Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 26 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
26
Dung lượng
622 KB
Nội dung
Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đơng PHỊNG GD & ĐT HUYỆN LẬP THẠCH TRƯỜNG THCS THÁI HÒA BÁO CÁO CHUYÊN ĐỀ: ỨNG DỤNG ĐỒNG DƯ THỨC VÀO GIẢI MỘT SỐ DẠNG TOÁN CHIA HẾT Thời lượng: 30 tiết (lớp 6, 7) Người thực hiện: LÊ QUANG ĐÔNG Chức vụ: Giáo viên Đơn vị:Trường THCS Thái Hòa – Lập Thạch – Vĩnh Phúc Ứng dụng Đồng dư thức vào giải tốn chia hết Người thực hiện: Lê Quang Đơng PHẦN I: MỞ ĐẦU I Lý chọn chuyên đề: Như biết tốn học mơn khoa học bản, toán học xuất đời sống hàng ngày, tác dụng toán học rộng lớn, từ việc nhỏ việc tính tiền mua hàng, hay việc lớn để thiết kế nên ngơi nhà cao tầng, cơng trình xây dựng tất phải dựa vào toán học Ngay từ học bậc học Mầm non em quen với số 1, 2, 3, Đến học lên Tiểu học Trung học sở mơn Tốn xác định môn công cụ, quan trọng học sinh Trong chương trình Tốn bậc THCS, cụ thể lớp số học nội dung kiến thức vô quan trọng tảng giúp em khám phá nhiều nội dung khác Toán học Trong nhiều năm làm công tác giảng dạy bồi dưỡng học sinh giỏi thân nhận thấy để việc học nội dung phần Số học tốt, cụ thể chuyên đề chia hết, tìm chữ số tận hay chuyên đề số phương, tốt việc ứng dụng Đồng dư thức cách hợp lý cho lời giải hay ngắn gọn, học sinh dễ nắm bắt kiến thức Nhưng nội dung lại không đề cập chương trình mơn Tốn THCS Chính lý mà mạnh dạn giới thiệu tới đồng nghiệp chuyên đề “ Ứng dụng Đồng dư thức vào giải số dạng toán số học” Với mục đích giúp em học sinh có thêm cách tiếp cận số dạng toán II Mục đích, phạm vi, đối tượng chuyên đề: Mục đích chuyên đề: - Giới thiệu tới em HS khái niệm, tính chất đồng dư thức - Rèn kỹ giải tốn có liên quan đến đồng dư thức Từ áp dụng vào trình học tập, nghiên cứu nhằm đạt kết cao kỳ thi HSG Phạm vi nghiên cứu chun đề: - Chương trình mơn Toán cấp THCS Đối tượng chuyên đề: Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông - Áp dụng cho học sinh khá, giỏi cấp THCS Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông PHẦN II: NỘI DUNG I Cơ sở lí luận Số học nội dung kiến thức quan trọng chương trình Tốn cấp THCS Từ phép tính cộng, trừ, nhân, chia đơn giản số đến tốn đòi hỏi tư cao dạng toán cấu tạo số, tốn số ngun tố, số phương, toán chia hết,…thường dành cho đối tượng học sinh khá, giỏi nội dung kiến thức giúp tìm lời giải số dạng tốn sử dụng kiến thức Đồng dư thức Đây nội dung không đề cập chương trình khóa lại cần thiết việc Bồi dưỡng HSG, nên đòi hỏi giáo viên phải tìm hiểu nghiên cứu tìm nội dung cần thiết để giúp học sinh tiếp thu vận dụng cách phù hợp suốt q trình học Từ áp dụng vào giải dạng tốn có liên quan đồng thời phát triển tư tốn học Để vận dụng vào mơn học khác đời sống hàng ngày II Cơ sở thực tiễn Qua thực tế giảng dạy chủ yếu bồi dưỡng học sinh giỏi mơn Tốn lớp 6, trường THCS, tơi nhận thấy nhiều học sinh lúng túng cách tìm lời giải gặp phải tốn chia hết, tìm chữ số tận cùng, số phương, …mặc dù khơng phải tốn q khó, hay tốn áp dụng kiến thức Đồng dư thức vào cho ta lời giải hay ngắn gọn, có toán ta áp dụng kiến thức lớp giải được, sử dụng Đồng dư thức vào giải phù hợp với khả tư học sinh lớp lớp Từ sở lý luận sở thục tiễn mà chọn chuyên đề: “ Ứng dụng Đồng dư thức vào giải số dạng toán số học” III NỘI DUNG Kiến thức 1.1 Định nghĩa: - Nếu hai số nguyên a b chia cho c (c 0) mà có số dư ta nói a đồng dư với b theo mơđun c; kí hiệu a b (mod c) - Như vậy: a b (mod c) � a – b chia hết cho c Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đơng - Hệ thức có dạng: a b (mod c) gọi đồng dư thức, a gọi vế trái đồng dư thức, b gọi vế phải c gọi mơđun 1.2 Một số tính chất: Với a; b; c; d; m; … số nguyên dương (Z+), ta ln có: 1.2.1 Tính chất 1: + a a (mod m) + a b (mod m) b a (mod m) + a b (mod m) b c (mod m) a c(mod m) 1.2.2 Tính chất 2: Nếu a b (mod m) c d (mod m) thì: + a c b d (mod m) + ac bc (mod m).( c>0) + ac bd (mod m) + an bn (mod m) + (a+b)n bn (mod a) + an +bn ( a+b) (mod m).( n số lẻ) + Nếu d ước chung a; b; m thì: a b m (mod ); d d d 1.2.3 Tính chất 3: + Nếu a b (mod m) c Z+ ac bc (mod mc) 1.3 Một số kiến thức liên quan: Trong làm tập sử dụng đồng dư thức, ta nên ý tới tính chất hay dùng sau đây: + Với a, b Z+ (a b) n số tự nhiên: an – bn Ma – b + Trong n số nguyên liên tiếp (n 1) có số chia hết cho n + Lấy n + số nguyên (n 1) đem chia cho n phải có hai số chia cho n có số dư; (Theo ngun lí Đirichlet) + Tìm m chữ số tận số A tìm số dư chia A cho 10m Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông ỨNG DỤNG ĐỒNG DƯ THỨC VÀO GIẢI TOÁN 2.1 DẠNG 1: CHỨNG MINH CHIA HẾT Bài 1: Chứng minh rằng: A = 7.52n +12.6n chia hết cho 19 Lời giải Cách 1: Thêm bớt 7.6n, ta A = 7.25n - 7.6n +19.6n = 7.(25n - 6n) +19.6n Vậy AM19 Ta có: A = 7.25n +12.6n Vì 25n 6n (mod19) => A 7.6n +12.6n (mod19) => A 19.6n (mod19) => A (mod19) Đối với số toán lớp ta sử dụng đến đẳng thức: a n b n Ma b với n �N a n b n Ma b với ( n �N ; n lẻ) ta giải cách dễ dàng, nhiên với học sinh lớp chưa thể sử dụng đẳng thức Vì vậy, ta sử dụng Đồng dư thức để có lời giải phù hợp với trình độ học sinh lớp Bài 2: ( Sách Phát triển toán tập 1).Chứng minh rằng: a) A = 22225555 + 55552222 chia hết cho b) B 19611962 19631964 19651966 chia hết cho Lời giải Cách 1: 2222 2222 5555 5555 5555 2222 a) Ta có A 5555 2222 2222 2222 Mà 5555 M 5555 � 55552222 42222 M7 5555 5555 Tương tự: 2222 M7 45555 42222 45 1111 42 1111 M 45 42 � 45555 42222 M7 Vậy A = 22225555 + 55552222 chia hết cho Ứng dụng Đồng dư thức vào giải tốn chia hết Người thực hiện: Lê Quang Đơng b) B 19611962 19631964 19651966 2M7 Sử dụng tính chất: a b chia cho a có số dư b n Ta có B (1960 1)1962 (1960 3)1964 (1965 2)1966 B (7m 1)1962 (7 n 3)1964 (7 p 2)1966 B 7q 31964 21966 B 7q 9.27 654 2.23.655 B 7r B 7r 14M7 Cách 2: a) Xét số dư 22225555 chia cho Ta có: 2222 (mod 7) (1) => 22224 34 (mod 7) => 22224 81 (mod 7) Mà 81 (mod 7) => 22224 (mod 7) (2) Nhân vế với vế (1) (2) ta 22225 3.4 (mod 7) => 22225 (mod 7) =>22225555 51111 (mod 7) + Tương tự: 55552222 21111 (mod 7) (3) (4) Cộng vế với vế (3) (4) ta có: A 21111 + 51111 (mod 7) (5) Mặt khác: 21111 + 51111 (2 + 5) (mod 7) (mod 7) ( Tính chất 2) Từ (5) (6) ta được: A (mod 7) Vậy: A = 22225555 + 55552222 chia hết cho b) Ta có: Ta có: 1961 (mod 7) => 19611962 (mod 7) Tương tự: 19631964 �31964 mod �9 33 654 mod �9.27654 mod �2 mod (6) Ứng dụng Đồng dư thức vào giải toán chia hết 19651966 � 2 1966 Người thực hiện: Lê Quang Đông mod �2 23 mod �2.8655 mod �2 mod 655 � B 2 mod mod Vậy: B 19611962 19631964 19651966 2M7 Bài 3: Chứng minh rằng: Với số tự nhiên n số B = 42n+1 + 3n+2 chia hết cho 13 Lời giải Cách 1: Ta có: B 4.16n 9.3n 4.16n 9.3n 4.3n 4.3n 4.(16n 3n ) 13.3n � 16n 3n M 13 � BM 13 Vì � n 13.3 M 13 � Cách 2: Với toán ta sử dụng kỹ thuật thêm bớt để chứng minh, học sinh lớp chưa học kỹ thuật Nên ta sử dụng Đồng dư thức để chứng minh + Ta xét số dư 42n+1 chia cho 13 Ta có: 42 = 16 (mod 13) => 42n 3n (mod 13) => 42n+1 4.3n (mod 13) Hay 42n+1 4.3n (mod 13) (1) + Ta xét số dư 3n+2 chia cho 13 Ta có: 32 = - 4(mod 13) Mà 3n 3n (mod 13) => 32.3n - 4.3n (mod 13) => 3n+2 - 4.3n (mod 13) (2) Từ (1) (2), cộng vế với vế, ta B (mod 13) Vậy B = 42n+1 + 3n+2 chia hết cho 13 với n N Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông Bài 4: Chứng minh với n N a) A = 52n+1 + 2n+4 + 2n+1 chia hết cho 23 b) B = 11n+2 + 122n+1 chia hết cho 133 Lời giải Cách 1: a) Ta có: A 5.25n 16.2n 2.2 n 5.25n 18.2n 25n 2n 23.2 n 25n 2n M23 � � AM23 Vì � n 23.2 M23 � n n n n n b) B 121.11 12.144 12 144 11 133.11 Từ ta có BM133 Cách 2: a) A = 52n+1 + 2n+4 + 2n+1 chia hết cho 23 Ta có: A = 25n + 2n.16 + 2n.2 Vì 5.25n 5.2n (mod23) => A 5.2n + 2n.16 + 2n.2 (mod23) 23.2n (mod23) (mod23) Vậy A = 52n+1 + 2n+4 + 2n+1 chia hết cho 23 b) B = 11n+2 + 122n+1 chia hết cho 133 Tương tự câu a) ta có: B 121.11n + 12.144n (mod133) 121.11n + 12.11n (mod133) 0(mod133) Vây B = 11n+2 + 122n+1 chia hết cho 133 Bài 5: ( lớp 8) Chứng minh với số nguyên n > 1: A = nn – n2 + n – chia hết cho đa thức B = (n – 1)2 Lời giải Ta có: Với n = A = 1, B = 1, rõ ràng A chia hết cho B Với n > 2, ta biến đổi A sau: Ứng dụng Đồng dư thức vào giải toán chia hết A = nn – n2 + n – Người thực hiện: Lê Quang Đông = n2(nn-2 - 1) + (n - 1) = n2(n - 1)(nn-3 + nn-4 + …+ 1) + (n - 1) = (n – 1)(nn-1 + nn – + … + n2 + 1) Mặt khác: n (mod n – 1) nk (mod n – 1), kN Từ đó: nn-1 + nn-2 + … + n2 n – (mod n – 1) Nên: nn-1 + nn – + … + n2 + n – (mod n – 1) => nn-1 + nn – + … + n2 + (mod n – 1) (1) => (n – 1)(nn-1 + nn – + … + n2 + 1) (mod (n – 1)2) => A = (n – 1)(nn-1 + nn – + … + n2 + 1) chia hết cho (n – 1)2 Vậy: A = nn – n2 + n – chia hết cho đa thức B = (n – 1)2 Với số toán có luỹ thừa tầng sử dụng Đồng dư thức giúp cho học sinh có cách giải tổng qt cho dạng tốn Chẳng hạn Bài 6: Chứng minh rằng: a ) A 22 5M7 n �0 2n 2004n b) A 19242003 c) A 32 n1 n1 23 1920M 124 n 5M22 n 2n d) A = 22 10M 13 Lời giải a) Vì �1 mod Nên ta tìm số dư 22 n cho 2n n 2n Thật vậy: �1 mod 3 � 3k k 1 k => A 2.8 � mod �0 mod => A 22 5M7 n �0 2n b) Ta có 124 = 4.31 Dễ thấy BM4 Ta chứng minh AM31 � 1924 �2 mod 31 � 2004n nên B �22003 mod 31 1920 �2 mod 31 � Vì � Vì 32 �1 mod 31 10 Ứng dụng Đồng dư thức vào giải tốn chia hết Người thực hiện: Lê Quang Đơng 2.2 DẠNG 2: TÌM SỐ TỰ NHIÊN TRONG PHÉP CHIA Bài 1: Tìm số dư phép chia số A = 19932014 cho Lời giải Cách 1: Nếu thêm bớt vào số 19932014 ta có lời giải tốn cách dễ dàng: A= 19932014-1+1 Vì A = 19932014 1M1992 � 19932014 1M3 Suy A chia cho dư Cách 2: Ta có: 1993 (mod 3) => 19932014 12014 (mod 3) (mod 3) Vậy số 19932014 chia cho dư Bài 2: Tìm số dư A = 776776 + 777777 +778778 chia cho cho Lời giải Cách 1: Ta có: A 776776 2776 777777 778778 2776 776776 2776 M3 Vì 777777 M3 nên ta phải tìm số dự chia 2776 cho 778778 1M3 776 775 775 Thật vậy: 2.2 1 775 Vì 1 3M3 nên A chia dư Tương tự: A chia dư Cách 2: + Trường hợp 1: Tìm số dư A = 776776 + 777777 +778778 chia cho Ta có: 776 (mod 3) => 776776 2776 (mod 3) 4338 (mod 3) 1338 (mod 3) (mod 3) Tương tự: 777777 (mod 3) 778778 1(mod 3) => A = 776776 + 777777 +778778 1+0+1(mod 3) (mod 3) Vậy A = 776776 + 777777 +778778 chia cho dư 12 Ứng dụng Đồng dư thức vào giải tốn chia hết Người thực hiện: Lê Quang Đơng + Trường hợp 2: Tìm số dư A = 776776 + 777777 +778778 chia cho Ta có: 776 (mod 5) => 776776 1776 (mod 5) 1(mod 5) Ta có : 777 (mod 5) 777777 2777(mod 5) (24)194.2(mod 5) 16194.2(mod 5)2(mod 5) 778778 3(mod 5) => A = 776776 + 777777 +778778 1+2+3(mod 5) (mod 5) Vậy A = 776776 + 777777 +778778 chia cho dư Bài 3: Tìm số tự nhiên nhỏ chia cho dư 1, chia cho dư Lời giải Cách 1: Gọi n số tự nhiên chia dư chia dư Vì n khơng chia hết cho 35 nên n = 35k + r ( k, r �N, r < 35) Trong r chia dư 1, chia dư Số nhỏ 35 chia dư chia dư 5; 12; 19; 26; 33 Trong số có 26 số chia cho dư Vậy r = 26 Cách 2: Ta có: n 1M5 n 10M5 n 9M5 � � � �� �� � n 9M35 � n 5M7 � n 14M7 � n 9M7 � Số n nhỏ có tính chất n = 26 Cách 3: Gọi số tự nhiên cần tìm A, ta có: A (mod 5); A (mod 7) Từ A (mod 7) => A = 7k+5 ( k � N) (1) => 7k+5 (mod 5) => 2k (mod 5) => 2k+4 1+4(mod 5) => 2k + 0(mod 5) => k + 0(mod5) => k = 5m -2 ( m �N) (2) Thay (2) vào (1), ta được: A = 7(5m-2)+5 = 35m - => A -9 (mod 35) 26 (mod 35) Vậy số A =26 13 Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông Nhận xét: Nếu sử dụng Đồng dư thức cho loại tốn ta giải tốn có nhiều số chia hơn, số chia có giá trị lớn cách dễ dàng hơn, đồng thời ta có cách giải rõ ràng cho dạng tốn Bài 4: Tìm số tự nhiên n có bốn chữ số cho chia n cho 131 dư 112, chia n cho 132 dư 98 Lời giải Cách 1: Ta có 131x+112 = 132y+98 => 131x = 131y +y-14 =>y - 14 M131 => y = 131k + 14 k �N => n = 132(131k+14)+98 = 132.131k+1946 Vì n có chữ số nên n = 1946 Cách 2: Từ 131x = 131y + y -14 => 131(x-y) = y-14 Nếu x > y y- 14 �131 => y �145 => n có nhiều chữ số Do x = y, suy n = 1946 Cách 3: Ta có n = 131x+112 nên 132n = 132.131x +132.112 (1) Mặt khác n = 132y + 98 131n = 131.132y + 131.98 (2) Từ (1) (2) suy ra: 132n -131n = 131.132(x –y) + 1946 => n =1946 Cách 4: Gọi số tự nhiên cần tìm n, ta có n 112(mod 131); n 98 (mod 132) Từ n 98 (mod132) => n = 132k+98 (k �N) (1) => 132k+98 112 (mod 131) => k + 98 + 33 112+33(mod 131) => k 14(mod 131) => k = 131m +14 ( m � N) (2) Thay (2) vào (1), ta được: n = 132(131m + 14) + 98 = 131.132m +1946 Vậy n = 1946 14 Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông Bài 5: Một số tự nhiên chia dư 3, chia 17 dư 9, chia 19 dư 13 Hỏi số chia 1292 dư Lời giải Cách 1: Gọi số tự nhiên cần tìm n ( n �N ) Vì BCNN(4;17;19)=1292 nên n = 1292k+r ( k , r �N ; r 1292 ) Các số nhỏ 1292 chia cho 19 dư 13 là: 13; 32; 1248; 1267 Trong số số chia cho dư chia cho 17 dư số 1267 Nhận xét: Trong cách giải tốn việc thử loại nhiều thời gian số chia lớn để giải toán ta gặp nhiều khó khăn Cách 2: Gọi số tự nhiên cần tìm A, ta có: A (mod 4); A (mod 17); A 13 (mod 19) Từ A 13 (mod 19) => A = 19k+13 ( k thuộc N) (1) => 19k+13 (mod 17) => 19k + 13+8 +8(mod 17) => 2k + 0(mod 17) => k + 0(mod 17) => k = 17m -2 ( m thuộc N) (2) Thay (2) vào (1), ta được: A = 19(17m-2)+13 = 323m-25 (3) Mặt khác: A (mod 4) =>323m-25 (mod 4) => 324m-m-1 (mod 4) =>-m (mod 4) => m = 4n ( n thuộc N) (4) Thay (4) vào (3) => A = 1292n -25 -25 (mod 1292) 1267 (mod 1292) Vậy số A chia cho 1292 dư 1267 Bài 6: Xác định giá trị n để: a) 2n 1M9 b) 2.3n 3M11 15 Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông Lời giải � 1 mod a) Ta có 23 23 k 1 mod k Nên ta xét trường hợp sau: + n = 3k => 2n 23k 2.8k � 1 1 mod k �0 mod ( Nếu k chẵn) �7 mod ( Nếu k lẻ) (loại) + n = 3k+1=> 2n 23k 1 2.8k �2 1 1 mod k �1 mod ( Nếu k chẵn) ( loại) �6 mod ( Nếu k lẻ) ( loại) + Tương tự với n = 3k+2 ( loại) Vậy n = 3k ( với k chẵn) b) Với cách làm tương tự: Ta có 243 �1 mod11 Nên ta xét trường hợp sau: n = 5k; n = 5k + 1; n = 5k + 2; n = 5k + 3; n = 5k + ( k �N Trong trường hợp n = 5k + thoả mãn điều kiện đề Thật vậy: Xét 2.3n 2.35 k 2.81.243k �8 mod11 �0 mod11 Vậy n = 5k +4 2.3 DẠNG 3: TÌM CHỮ SỐ TẬN CÙNG Phương pháp: Tìm m chữ số tận số A tìm số dư chia A cho 10m Bài 1: Cho số A = 19942005 a Tìm số dư phép chia A chia cho b Tìm chữ số tận A c Tìm chữ số tận A Lời giải 16 Ứng dụng Đồng dư thức vào giải tốn chia hết Người thực hiện: Lê Quang Đơng a Ta có: 1994 -2 (mod 7) => A = 19942005 (-2)2005 (mod 7) [(-2)3]668.(-2) (mod 7) (-1)668.(-2) (mod 7) (-2) (mod 7) (mod 7) Vậy A = 19942005chia cho dư b Xét số dư chia A cho 10 Ta có: 1994 (mod 10) Ta xét số dư chia A cho cho Ta có : 1994 (mod 2) 1994 (mod 5) (-1) (mod 5) => 19942005 (-1)2005 (mod 5) (-1) (mod 5) (mod 5) => A (mod 10) Vậy chữ số tận A c) Bài 2: Tìm chữ số tận số: a) A = 22004 b) B = 99 Lời giải a) Ta có: A = 22004 = (210)200.24 (-1)200.24 (mod 25) 16 (mod 25) => A = 25k + 16 ( k � N) Mặt khác: AM4 => k M4 ( 25; 4) = => A = 100k + 16 Vậy chữ số tận A 16 99 b) B = 79 Ta có: 7n (mod 4) 74 (mod 25) 99 (mod 4) => 99 = 4k + ( k � N) => B = 74k+1 (mod 25) 17 Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông => B = 25k +7 => 25k +7 (mod 4) => k (mod 4) => k = 4n => B = 100n + Vậy hai chữ số tận B 07 Bài 3: Tìm chữ số tận số A = 23 Lời giải Ta có: A = 23 = 281 = 24.20 + = 2.(24)20 = 2.1620 Mà 16 (mod 10) 1620 620 (mod 10) Từ đó: 1620 (mod 10), mà (mod 10) Nên: 2.1620 6.2 (mod 10) 2.1620 (mod 10) => A chia cho 10 dư Vậy A có chữ số tận Bài 4: Tìm sáu chữ số tận số B = 521 Giải Ta có: B = 515 = 53.5 = 1255 (-3)5 (mod 26) Hay 515 13 (mod 26) 515.56 13.56 (mod 26.56) Hay là: B = 521 13.15625 (mod 106) => B 203125 (mod 106) => B chia cho 106 dư 203125 Vậy B có chữ số tận 203125 Khi học sinh nắm vững cách tìm chữ số tận ta đưa dạng tốn khác có cách giải tương tự Bài 5: Hỏi số sau số nguyên phân số: a ) A 0, 20012004 20032006 b) B 0,3 19831983 19171917 Lời giải 2004 2006 a) Ta xét A 0, 2001 2003 chia cho 10 18 Ứng dụng Đồng dư thức vào giải tốn chia hết Người thực hiện: Lê Quang Đơng 2001 Ta có 2001 �1 mod10 20032006 �32006 mod10 �91003 mod10 �91003 mod10 � 1 mod10 �9 mod10 => AM10 Vậy A số nguyên b) B 0,3 19831983 19171917 1983 1917 Tương tự ý a) Ta xét B 0,3 1983 1917 chia cho 10 1983 Ta có 1983 �31983 mod10 �3.9991 mod10 �3 1 991 mod10 �3 mod10 �7 mod10 19171917 �71917 mod10 �7.71916 mod10 �7.49958 mod10 �7 1 958 mod10 �7 mod10 => BM10 Vậy B số nguyên 2.4 DẠNG 4: ỨNG DỤNG TRONG GIẢI CÁC BÀI TỐN VỀ SỐ NGUN TỐ, SỐ CHÍNH PHƯƠNG Bài 1: Chứng minh số sau số nguyên tố a ) A 22014 b) A 2 2005 5 Lời giải a) Ta có 22 �1(mod 3) � 2014 41007 �1(mod 3) � A 22014 �0 mod 3 , mà A>3 Vậy A không số nguyên tố b) A 2 2005 5 19 Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông Ta thấy �1(mod 3) �� A ( 1)2 2005 6(mod 3) 0(mod 3) => A M Vậy A không số nguyên tố Bài 2: Số A 22 n 1 số nguyên tố hay hợp số ( n� N ) * Lời giải Với n = 1, ta có A 22 259M Từ gợi ý cho ta xét xem A chia hết cho hay khơng Vì �1 mod , nên ta xét 22 n1 chia dư Thật vậy: 22 n 1 2.4n �2 mod 3 22n 1 3k � A 23k 4.8k �0 mod Vậy A hợp số Bài 3: Chứng minh rằng: Các số có dạng A 32 n1 n �N * số nguyên tố Lời giải Với n = 1, ta có A 32 332 �1 mod11 Từ gợi ý cho ta xét xem A chia hết cho 11 hay không Ta có: 35 =243 1(mod 11) Vì 24n+1 = 2.16n 2(mod 5) => 24n+1 = 5m +2 ( m � N*) => A = 35m+2 = 9.(35)m+2 9+2(mod 11) 0(mod 11) Vậy A chia hết cho 11 nên A không số nguyên tố Bài 4: Chứng minh số sau khơng số phương a) A 19922 19932 19942 b) B 19922 19932 19942 19952 c) C 9100 94100 1994100 Lời giải 20 Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông Cách 1: Ta sử dụng tính chất số phương để chứng minh số khơng phải số phương a) Ta có: Các số 19932 ;19942 số phương khơng chia hết chia dư 1, 19922 M3 Số A chia cho dư 2, nên A khơng số phương b) Các số 19922 ;19942 số phương chẵn nên chia hết cho Các số 19932 ;19952 số phương lẻ nên chia dư Số B chia dư 2, nên B không số phương c) Tương tự ý b) ta có C chia cho dư nên C không số phương Cách 2: Nếu ta sử dụng Đồng dư thức có cách làm chung cho ý cách làm đơn giản nhiều a) A 19922 19932 19942 A �0 22 mod 3 �2 mod 3 Nên A khơng số phương b) B 19922 19932 19942 19952 B �0 22 32 mod �2 mod Nên B không số phương c) C 9100 94100 1994100 C �1 2100 2100 mod �2 mod Nên C khơng số phương Bài 5: Chứng minh số A = + 1919 + 93199 + 19931994 khơng số phương Lời giải Ta có: 19 (-1)(mod 4) 93 (mod 4) 1993 (mod 4) => A 1+3+1+1 (mod 4) (mod 4) Mà số phương chia dư Vậy A khơng số phương 21 Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông MỘT SỐ BÀI TẬP ÁP DỤNG Bài 1: Tìm số dư phép chia số A = 15325 – chia cho Bài 2: Cho số nguyên n > Tìm dư phép chia: A = 19nn + 5n2 + 1890n + 2006 cho B = n2 – 2n + Bài 5: Cho n số tự nhiên Chứng minh rằng: 3n + chia hết cho 10 3n+4 + chia hết cho 10 Bài 6: Cho n số nguyên dương Chứng minh rằng: a) A = 24n – chia hết cho 15 b) B = 25n – chia hết cho 31 c) C = 22 + chia hết cho 641 d) D = 62n + 19n – 2n+1 chia hết cho 17 e) E = 7.52n + 12.6n chia hết cho 19 f) F = 5n+2 + 26.5n + 82n+1 chia hết cho 59 Bài 7: Chứng minh rằng: Với số tự nhiên n > 0, ta ln có: 52n-1.2n+1 + 3n+1.22n-1 chia hết cho 38 Bài 8: Chứng minh rằng: a) A = 220119 + 11969 + 69220 chia hết cho 102 69 220 119 b) B = 18901930 + 19451975 + chia hết cho Bài 9: Cho n số tự nhiên Chứng minh rằng: Số M = 212n+1 + 172n+1 + 15 không chia hết cho 19 Bài 10: Chứng minh với số nguyên n > ta ln có: A = nn + 5n2 – 11n + chia hết cho (n – 1)2 Bài 11: Cho a; b số nguyên Chứng minh rằng: 2a + 11b chia hết cho 19 5a + 18b chia hết cho 19 Bài 12: Tìm chữ số tận số: A = 99 Bài 13: Tìm chữ số tận số: B = 1414 14 Bài 14: Tìm chữ số cuối số C = 1976 1976 - 19741974 19761975 + 19741973 22 Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông Bài 15: Chứng minh rằng: B = + 92n + 452n + 19452n không số phương PHẦN III - KẾT LUẬN Kết Sau nhiều năm trực tiếp đứng lớp giảng dạy bồi dưỡng HSG mơn Tốn THCS Thái Hòa qua nghiên cứu chuyên đề “Ứng dụng Đồng dư thức vào giải số dạng toán chia hết” thân tơi tích lũy thêm nhiều kiến thức phần Số học mơn Tốn Xây dựng khung chương trình dạy phần Số học cấp THCS, có phương pháp giải toán rõ ràng hơn, từ giúp HS rèn luyện kỹ năng, gây hứng thú học tập cho HS đồng nghiệp trường sử dụng để phục vụ cho công tác bồi dưỡng HSG Kết việc ứng dụng chuyên đề vào Bồi dưỡng Học sinh giỏi: Năm học 2010 – 2011 - Có 01 học sinh đạt giải Nhất mơn tốn cấp huyện - Có 02 học sinh đạt giải Nhì mơn tốn cấp huyện - Có 03 học sinh đạt giải Ba mơn tốn cấp huyện - Có 03 học sinh đạt giải KK mơn tốn cấp huyện Năm học 2011 – 2012 - Có 03 học sinh đạt giải Nhất mơn tốn cấp huyện - Có 03 học sinh đạt giải Nhì mơn tốn cấp huyện - Có 02 học sinh đạt giải Ba mơn tốn cấp huyện Năm học 2012 – 2013 - Có 01 học sinh đạt giải Nhất mơn tốn cấp huyện - Có 01 học sinh đạt giải Nhì mơn tốn cấp huyện - Có 03 học sinh đạt giải Ba mơn tốn cấp huyện Kết luận Trên nội dung đề tài mà tơi tìm hiểu suốt trình giảng dạy bồi dưỡng Học sinh giỏi lớp Trong trình thực trình bày đề tài khơng thể tránh khỏi thiếu xót Vì tơi mong nhận nhiều phê bình, đóng góp ý kiến để đề tài phong phú hoàn thiện nhằm áp dụng q trình giảng dạy góp phần nâng cao chất lượng Học sinh giỏi mơn Tốn bậc THCS Xin trân trọng cảm ơn thầy giáo, cô giáo ! Thái Hòa, ngày 17 tháng năm 2014 Người thực chuyên đề LÊ QUANG ĐÔNG 23 Ứng dụng Đồng dư thức vào giải toán chia hết 24 Người thực hiện: Lê Quang Đông Ứng dụng Đồng dư thức vào giải tốn chia hết Người thực hiện: Lê Quang Đơng TÀI LIỆU THAM KHẢO 1) Sách Nâng cao phát triển toán -7- – NXB Giáo dục Việt Nam ( Tác giả: Vũ Hữu Bình) 2) Sách Nâng cao chuyên đề đại số – NXB Giáo dục Việt Nam ( Tác giả: Bùi Văn Tuyên) 3) Các chuyên đề Số học Học sinh giỏi THCS - NXB Giáo dục Việt Nam ( Tác giả: Phạm Minh Phương) 4) Các toán phát triển Bồi dưỡng Học sinh giỏi Số học – NXB Đại học quốc gia TP Hồ Chí Minh ( Tác giả: Võ Đại Mau) 5) Toán tuổi thơ - NXB Giáo dục Việt Nam 25 Ứng dụng Đồng dư thức vào giải tốn chia hết Người thực hiện: Lê Quang Đơng MỤC LỤC Nội dung Trang A PHẦN MỞ ĐẦU Lý chọn chuyên đề Mục đích, phạm vi, đối tượng nghiên cứu B NỘI DUNG CHUYÊN ĐỀ Cơ sở lý luận 2.Cơ sở thực tiễn Phần I: Kiến thức Phần II: Ứng dụng Đồng dư thức vào giải toán Phần III: Bài tập áp dụng C KẾT LUẬN 26 20 21 ... số tận số A tìm số dư chia A cho 10m Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê Quang Đông ỨNG DỤNG ĐỒNG DƯ THỨC VÀO GIẢI TOÁN 2.1 DẠNG 1: CHỨNG MINH CHIA HẾT Bài 1: Chứng... tháng năm 2014 Người thực chuyên đề LÊ QUANG ĐÔNG 23 Ứng dụng Đồng dư thức vào giải toán chia hết 24 Người thực hiện: Lê Quang Đông Ứng dụng Đồng dư thức vào giải toán chia hết Người thực hiện: Lê... tiễn mà chọn chuyên đề: “ Ứng dụng Đồng dư thức vào giải số dạng toán số học” III NỘI DUNG Kiến thức 1.1 Định nghĩa: - Nếu hai số nguyên a b chia cho c (c 0) mà có số dư ta nói a đồng dư với b