5 đề ôn tập kiểm tra giữa học kì 1 môn toán lớp 10 với cấu trúc Bài 1: Phép toán trên các tập con của R. Bài 2: Tìm tập xác định của hàm số. Bài 3: Xác định hàm số bậc nhất. Bài 4: Mệnh đề phủ định và tính đúng sai. Bài 5: Liệt kê các phần tử của tập hợp khi biết tính chất đặc trưng. Bài 6: Bài toán tập hợp con.
Trang 1ĐỀ 1
Bài 1: Cho A = {x ∈ R : 3x − 2 < x + 4} và B = {x ∈ R : 3x + 7 < 2x + 5} Xác định các tập hợp
A ∪ B, A ∩ B, A \ B
Bài 2: Tìm tập xác định của hàm số
a) y =
√ 2x − 3
3 − x +
√
5 − x;
b) y = x
√ 2x + 5 − 3√
2 − 5x
4√
x2+ 4 ; c) y = 3x + 4 +
√
x2+ 2 (2x2+ x + 5)(|x| + 1); d) y =
√ 2x + 1 −√
3 − 4x
Bài 3: Xác định a, b để đồ thị hàm số y = ax + b
a) qua A(1; 2) và B(3; 3);
b) qua A(1; −1) và song song với trục Ox;
c) qua gốc tọa độ và vuông góc với đường thẳng δ : y = 2x;
d) đi qua điểm E(1; −2) và có hệ số góc là 0, 5
Bài 4: Lập mệnh đề phủ định và xét tính đúng sai của chúng
a) ∃x ∈ Q : 9x2− 3 = 0;
b) ∃n ∈ N : n2+ 1 chia hết cho 8;
c) ∀x ∈ R : (x − 1)2 6= x − 1;
d) ∀n ∈ N : n2 > n
Bài 5: Viết mỗi tập hợp sau bằng cách liệt kê các phần tử
a) A = {x ∈ Z : 2x3− 3x2− 5x = 0};
b) B = {n ∈ N∗ : 3 < n2 < 30};
c) C = {x : x = 3k với k ∈ Z và − 4 < x < 12};
d) D = {x ∈ Z : (x2− 2x)(2x2− 3x − 5) = 0}
Bài 6: Cho hai tập hợp A = {1; 2} và B = {1; 2; 3; 4} Tìm tất cả các tập hợp X sao cho A∪X = B
ĐỀ 2
Bài 1: Cho A = {x ∈ R : −1 < x ≤ 5} và B = {x ∈ R : 0 ≤ x < 7} Xác định các tập hợp
A ∪ B, A ∩ B, (A ∪ B) \ (A ∩ B), (A \ B) ∪ (B \ A)
Bài 2: Tìm tập xác định của hàm số
3− 3
√
x − 2 −√
7 − 3x;
Trang 2b) y = x
2−√7 − 3x (x2− 4x)√2x + 2; c) y =
√ 2x + 4 + 3√
4 − x
x2− 3x + 2 ; d) y = 2x
2− 5√9 − 2x
2 −√
x − 2 . Bài 3: Xác định a, b để đồ thị hàm số y = ax + b
a) đi qua A(2; −2) và B(0; 1);
b) qua A(1; 3) và vuông góc với d : 2x − y + 1 = 0;
c) qua M (2; 3) và song song với d : 3x − y − 2019 = 0;
d) qua M (−1; 4) và cắt trục tung tại điểm N có tung độ bằng −2
Bài 4: Cho mệnh đề P : "Với mọi số thực x, nếu x là số hữu tỉ thì 2x là số hữu tỉ"
a) Dùng kí hiệu viết P ;
b) Phủ định P và xác định tính đúng - sai của nó
Bài 5: Cho tập hợp E = {1; 2; 3; 4; 5; 6; 7; 8; 9} và các tập hợp con A = {1; 2; 3; 4}, B = {2; 4; 6; 8}
Xác định CEA, CEB, CE(A ∪ B), CEA ∩ CEB
Bài 6: Tìm tất cả các tập hợp con của tập
a) C = {∅};
b) B = {1; 2; 3};
c) A = {a; b};
d) D = {a; b; c; d}
ĐỀ 3
Bài 1: Cho A = {x ∈ R : x2 ≤ 4} và B = {x ∈ R : x < 1} Xác định các tập hợp A ∪ B, A ∩ B, A \
B, CRB
Bài 2: Tìm tập xác định của hàm số
a) y = 3x +
√
6 − x
1 +√
x + 4 ; b) y =
√
x2+ 10 −√
2x + 11
|3x − 2| − 4 ; c) y = √3
x2− 4 +√x2− 4x + 4;
d) y =√
4 − x2− x + 1
x2− 2x − 3. Bài 3: Xác định a, b để đồ thị hàm số y = ax + b
a) đi qua M (−1; 2) và N (2; 17);
b) đi qua I(−2; 52) và có hệ số góc −1, 5;
Trang 3c) cắt trục tung tại điểm E có tung độ bằng 3 và cắt trục hoành tại điểm F có hoành độ bằng 1;
d) đi qua A(2; −30) và điểm B là giao điểm của hai đường thẳng 14x + y + 2 = 0 và
y = −2x − 26
Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau và cho biết tính đúng sai của nó
A: "6 là số nguyên tố";
B: "√
3 −√
27
2
là số nguyên";
C: "∃x ∈ N, n2 + 3 chia hết cho 4";
D: "∃x ∈ N, x chia hết cho x + 1"
Bài 5: Cho A là tập hợp các số tự nhiên chẵn không lớn hơn 10, B = {n ∈ N : n ≤ 6} và
C = {n ∈ N : 4 ≤ n ≤ 10} Tìm
a) A ∩ (B ∪ C);
b) (A \ B) ∪ (A \ C) ∪ (B \ C);
Bài 6: Tìm tập hợp X sao cho {a; b} ⊂ X ⊂ {a; b; c; d}
ĐỀ 4
Bài 1: Cho ba tập hợp A = [−2; 3), B = [−3; 2019) và C = [−2020; +∞) Tính CRA, CBA, CCA,
CRB, CCB, CR(A ∩ B), CC(A ∩ B)
Bài 2: Tìm tập xác định của hàm số
a) y =√
9 − x2+√
x2− 4;
b) y = √x + 1
x + 2 − x − 3
x2+ 2x − 3; c) y = √3
2019 − x;
d) y = 3x + 4
(x − 2)√
x − 4. Bài 3: Cho hàm số bậc nhất y = ax + b Tìm a và b, biết rằng đồ thị hàm số
a) đi qua A(2; −1) và có hệ số góc bằng −2;
b) song song với đường thẳng y = 2
3x; đi qua giao điểm của hai đường thẳng y = 2x + 1
và y = 3x − 2;
c) đi qua N (4; −1) và vuông góc với đường thẳng 4x − y + 1 = 0;
d) đi qua A(2; −1) và song song với đường thẳng ON với O là gốc tọa độ và N (1; 3) Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau và cho biết tính đúng sai của mệnh đề phủ định
đó
A: "Hình thoi có hai đường chéo vuông góc với nhau";
B: "Tổng hai cạnh của một tam giác nhỏ hơn cạnh còn lại";
C: "Trong tam giác tổng ba góc không bằng 1800";
D: "Tồn tại hình thang là hình vuông"
Trang 4Bài 5: Cho ba tập hợp: E = {x ∈ N : 0 < x < 15}, A = {x ∈ E : x .2} và B = {x ∈ E : x .3} Tìm
A \ B, CE(A ∩ B), CEA ∪ CEB, CEA ∩ CEB
Bài 6: Cho hai tập hợp A = {a; b; c; d; e} và B = {a; c; e; f } Tìm tất cả các tập hợp X sao cho
X ⊂ A và X ⊂ B
ĐỀ 5
Bài 1: Cho A = {x ∈ R : x < 5} và B = {x ∈ R : −3 ≤ x ≤ 7} Xác định các tập hợp
A ∪ B, A ∩ B, A \ B, CRA
Bài 2: Tìm tập xác định của hàm số
(x + 2)√
x + 1; b) y = x
1 − x2 −√−x;
c) y =
√
x − 1 +√
4 − x (x − 2)(x − 3) ;
3
√
x2− 3x + 2 −√3
x2− 7. Bài 3: Cho hàm số bậc nhất y = ax + b Tìm a và b, biết rằng đồ thị hàm số
a) đi qua M (−1; 1) và cắt trục hoành tại điểm có hoành độ là 5;
b) đi qua N (1; 4) và song song với đường thẳng y = 2x + 1;
c) cắt đường thẳng y = 2x + 5 tại điểm có hoành độ bằng −2 và cắt đường thẳng
y = −3x + 4 tại điểm có tung độ bằng −2
Bài 4: Phát biểu mệnh đề P ⇒ Q và xét tính đúng sai của mệnh đề đó, sau đó phát biểu mệnh đề
đảo
a) P : "Tứ giác ABCD là hình thoi" và Q: "Tứ giác ABCD có AC và BD cắt nhau tại trung điểm mỗi đường";
b) P : "2 < 9" và Q: "4 < 3";
c) P : "Tam giác ABC vuông cân tại A" và Q: "Tam giác ABC có bA = 2 bB"
Bài 5: Cho ba tập hợp: A = {a; c; f }, B = {b; c; f ; g; h} và C = {b; d; f ; h}
a) Xác định A ∩ B, B ∪ C, C \ A;
b) Viết các tập hợp con của tập A \ C;
c) Chứng minh rằng A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);
d) So sánh (A ∪ B) \ (A ∩ B) và (A \ B) ∪ (B \ A)
Bài 6: Xác định tập hợp X biết {1; 3; 5} và {3; 5; 7} là các tập con của X và X là tập hợp con của
{1; 3; 5; 7; 9}