Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
1,59 MB
Nội dung
1 Mở đầu 1.1 Lí chọn đề tài + Mơn tốn mơn học quan trọng chương trình giáo dục phổ thơng Nó chìa khóa để mở mơn học khác Đồng thời có khả phát triển tư lơgic, phát triển trí tuệ cần thiết giúp người vận dụng vào sống ngày Phần phương pháp tọa độ mặt phẳng Oxy lại thể rõ nét đặc tính + Ở lớp 10, em học sinh tiếp cận với phương pháp tọa độ mặt phẳng Thế toán mà sách giáo khoa đưa nhằm mục đích giúp học sinh bước đầu biết phương pháp tọa độ áp dụng phương pháp vào tốn đơn giản như: lập phương trình đường thẳng, đường elip, đường tròn, tốn khoảng cách góc Do đó, học sinh lúng túng gặp tốn khó đề thi THPT quốc gia đề thi học sinh giỏi + Khi gặp tốn hình học tọa độ mặt phẳng Oxy sử dụng đến tính chất hình học túy em khơng biết đâu, dựa vào đâu để suy luận tìm lời giải Nguyên nhân vấn đề phần học sinh ngại hình học phẳng nghĩ hình học phẳng khó nên “ lười’’ tư duy, phần giáo viên dạy khơng trọng khai thác hướng dẫn cho học sinh, chưa phân tích kĩ tìm lời giải cho tốn, tập minh họa đơn điệu, rời rạc, thiếu sức lôi cuốn, điều không gây hứng thú học tập sáng tạo cho em dẫn đến kết học tập học sinh nhiều hạn chế + Giải tốn hình phẳng kỳ thi THPT quốc gia thi học sinh giỏi thường phù hợp với học sinh khá, giỏi, học sinh có kiến thức vững vàng hình học phẳng THCS + Ngồi ra, học sinh trường THPT Thường Xuân học sinh miền núi, đa số em dân tộc thiểu số Với điều kiện kinh tế khó khăn trình độ dân trí thấp nên số lượng học sinh có lực học giỏi mơn tốn Vì tìm cách tiếp cận để giải vấn đề giúp học sinh học cách tự nhiên, dễ hiểu trăn trở tác giả, để học sinh khơng sợ mơn học đặc biệt có hứng thú gặp tốn dạng Từ lí chọn đề tài: “Một số giải pháp giúp học sinh khá, giỏi lớp 10 trường THPT Thường Xuân giải tốn hình học tọa độ Oxy.” 1.2 Mục đích nghiên cứu Nghiên cứu nội dung chương trình hình học lớp 10 THPT, tốn dành cho học sinh khá, giỏi từ xây dựng thao tác cần thiết để giúp học sinh sử dụng tốt phương pháp tọa độ vào giải toán tổng hợp 1.3 Đối tượng nghiên cứu Đối tượng nghiên cứu mà đề tài hướng tới là: - Xây dựng nguyên tắc xác định hệ trục tọa độ Đề tương ứng với loại hình - Hình thành cô đọng lượng kiến thức thiết yếu, tảng làm sở cho giải pháp sử dụng công cụ tọa độ - Phân dạng tập hướng dẫn cách giải - Khám phá, phân tích nhiều lời giải toán, làm rõ quan hệ hữu cơ, hỗ trợ bổ sung cho cách giải, từ hồn thiện kiến thức nắm bắt tốn cách thấu đáo có chiều sâu 1.4 Phương pháp nghiên cứu + Phương pháp nghiên cứu lý luận: nghiên cứu tài liệu, đề thi THPT quốc gia, đề thi HSG cấp, sách tham khảo liên quan đến vấn đề sử dụng phương pháp tọa độ Oxy, nghiên cứu chương trình giáo khoa môn + Phương pháp nghiên cứu thực tế: thơng qua việc dạy học phân mơn Hình học lớp 10 THPT rút số nhận xét phương pháp giúp học sinh rèn luyện kỹ giải tốn phương pháp tọa độ hóa + Phương pháp kiểm chứng sư phạm: tiến hành dạy kiểm tra khả ứng dụng học sinh nhằm minh chứng bước đầu cho khả giải mạnh mẽ phương pháp tọa độ hóa việc áp dụng phương pháp tọa độ hóa vào giải tốn Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Mục đích dạy học toán phải mang lại cho học sinh kiến thức phổ thông, kỹ người lao động, qua rèn luyện tư logic, phát triển lực sáng tạo, góp phần hình thành giới quan nhân sinh quan đắn cho em Các tốn hình học phẳng phần kiến thức đa dạng đòi hỏi kiến thức logic tổng hợp Để học tốt phần học sinh phải nắm kiến thức, kĩ hình học phẳng cấp THCS Học sinh phải thường xuyên sưu tầm tập lạ, thường xuyên làm tập để học hỏi, trau dồi phương pháp, kĩ biến đổi Thế làm điều thật không đơn giản số nguyên nhân sau: - Các tập SGK Hình học 10 phần mức độ nhận biết, thông hiểu vận dụng thấp, đề thi nằm mức độ vận dụng cao - Có q nhiều dạng tốn kèm với nhiều phương pháp, dẫn tới việc em cảm thấy lúng túng gặp dạng toán lạ Kĩ nhận biết, biến đổi quy lạ quen hạn chế - Số tiết theo PPCT chương III – Hình học 10 Do tơi ln ln có ý định tìm phương pháp để truyền dạy cho học sinh, phương pháp đơn giản dễ làm, phương pháp mà học sinh cảm thấy phấn chấn học, phương pháp giải nhiều dạng tốn khó mà em gặp phải q trình ơn luyện 2.2 Thực trạng vấn đề nghiên cứu trước áp dụng sáng kiến kinh nghiệm - Bài tốn hình học tọa độ Oxy phần khó Lượng kiến thức khai thác nhiều đa dạng, truyền đạt làm cho em thấy lan man, phương hướng chưa nói đến sau học xong em nắm phương pháp nào, kĩ Do phần người giáo viên cần phải có hệ thống tập minh hoạ cho phương pháp trọng tâm, dạng toán quan trọng Đặc biệt làm cho em phải cảm thấy tự tin Qua thực tế giảng dạy trực tiếp lớp 10, thấy dạy học sinh theo sách giáo khoa mở rộng tập lấy đề thi THPT Quốc gia năm trước, đề thi học sinh giỏi cấp tỉnh, tỉ lệ học sinh giải thấp, chí “bỏ qua” thân chưa có đào sâu suy nghĩ, cộng thêm nguyên nhân khách quan phần kiến thức khó, đòi hỏi tư cao Cụ thể năm học 2017-2018 chưa áp dụng sáng kiến vào giảng dạy Tôi cho học sinh lớp 10A1, 10A2 (2 lớp tập trung nhiều học sinh khá, giỏi khối10) giải thử số câu lấy từ nguồn tài liệu Kết sau: Lớp Tổng Giỏi Khá Trung bình Yếu,kém số HS SL TL % SL TL % SL TL % SL TL % 10A1 45 0% 13 28,9% 22 48,9% 10 22,2% 10A2 40 0% 15 37,5% 14 35% 11 27,5% Xuất phát từ thực tế đó, năm học 2018-2019 tiến hành đổi dạy nội dung lớp 10A1 10A2 (lớp 10A1 có chất lượng tương đương với lớp 10A1, lớp 10A2 có chất lượng tương đương với lớp 10A2 năm học trước) Các giải pháp sử dụng để giải vấn đề Xây dựng hệ tọa độ Xây dựng hệ tọa độ hợp lý điều cần thiết cho việc ứng dụng phương pháp tọa độ việc giải toán Đây bước giải Người giáo viên cần hướng dẫn khéo léo giúp học sinh nhận tính chất đặc biệt toán, chủ yếu sử dụng tính vng góc, để xây dựng hệ tọa độ mà tham số giảm cách tối ưu Ở đây, ta xem xét số trường hợp áp dụng tốt phương pháp Đối với tốn có sẵn góc vng như: hình vng, hình chữ nhật, tam giác vng Đối với ta chọn hệ trục tọa độ có gốc nằm đỉnh vng, có hai trục Ox Oy chứa cạnh tương ứng góc vng Và chọn đơn vị trục độ dài hai cạnh góc vuông Bằng cách chọn vậy, tham số giảm tối đa Và dạng hình dạng áp dụng thuận lợi phương pháp tọa độ mặt phẳng Đối với toán có chứa tam giác đều, tam giác cân, tam giác thường Ta xây dựng hệ trục cách dựa vào đường cao Cụ thể, ta dựng đường cao từ đỉnh (đối với tam giác cân ta nên dựng đường cao từ đỉnh cân) Chân đường cao gốc tọa độ, cạnh đáy đường cao vừa dựng nằmtrên hai trục tọa độ Đối với tốn có chứa đường tròn ta chọn gốc tọa độ nằm tâm đường tròn đơn vị hệ tọa độ bán kính đường tròn, hai trục chứa bán kính, đường kính đường tròn Tuy nhiên, áp dụng khơng cứng nhắc việc chọn hệ trục tọa độ Nên để học sinh linh hoạt tìm cách chọn tối ưu cho tốn Một số tốn có nhiều đối tượng hình học đó, tùy vào giả thuyết ta chọn hệ trục tọa độ cho phù hợp 2.3.2 Một số tính chất hình học phẳng vận dụng vào toán phương pháp tọa độ mặt phẳng Học sinh muốn giải thành thạo, giải nhanh tốn hình học tọa độ mặt phẳng Oxy kỳ thi THPT, thi học sinh giỏi cấp cần nắm vững kiến thức tính chất, tốn hình học phẳng Bài tốn 1: Cho hình vng ABCD Gọi M , N trung điểm AB BC Khi AN DM Giải: Gọi cạnh hình vng a Ta có uuuu r uuuur uuur uuur uuur uuuur AN DM AB BN DA AM uuur uuur uuur uuuur uuur uuur uuur uuuur AB DA AB AM BN DA BN AM a2 a2 0 2 Suy AN DM Chứng minh hoàn toàn tương tự ta có tốn sau Bài tốn Cho hình vuông ABCD Gọi M , N thuộc AB BC uuuur uuuu r uuur uuur cho AM kAB, BN kBC Khi AN DM Bài tốn Cho hình chữ nhật ABCD có AB a, AD a Gọi M trung điểm AD Khi AC BM Giải: Ta có uuur uuuu r uuu r uuur uuu r uuuu r AC.BM AB BC BA AM uuu r uuuu r uuur uuu r uuur uuuu r AB AB AM BC.BA BC AM a a a Suy AC BM Bài toán 4: Trong mặt phẳng với hệ tọa độ Oxy cho hình vng ABCD gọi M trung điểm cạnh BC , N điểm nằm cạnh AC cho AN AC Chứng minh DN MN Giải: Chọn hệ trục tọa độ hình vẽ Khi � a � �a 3a � D 0;0 , A 0;a , C a;0 nên M � a; � , N � ; � � � �4 � uuur uuuu r 3 DN MN a a Suy DN MN 16 16 Nhận xét: Bài toán áp dụng nhiều đề thi Việc chứng minh hình học túy sau: Gọi I giao điểm hai đường chéo AC BD Điểm F trung điểm DI Khi FNMC hình bình hành F trực tâm tam giác NDC nên CF DN mà CF / / MN Nên MN DN Bài toán 5: Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD Gọi H hình chiếu B xuống AC Biết điểm M , K trung điểm AH CD Chứng minh BM MK Giải: Chọn hệ trục tọa độ hình vẽ Khi � a� B 0;0 , A 0;a , C c;0 Tọa độ điểm K � c; � � 2� Phương trình đường thẳng AC : ax cy ac; BH : cx ay Tọa độ điểm H nghiệm hệ phương trình ax cy ac � a2c � ac � � H �2 ; � 2 � cx ay � �a c a c � � a 2c r uuuu r a 2ac � uuuu � ; � BM MK � BM MK Do điểm M � �2 a c a c � � � Nhận xét: -Ta chứng minh theo cách sau Gọi E trung điểm HB Khi tứ giác MECK hình bình hành Suy E trực tâm tam giác BMC nên BM CE mà CE / / MK Nên MK MB - Theo cách học sinh lấy thêm điểm E Nhìn tính chất tính chất đặc biệt Bài tốn 6: Trong mặt phẳng với hệ tọa độ Oxy , cho hình thang vng ABCD � � 900 CD AB Gọi H hình chiếu vng góc điểm D lên A D đường chéo AC M trung điểm HC Chứng minh BM DM Giải: Cách 1: Chọn hệ trục tọa độ hình vẽ Khi �c � C 0;0 , A 0;a , C c;0 , B � ; a � Phương trình đường thẳng �2 � AC : ax cy ac; DH : cx ay Tọa độ điểm H nghiệm hệ phương trình ax cy ac � a2c � ac � � H �2 ; � � cx ay a c a c2 � � � � a2c a 2ac ; Do điểm M � �2 a c a c � � � � � uuuu r uuuur a c a3 2ac ac ac 2a � BM DM 0 2 4 a c � DM BM Cách 2: (thuần túy hình phẳng) Gọi E trung điểm HD Khi tứ giác MEAB hình bình hành Suy BE AD nên E trực tâm tam giác ADM suy DM AE mà AE / / MB Nên MD MB Bài tốn 7: Cho hình chữ nhật ABCD có AB BC Gọi H hình chiếu vng góc A lên BD E, F trung điểm đoạn thẳng CD, BH Chứng minh EF AF (trường hợp đặc điệt toán 5) Giải: Chọn hệ trục tọa độ hình vẽ Khi D 0;0 , A 0;a , C 2a;0 , B 2a; a Phương trình đường thẳng BD : x y 0; AH : x y a Tọa độ điểm H AH �BD Tọa độ điểm H nghiệm hệ phương trình �x y �2a a � � H � ; � � 2x y a �5 � � Do điểm �6a 3a � F� ; � �5 � ; uuur �a 3a �uuur �6a 2a � EF � ; � ; AF � ; � Suy EF AF �5 � �5 � Ta chứng minh toán theo cách túy sau: Gọi E, F, I trung điểm đoạn thẳng CD, BH, AB Ta chứng minh AF EF Ta thấy tứ giác ADEI ADFI nội tiếp nên tứ giác ADEF nội tiếp, AF EF Bài toán 8: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân A Gọi D điểm cạnh AB cho AB AD H hình chiếu vng góc B CD Điểm M trung điểm HC Chứng minh MA MB Giải: Cách 1:Chọn hệ trục tọa độ hình vẽ Khi I 0;0 , A 0;a , C c;0 , B c;0 Phương trình đường thẳng DC : ax 2cy ac; BH : 2cx ay 2c Tọa độ điểm H nghiệm hệ ax 2cy ac � �a c 4c3 4ac � �H� ; phương trình � 2 � a c a c cx ay c � � � � a2c 2ac � M ; Do điểm � 2 2 � �a 4c a 4c � uuuu r uuuu r a 2c 4c3 2a 2c 2ac 2ac a � BM AM � AM BM 2 a 4c Cách 2: Gọi N , I giao điểm đường thẳng qua B vng góc với BC với đường CD, CA Do tam giác IDC vuông B AB AC nên A trung điểm IC Suy D trọng tâm tam giác IBC Do AN đường trung bình tam giác IBC Gọi E trung điểm BH , E trực tâm tam giác NBM tứ giác NAME hình bình hành nên từ NE MB � MA MB Sau xin giới thiệu số dạng toán áp dụng cụ thể phương pháp tọa độ hóa vào giải tốn hình học phẳng đề thi THPT Quốc gia, đề thi thử trường THPT nước năm trước đề thi học sinh giỏi số tỉnh 2.3.3 Một số dạng toán áp dụng phương pháp tọa độ mặt phẳng Dạng 1: Ba điểm phân biệt mối liên hệ vng góc Trong hình học tọa độ phẳng toán thường cho nhiều điểm, giả thiết toán thường xoay quanh số điểm đặc biệt Bằng cách vẽ hình xác ta đốn điểm có mối quan hệ vng góc điểm mấu chốt tốn Khi học sinh phát điều giúp cho em định hướng cách giải toán cách dễ dàng Bài 1.1.[3] (Trích đề thi học sinh giỏi mơn Tốn- Thanh hóa năm 2015-2016) Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang ABCD có � � B (2; 4), BAD ADC 900 A, C thuộc trục hoành Gọi E trung điểm đoạn AD , đường thẳng EC qua điểm F (4;1) Tìm toạ độ đỉnh A, C , D biết EC vng góc với BD điểm E có tọa độ nguyên Nhận xét: Các giả thiết toán xoay xung quanh điểm A, D, E , C Nếu vẽ hình xác học sinh dễ dự đốn EB AC Và coi chìa khóa, nút thắt tốn Xử lí nút thắt tốn giải nửa Giải: Để chứng minh EB AC gắn thêm hệ trục tọa độ khác hình vẽ ta có: � a� D 0;0 , A 0; a , E � 0; � , C c;0 � 2� Phương trình x 2y EC : � EC : ax 2cy ac 0; DB : 2cx ay 0; AB : y a c a r �a a �uuur �a � uuu B DB �AB � B � ;a �� EB � ; � ; AC c; a c c � � � � uuu r uuur EB AC � EB AC Trở lại toán ta có: Đường thẳng BE qua B 2; vng góc với Ox nên có phương trình x uuu r uuu r Gọi A(a;0), E (2; b) � D(4 a; 2b); BA(a 2; 4); EA( a 2; b); uuur uuu r BD(2 a; 2b 4) FE (6; b 1) uuu r uuu r BA EA � (a 2)2 4b (1) uuu r uuur FE BD � 6(2 a) (b 1)(2b 4) (2) Thay (2) vào (1) ta : b 6b3 13b 24b � (b 1)(b3 7b2 20b 4) � b 1 (do b nguyên) (Ta chứng minh phương trình b3 7b2 20b có nghiệm khoảng 1;0 nên khơng có nghiệm ngun) Khi A(4;0), D(0; 2) , đường thẳng CD có phương trình x y cắt Ox C(1;0) Vậy A(4;0), D(0; 2) C ( 1;0) điểm cần tìm Ta chứng minh EB AC cách sau: Qua A kẻ đường thẳng vng góc với BE, cắt BE BD I H; gọi làu Khi uuurJuu r giao uuu rđiểm uuu r uur BD uuu r với CE uuurđó uuuta r có: uuur uuur uuu r uuur EH EC ED.EC EJ EC ED EA2 EHu.u EB EA EB EI EB EA ur uuu r uuur uuur uuur uuu r uuur r uuur uuur � EH EB EH EC � EH ( EB EC ) � EH BC suy H trực tâm EBC suy A, H , C thẳng hàng Do BE AC Bài 1.2 [2] Trong mặt phẳng tọa độ Oxy , cho hình thang ABCD vuông A D , biết D 2; CD AB Gọi H hình chiếu vng góc D lên AC �22 14 � Điểm M � ; � trung điểm HC Xác định tọa độ điểm A, B, C �5 � hình thang biết B thuộc đường thẳng : x y Nhận xét: Các giả thiết toán xoay xung quanh điểm B, M , D Nếu tinh ý ta nhận thấy MB DM (Để chứng minh MB DM xem lại tốn ) Giải: Ta có BM DM Suy phương trình BM : x y 16 Tọa độ B nghiệm hệ: �x y 4 � B (4; 4) Gọi I giao điểm AC BD, � x y 16 � uur uur AB IB 10 10 � � � DI IB � I � ; � ta có CD ID 3 � � 14 18 � � Suy AC : x y 10 , DH : x y Tìm H � ; �� C(6; 2) Từ �5 � uur uu r CI IA � A(2; 4) Bài 1.3.[3] ( Trích đề thi HSG hóa năm 2014-2015) Trong mặt phẳng với hệ toạ độ Oxy cho hình chữ nhật ABCD có điểm H 1; hình chiếu vuông �2 � đường trung tuyến AK kẻ từ A ADH : x y Tìm tọa độ đỉnh hình chữ nhật ABCD � � góc A lên BD Điểm M � ;3 �là trung điểm cạnh BC , phương trình Nhận xét: - Giả thiết toán xoay quanh điểm M , K , A Bằng trực quan ta đề xuất giả thuyết AK KM giả thuyết đề “mở nút thắt đầu tiên” tìm tọa độ điểm K D Từ phương pháp giải tốn quen thuộc ta tìm tọa độ đỉnh lại hình chữ nhật (Để chứng minh AK KM xem lại tốn ) Giải: Ta có: AK KM Suy phương trình đường thẳng KM : x y 15 0 � � Do K AK �MK Toạ độ K � ; � � � Do K trung điểm HD mà H 1; nên tọa độ điểm D 0; phương trình BD : y AH qua H 1; vng góc với BD nên AH có phương trình: x Ta có : A AK �AH A 1;0 Phương trình BC là: x y 12 suy tọa độ B 5; ; C 4; Vậy tọa độ đỉnh hình chữ nhật là: A 1;0 , B 5; , C 4; , D 0; Dạng 2: Ba điểm phân biệt mối liên hệ góc 10 Bài 2.1 [1] (Trích đề thi TSĐH khối A năm 2012) Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD Gọi M trung điểm cạnh BC , N điểm 11 � � cạnh CD cho CN ND Giả sử M � ; �và đường thẳng AN có phương �2 � trình x y Tìm tọa độ điểm A Nhận xét: Dữ kiện toán xoay quanh ba điểm A, M , N đồng thời ta nhận thấy � ta xác định tọa độ điểm A ta biết giá trị góc MAN Giải: Gọi cạnh hình vng a Ta có a 10 a 5a ; AM ; MN AM AN MN � 450 cosA= � MAN Khi AM AN 11 Phương trình đường thẳng AM : ax+by- a b 2 a b � cos MAN � 3t 8t 2 5 a b AN a b ( với t ) � t 3; t 1 a b +) Với t � , chọn a 3, b suy AM có phương trình 3x y 17 2x y � � A 4;5 x y 17 � 2x y � 1 � A 1; 1 +) Với t � tọa độ A nghiệm hệ: � �x y Bài 2.2.[2] Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC vuông A Gọi M điểm cạnh AC cho AB AM Đường tròn tâm I 1; 1 đường Nên tọa độ A nghiệm hệ � kính CM cắt BM D Xác định tọa độ đỉnh ABC biết đường thẳng BC qua �4 � N � ;0 �, phương trình đường thẳng CD : x y điểm C có hồnh độ �3 � dương Nhận xét: Từ kiện cho toán ta nhận thấy phương trình đường thẳng CD cho, tọa độ điểm I 1; 1 , ta xác định góc � ACD từ ta tìm tọa độ điểm C Giả thiết toán AB AM làm ta nghĩ đến: cos � ABM AB BM 10 Bằng trực quan ta thấy � ABM � ACD , giả thiết tìm tọa độ đỉnh C Khi tọa độ đỉnh lại ta tìm 11 � MDC � 900 � Tứ giác ABCD nội tiếp nên � Giải: Ta có: BAC ABM � ACD 10 2 Giả sử phương trình: AC : a x 1 b y 1 0, a b ur uu r n1.n2 a0 a 3b � � ur uu �� r Ta có: cosMCD 4a 3b 10 n1 n2 10 a b � � cos � ABM Suy cosMCD= +) Nếu a , chọn b suy AC : y , tọa độ đỉnh C 3; 1 Do I trung điểm MC nên tọa độ M 1; 1 nên phương trình BM : 3x y ; phương trình BC : 3x y 3x y � �x 2 �� � B 2; x y �y � Tọa độ đỉnh B nghiệm hệ : � Phương trình AB : x nên tọa độ A nghiệm hệ phương trình: �x �x 2 �� � A 2; 1 � �y �y 1 +) Nếu 4a 3b , chọn a � b 4 nên phương trình AC : x y , � 3 x 3x y � � � � 11 � �� �C� ; � (Loại) tọa độ đỉnh C nghiệm hệ � �5 � �x y �y 11 � Bài 2.3.[2] Cho hình vng ABCD Điểm M thuộc đoạn BC , phương trình cạnh � � thuộc đoạn CD cho BMA AMN , điểm K 1; 2 �AN Tìm tọa độ điểm A Giải: Khơng tính tổng qt giả sử cạnh hình vng Đặt BM a Gắn hệ trục tọa độ hình vẽ ta có � 2 ; tan M a;0 ; A 0;1 ; NMC a Ta có: � tan 2 NC NC � tan a NC � NC 2a tan NMC MC a tan a 1 a 1 a uuuuu r uuur � a � � 2a � � N� 1; ; AM a ; ; AN � 1; � � �1 a � �1 a � AM : x y 0, N r Đặt u a; a 1 Ta có: 12 uuuu r uuur uuuu r r � cos MAN cos AM ; AN cos AM ; u a a a 1 a2 a a 2 � 450 � MAN r 2 Giả sử AN có véc tơ pháp tuyến n a; b , a b �0 AM có véc tơ pháp tuyến ur n1 1;3 r ur a 3b Ta có: cos45 cos n; n1 10 a b a 2b � � 4a 6ab 4b � � 2a b � Phương trình AN: x y � A 1; r 2a b a � b n Với chọn suy 1; 2 suy phương trình AN: x y � A 5;0 Nhận xét: Để giải toán theo phương pháp hình học túy khơng đơn giản Phải dựng thêm điểm chứng minh hàng loạt tính chất Dạng 3: Ba điểm phân biệt mối liên hệ khoảng cách Bài 3.1.[2] Trong mặt phẳng tọa độ Oxy, cho hình vng ABCD có A 1;3 Biết 17 � � M 4;6 thuộc cạnh BC N � ; �thuộc đường thẳng DC Tìm tọa độ đỉnh �2 � B, C , D hình vng ABCD Nhận xét: Dữ kiện toán xoay quanh ba điểm A, M , N song tọa độ điểm biết d A; BC d A; DC 2 Giải: Giả sử phương trình BC : a x b y 0; a b � 17 � � � � a �y � � � � 2� ab 3a 3b 15b 3a � �� Từ giả thiết suy ra: d A; BC d A; CD � 2 b 7a a b a b2 � a b 1 +) Nếu suy phương trình cạnh ( BC ) : x y 10 0, (CD ) : x y 0;( AB) : x y 0, ( AD) : x y Do tọa độ đỉnh : B 4;6 , C 7;3 , D 4;0 Khi phương trình: CD : b �x là: +) Nếu a 7b Chọn b 1 suy a Ta có phương trình cạnh : BC : x y 22 0, CD : x y 40 0; AD : x y 0, AB : x y 21 �7 � �97 129 � �34 138 � ,D� ; Do tọa độ đỉnh : B � ; �, C � ; � � 2 25 25 25 25 � � � � � � Bài 3.2.[2] Cho ABC vuông cân A Gọi M trung điểm BC , G trọng tâm ABM , điểm D 7; 2 điểm nằm đoạn MC cho GA GD Tìm 13 tọa độ điểm A, lập phương trình AB, biết hồnh độ A nhỏ AG có phương trình x y 13 Giải: Đặt cạnh góc vng ABC Chọn hệ trục tọa độ hình vẽ Khi �1 � A 0;0 , N 0;1 , M 1;1 , P � ; � , B 0; Phương �2 � �1 � trình đường thẳng MN : y 0; BP : 3x y � G � ;1 � �3 � x y Phương trình đường thẳng BC : � x y � D t; t 10 10 �1 � AG ; DG � t � t 3 �3 � Mà �4 �uuur �1 �uuur � 1 � uuur uuur � D� ; � ; AG � ;1� ; GD � 1; �� AG.GD � AG GD �3 � �3 � � � 3.7 2 13 d D ; AG 10 Ta có 2 1 ABM vuông cân � GA GB � GA GB GD Vậy G tâm đường tròn �� AGD � ABD 900 � GAD vng cân G Do GA GD d D; AG 10 � AD 20; Gọi A a;3a 13 ; a ngoại tiếp ABD a 5(loai ) � 2 AD 20 � a 3a 11 20 � � � A 3; 4 a � r Gọi VTPT AB nAB a; b � cos nr , nr cos NAG AB AG � Mặt khác: cos NAG NA AG a b 10 NM 1 NA NG 2 3NG 9.NG NG 2 10 2 b0 � � 6ab 8b � � 3a 4b 10 a b2 10 � +) Với b chọn a ta có AB : x 0; +) Với 3a 4b chọn a 4; b 3 ta có AB : x y 24 Từ (1) (2) � 3a b 3a b 14 Nhận thấy với AB : x y 24 4.7 2 24 d D; AB d D; AG 10 (loại) 16 Vậy AB : x Bài 3.3.[2] Trong mặt phẳng cho hình chữ nhật ABCD có điểm D 4;5 Điểm M trung điểm đoạn AD , đường thẳng CM có phương trình x y 10 Điểm B nằm đường thẳng d : x y Tìm tọa độ đỉnh A, B, C biết C có tung độ nhỏ Giải: Đặt AD 2; DC a Chọn hệ trục tọa độ hình vẽ Khi D 0;0 , C a;0 , A 0; , M 0;1 , B a;2 Phương trình đường thẳng MC : x ay a d D; MC a 2a d D; MC ; d B; MC � d B; MC a2 a2 Vì B thuộc đường thẳng d nên B b; 1 2b b2 � b 2b 10 � � 70 Trở lại tốn ta có d D; MC � b 82 82 � 17 70 � 70 123 � ; Với b � B � �loại B, D phía với CM 17 � 17 17 � Với b=2 Suy B 2; 5 thỏa mãn Gọi I tâm hình chữ nhật ta có I 3;0 c 1 � uuur uuu r � C 8c 10; c � CD.CB 14 8c 12 8c c 5 c � 143 � c l � 65 (loại tung độ điểm C nhỏ 2) � C 2;1 � A 8; 1 Vậy suy A 8; 1 ; C 2;1 ;B 2; 5 Bài3.4.[2].Trong mặt phẳng với hệ tọa độ Oxy cho hình vng ABCD Điểm 11 � � F � ;3 � trung điểm cạnh AD Đường thẳng EK có phương trình �2 � 19 x y 18 với điểm E trung điểm cạnh AB , điểm K thuộc cạnh DC KD 3KC Tìm tọa độ điểm C hình vng ABCD biết điểm E có hồnh độ nhỏ Giải: Đặt cạnh hình vng 4a Chọn hệ trục tọa độ hình vẽ Khi O 0;0 , K a;0 , C 2a;0 , E 0; 4a , F 2 a; 2a Phương trình đường thẳng EK : x y 4a 26 15 d F ; EK 10a 19 11 24 18 25 17 Suy cạnh hình vng �a 34 17 17 EF Tọa độ điểm E nghiệm hệ phương trình � x2 25 � � 11 � 5� � �x � y 3 � 58 � E � � 2; 2 � � � � � AC qua trung điểm I � x l � 2� � 17 19 x y 18 � � FE AC EF suy 10 17 �uur uur � AC : x y 29 � P AC �EK � P � ; �IC IP � C 3;8 �3 � Dạng 4: Ba điểm phân biệt mối liên hệ thẳng hàng Bài 4.1.[2].( Đề thi thử trường chuyên ĐH Vinh 2014) Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD có góc � điểm H ACD với cos = uuur uuur thỏa mãn điều kiện HB 2 HC , K giao điểm hai đường thẳng AH BD �1 4 � Cho biết H � ; �, K 0;1 điểm B có hồnh độ dương Tìm tọa độ điểm �3 � A, B, C , D Nhận xét: Bài cho tọa độ hai điểm H K ta nghĩ đến việc tìm mối liên hệ điểm A, H , K ta tìm tọa độ điểm A Khi cách lập hệ phương trình ta tìm tọa độ đỉnh B, C , D lại Giải: Từ giả thiết suy H thuộc cạnh BC BH BC Vì BH / / AD nên uuur uuur BH HK 2 � KH KA � HA HK AD KA 3 � x A xK � 2 �xH � 1 � � A 2; � � y y �y A K �H 1 � � � � tan � ACD nên AD 2CD, AC 5CD Vì ACD vng D cosACD Đặt: CD a a � AD 2a, AB a, BH a Trong tam giác vuông ABH ta có: AB BH AH � a � AB 5, BH 16 Giả sử B x; y x0, với ta có: 2 � x 2 y 2 x 3, y � � � 2 � B 3;0 1 � � � � � 80 � � x , y ktm x y � � � � � � � 3� � 3� � uuur uuur uuur uuur Mặt khác: BC BH � C 1; 2 , AD BC � D 2;0 Vậy tọa độ đỉnh hình chữ nhật : A 2; , B 3;0 , C 1; 2 , D 2;0 Bài 4.2.[2].Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trực tâm H 1; , tâm đường tròn ngoại tiếp I 3;0 trung điểm cạnh BC M 0; 3 Tìm tọa độ đỉnh tam giác ABC Nhận xét: Từ kiện toán, ta xác định tọa độ điểm A ta viết phương trình đường thẳng BC từ lấy giao điểm với đường tròn ngoại tiếp tìm tọa độ đỉnh B, C Vậy việc tìm tọa độ điểm A mấu chốt tốn Để tìm tọa độ điểm A , ta đề xuất giả thiết mối quan hệ thẳng hàng ba điểm M , G, A Từ dẫn đến việc ta phải tìm tọa độ điểm G Vậy ba điểm G, H , I có mối quanuuhệ đặcuurbiệt, mối quan hệ ur tốn quen thuộc đường thẳng Ơ-le: HG 2.GI Giải: Gọi A1 điểm đối xứng A qua tâm I ta dễ dàng chứng minh tứ giác HCA1 B hình bình hành, từ suy M trung điểm HA1 Gọi G trọng tâm tam giác ABC , suy G trọng tâm tam giác AHA1 Do uuur uur HG 2GI xH xI 7 � x G � uuu r uuuu r � 14 26 � � �7 � 3 �� � G � ; �Mặt khác: GA 2GM � ; �� A 7;10 y y 3 3 � � � � H I �y �G 3 Phương trình đường tròn ngoại tiếp ABC : x 3 y 116 Phương trình cạnh BC : x y � � x 3 y 116 � �x 7, y B , C Tọa độ nghiệm hệ phương trình : � � x 7, y 10 � �x y Vậy tọa độ A 7;10 , B 7; , C 7; 10 A 7;10 , B 7; 10 , C 7; 2.4 Một số tập khác 17 2.4.1 Một số tập có lời giải chi tiết ( Do quy định số trang SKKN nên tập đưa vào phần phụ lục) 2.4.2 Bài tập tự luyện Bài toán 1.[2] Trong hệ tọa độ Oxy, cho hình thoi ABCD cạnh AC có phương trình là: x y 31 0, hai đỉnh B, D thuộc đường thẳng d1 : x y 0, d : x y Tìm tọa độ đỉnh hình thoi biết diện tích hình thoi 75 đỉnh A có hồnh độ âm Bài toán 2.[1].Trong mặt phẳng với hệ tọa độ Oxy , cho hình thoi ABCD có tâm I 2;1 AC BD Điểm M (0; ) thuộc đường thẳng AB , điểm N 0;7 thuộc đường thẳng CD Tìm tọa độ đỉnh B biết B có hồnh độ dương Bài toán 3.[2] Trong mặt phẳng tọa độ Oxy , cho đường tròn T : x y x y điểm M (7;7) Chứng minh từ M kẻ đến T hai tiếp tuyến MA , MB với A, B tiếp điểm Tìm tọa độ tâm đường tròn nội tiếp tam giác MAB Bài toán 4.[2] Trong hệ toạ độ Oxy, cho đường thẳng d : y Gọi C đường tròn cắt d điểm B, C cho tiếp tuyến C B C cắt O Viết phương trình đường tròn C , biết tam giác OBC Bài toán 5.[2] Trong mặt phẳng với hệ tọa độ Oxy, cho hình vng ABCD Gọi M trung điểm cạnh BC , N điểm cạnh CD cho CN ND Giả 11 � � sử M � ; �và đường thẳng AN có phương trình x y Tìm tọa độ điểm �2 � A Bài toán 6.[2] Trong mặt phẳng tọa độ Oxy cho đường tròn C nội tiếp hình vng ABCD có phương trình: ( x 2) ( y 3) 10 Xác định tọa độ đỉnh hình vuông biết đường thẳng chứa cạnh AB qua điểm M (3; 2) điểm A có hồnh độ dương Bài tốn 7.[2] Cho đường tròn O tâm O , đường kính AB C điểm thay đổi đường tròn O cho tam giác ABC không cân C Gọi H chân đường cao tam giác ABC hạ từ C Hạ HE , HF vng góc với AC , BC tương ứng Các đường thẳng EF AB cắt K Gọi D giao điểm O đường tròn đường kính CH , D �C Chứng minh K , D, C thẳng hàng Bài toán 8.[2] Cho tam giác ABC , đường tròn đường kính BC cắt AB, AC E D Gọi F , H hình chiếu D E BC Gọi M giao điểm EF DG Chứng minh AM BC Bài toán 9.[2] Cho tam giác ABC vuông A vuông cân, cạnh AB AC lấy M , N cho BM CN Chứng minh đường trung trực MN qua điểm cố định 2.5 Các biện pháp tổ chức thực hiện: 2.5.1 Về thời gian: 18 Sau cho học sinh học xong phương trình đường tròn tiến hành bồi dưỡng tài liệu cho học sinh với quỹ thời gian 10 tiết học buổi học thêm, học bồi dưỡng lớp: +) Giáo viên đưa tài liệu SKKN cho học sinh để học sinh tự nghiên cứu trước +) tiết thực hành dạng tập, dạng tiết +) tiết kiểm tra đánh giá kết ( Đề kiểm tra phần phụ lục) 2.5.2 Về đối tượng giảng dạy: Học sinh lớp 10A1, 10A2 năm học 2018- 2019 Trường THPT Thường Xuân 2.6 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Như phần đặt vấn đề nêu, sáng kiến “Một số giải pháp giúp học sinh khá, giỏi lớp 10 trường THPT Thường Xn giải tốn hình học tọa độ Oxy “ phương pháp có kết hợp chặt chẽ tư đại số hình học, cách tiếp cận tìm lời giải phù hợp với yêu cầu đổi phương pháp dạy học, kích thích tính tự học, tự nghiên cứu phát vấn đề Với tinh thần đó, q trình soạn, dạy dạng tốn tơi thực theo cách phân loại từ dễ đến khó, thơng qua giải pháp tập dạng toán chọn lọc Kết thúc phần nhận thấy đạt hiệu cao, cụ thể: - Học sinh tỏ hứng thú giải toán, tập trung đào sâu suy nghĩ vấn đề, phát vấn đề hiệu hơn, nhanh - Giờ dạy tránh tính đơn điệu, nhàm chán theo lối mòn lâu - Học sinh có nhiều thay đổi tích cực phương pháp học tập tư giải toán Kết thể rõ rệt qua kiểm tra Lớp Số HS 10A1 10A2 45 47 Giỏi SL TL(%) 13.3 14,9 Khá TB Yếu SL TL(%) SL TL(%) SL TL(%) 17 37.8 20 13 28.9 19 40.4 15 31,9 12,8 Kết luận đề xuất 3.1 Kết thực đề tài Qua thời gian thực tế giảng dạy, nhận thấy chưa đưa chuyên đề vào giảng dạy, học sinh giải tập đơn giản Khơng biết phân tích tốn, đặc biệt toán đề thi học sinh giỏi tỉnh Sau học chuyên đề học sinh làm tốt tập khó, em hứng thú say mê học tập Qua khảo sát kết học tập em tăng lên rõ rệt 3.2 Kiến nghị 19 a) Để học sinh có kết cao kiểm tra, kỳ thi học sinh giỏi thầy cô cần nghiên cứu, tìm tòi xây dựng phương pháp giải toán cho học sinh dễ hiểu cách giải ngắn b) Thầy cô giáo tăng cường kiểm tra, sửa chữa sai sót cho học sinh, đồng thời động viên em em tiến c) Thầy cô giáo hướng dẫn cách tự đọc sách học sinh, động viên em học sinh giỏi đọc báo tốn, tài liệu internet, tìm hiểu thêm cách giải khác d) Thầy cô giáo tăng cường luyện cho em chuyên đề đề thi để em có nhiều thời gian tiếp cận tập dượt với dạng tốn thi, từ đạt kết học tập cao 3.3 Kiết luận Trong q trình dạy học nói chung, dạy – học Tốn nói riêng, việc giải tập; phân tích hướng giải; trả lời câu hỏi lại làm quan trọng việc hướng dẫn cho học sinh có óc phân tích – tổng hợp – khái quát phần kiến thức hết có cách học đắn cốt lõi vấn đề Chính người thầy ln phải suy nghĩ, trăn trở nhằm đáp ứng yêu cầu đổi phương pháp dạy học, nâng cao hiệu giáo dục Trên vài kinh nghiệm nhỏ trình thực việc đổi phương pháp dạy học, đề tài không tránh khỏi hạn chế Rất mong đóng góp quý báu bạn bè, đồng nghiệp Tôi xin chân thành cảm ơn XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 16 tháng năm 2019 Tơi xin cam đoan SKKN viết, không chép nội dung người khác Lê Thị Tuyên 20 ... trình hình học lớp 10 THPT, toán dành cho học sinh khá, giỏi từ xây dựng thao tác cần thiết đ giúp học sinh sử dụng tốt phương pháp tọa đ vào giải toán tổng hợp 1 .3 Đ i tượng nghiên cứu Đ i tượng... phương pháp tọa đ hóa vào giải tốn hình học phẳng đ thi THPT Quốc gia, đ thi thử trường THPT nước năm trước đ thi học sinh giỏi số tỉnh 2 .3. 3 Một số dạng toán áp dụng phương pháp tọa đ mặt phẳng... góc điểm mấu chốt toán Khi học sinh phát điều giúp cho em đ nh hướng cách giải tốn cách dễ dàng Bài 1.1. [3] (Trích đ thi học sinh giỏi mơn Tốn- Thanh hóa năm 2015-2016) Trong mặt phẳng với hệ tọa