẳng (a) : x + 3y 3 = 0 . Giải : Cách 1: Dùng biểu thức toạ độ (rất hay) Cách 2 : K= a Ox K(3;0) P(0;1) a Q = Đ (P) = (0; 1) ≡ − − g b KQ : x 3y 3 = 0 . ′ ∆ − − − ∆ ∆ ∆ ′ ′ ′ ′ ′ ′ ∈∆ → ∈∆ ⇒ ∆ ≡ ′ ′ ′ ′ ′ ∈∆ → ∈∆ ⇒ ∆ ∆ ∆ ∋ a 11 Cho 2 đường thẳng ( ) : x 2y + 2 = 0 , (a) : x 2y 3 = 0 . Tìm ảnh = Đ ( ) . PP : / /a Cách 1 : Tìm A,B A ,B A B Cách 2 : Tìm A A / / , A ′ ∈∆ → = = − ′ ′ ′ ′ ∆ ∋ ∆ ∆ ⇒ ∆ − − = ′ + − = − ′ − + = g g a 2 2 a 2 2 Giải : A(0;1) A Đ (A) (2; 3) A , / / : x 2y 8 0 12 Cho đường tròn (C) : (x+3) (y 2) 1 , đường thẳng (a) : 3x y + 1= 0 . Tìm (C ) = Đ [(C)] HD : (C ) : (x 3) y 1 . ∆ − ∆ ∆ ∆ = ∆ Ox 13 Trong mpOxy cho ABC : A( 1;6),B(0;1) và C(1;6) . Khẳng đònh nào sau đây sai ? A. ABC cân ở B B. ABC có 1 trục đối xứng C. ABC Đ ( ABC) Oy D. Trọng tâm : G = Đ (G) HD : Chọn D − ∆ − + + = ∆ − ′ 2 2 14 Trong mpOxy cho điểm M( 3;2), đường thẳng ( ) : x + 3y 8 = 0, đường tròn (C) : (x+3) (y 2) 4. Tìm ảnh của M, ( ) và (C) qua phép đối xứng trục (a) : x 2y + 2 = 0 . Giải : Gọi M , ′ ′ ∆ ∆  − ′  ⊥  ⊥ → + ∋ − ⇒ ⇒ + g g ( ) và (C ) là ảnh của M, ( ) và (C) qua phép đối xứng trục a . Qua M( 3;2) a) Tìm ảnh M : Gọi đường thẳng (d) : a + (d) (a) (d) : 2x y + m = 0 . Vì (d) M( 3;2) m = 4 (d): 2x y + 4 = 0 ′ ′ ′ ′ ′ ′  = +  ′ ∩ ⇒ − ⇒ ⇔   = +   − = − +   =− ′ ⇔ ⇔ ⇒ − −   =−   = +  ′ ∆ ≠ ⇒ ∆ − g H M M H M M M M M M 1 x (x x ) 2 + H = (d) (a) H( 2;0) H là trung điểm của M,M H 1 y (y y ) 2 1 2 ( 3 x ) x 1 2 M ( 1; 2) 1 y 2 0 (2 y ) 2 b) Tìm ảnh ( ) : 1 3 Vì ( ) cắt (a 1 2 ⇒ ∆ ∩  − ⇒ ⇔  −  ) K= ( ) (a) x + 3y 8 = 0 Toạ độ của K là nghiệm của hệ : K(2;2) x 2y + 2 = 0 ≠ ⇒ − −  −  ⊥  g g g a Lấy P K Q = Đ [P( 1;3)] = (1; 1) . ( Làm tương tự như câu a) ) Qua P( 1;3) Gọi đường thẳng (b) : a GV: Nguyễn Cảnh Chiến 10 Trường THPT Thanh Chương 1 [...]... : MI1 = −QI1 ⇔ M = ĐI (Q) 1 5 Cho ∆ABC là tam giác vuông tại A Kẻ đường cao AH Vẽ phía ngoài tam giác hai hình vuông ABDE và ACFG a) Chứng minh tập hợp 6 điểm { B,C,F,G,E,D} có một trục đối xứng b) Gọi K là trung điểm của EG Chứng minh K ở trên đường thẳng AH c) Gọi P = DE ∩ FG Chứng minh P ở trên đường thẳng AH d) Chứng minh : CD ⊥ BP, BF ⊥ CP e) Chứng minh : AH,CD,BF đồng qui HD : · ·... Hình HD : Xét phép quay Q : Kéo dài FA một đoạn AD = AF (A;90o) Vì AF = AC ⇒ AC = AD nên suy ra : Q biến B , C lần lượt thành E , D (A;90o) Đ/nghóa nên gọi trung điểm K của DE thì K= Q → o) (M)  MA ⊥ AK (1) (A;90 Trong ∆DEF , vì AK là đường trung bình nên AK // FE (2) Từ (1),(2) suy ra : AM ⊥ FE ⇒ AH là đường cao của ∆AEF 27 Cho hình vuông ABCD có cạnh bằng 2 và có các đỉnh vẽ theo chiều dương... I P,A I Q ⇒ OA = và ⊥ PQ → → 29 Cho ∆ABC có các đỉnh kí hiệu theo hướng âm Dựng về phía ngoài tam giác đó các hình vuông ABDE và BCKF Gọi P là trung điểm của AC , H là điểm đối xứng của D qua B , M là trung điểm của đoạn FHu.r uu uu ur a) Xác đònh ảnh ủa hai vectơ BA và BP trong phép quay Q (B;90o) b) Chứng minh rằng : DF ⊥ BP và DF = 2BP HD :  BA = BH (cùng bằng BD)  a) Ta có :  o (BA;BH)... phép quay Q (O;90o) HD : w Q (A) = D , Q (M) = M′ là trung điểm của AD (O;90o) (O;90o) Q (N) = N′ là trung điểm của OD Do đó : Q (∆AMN) = ∆DM′N′ (O;90o) (O;90o) 18 [ CB-1.15 ] Cho hình lục giác đều ABCDEF , O là tâm đường tròn ngoại tiếp của nó Tìm ảnh của ∆OAB qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O , góc 60o và phép uu ur tònh tiến TOE HD : uu ur Gọi F = TOE oQ wQ... (O;60o) (O) = O,Q (A) = B,Q (B) = C (O;60o) (O;60o) (O;60o) uu ur uu ur uu ur w TOE (O) = E,TOE (B) = O,TOE (C) = D w Vậy : F(O) = E , F(A) = O , F(B) = D ⇒ F(∆OAB) = ∆EOD 19 Cho hình lục giác đều ABCDEF theo chiều dương , O là tâm đường tròn ngoại tiếp của nó I là trung điểm của AB a) Tìm ảnh của ∆AIF qua phép quay Q (O ; 120o) b) Tìm ảnh của ∆AOF qua phép quay Q (E ; 60o) HD : a) w Q biến F,A,B... 1;3) , B thành B′(2;6) , C thành C′(4;7) Khẳng đònh nào sau đây đúng ? A) f là phép quay Q 3 B) f là phép đối xứng tâm I( − 1; ) 2 D) f là phép đối xứng trục (O;90o) r C) f là phép tònh tiến theo vectơ u = (2;3) ĐS : C) Vấn đề 7 : PHÉP VỊ TỰ A KIẾN THỨC CƠ BẢN 1 ĐN : Cho điểm I cố đinh và một số k ≠ 0 Phép vò tự tâm I tỉ số k uu ur uu ur k Kí hiệu : VI , là phép biến hình biến mỗi điểm M thành . trong phép tònh tiến theo vectơ JB ′ r 2 14 Trong hệ trục toạ độ Oxy , cho parabol (P) : y = ax . Gọi T là phép tònh tiến theo vectơ u = (m,n) và (P ) là. .Khi đó : T (M) M MM u u u Phép tònh tiến hoàn toàn được xác đònh khi biết vectơ tònh tiến của nó . Nếu T (M) M , M thì T là phép đồng nhất . o o 2 Biểu

Ngày đăng: 15/09/2013, 13:10

TỪ KHÓA LIÊN QUAN

w