1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề khảo sát chọn đội tuyển HSG 12 môn toán năm học 2019 2020 trường THPT lê quý đôn đống đa

7 152 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 191,06 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI TRƯỜNG THPT LÊ QUÝ ĐÔN - ĐỐNG ĐA (Đề gồm 01 trang) ĐỀ KHẢO SÁT CHỌN ĐỘI TUYỂN HSG 12 MƠN: TỐN NĂM HỌC: 2019 - 2020 Thời gian làm 180 phút Câu (4 điểm) Tìm m để đồ thị hàm số y  x3  x  mx   m cắt trục hoành điểm phân biệt A, B, C cho tổng hệ số góc tiếp tuyến với đồ thị hàm số điểm A, B, C Câu (6 điểm) a Giải phương trình: sin x  cos x    sin x.cos x  sin x  cos x   x3   y   x  xy  b Giải hệ phương trình:   x  x  y   Câu (4 điểm) Cho dãy số  un  Đặt S n  2020  u1  xác định  , n  * 2019 2u  u  2u  n 1 n n 1 Tính lim Sn    u1  u2  un  Câu (4 điểm) Cho hình chóp tam giác S ABC có cạnh đáy Gọi M , N hai điểm thay đổi thuộc cạnh AB , AC cho mặt phẳng  SMN  vng góc với mặt phẳng  ABC  Đặt AM  x, AN  y a Chứng minh x  y  xy b Tìm x , y để SMN có diện tích bé nhất, lớn Câu (2 điểm) Cho a, b, c số thực dương thoả mãn a  b  c  Tìm giá trị lớn biểu thức P abc abc  3  ab  bc  ca 1  a 1  b 1  c  - HẾT Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm ĐÁP ÁN ĐỀ KHẢO SÁT CHỌN ĐỘI TUYỂN HỌC SINH GIỎI 12 CÂU Ý NỘI DUNG ĐIỂM Tìm m để đồ thị hàm số y  x3  x  mx   m cắt trục hoành điểm phân biệt A, B, C cho tổng hệ số góc tiếp tuyến với đồ thị hàm số điểm A, B, C Đồ thị hàm số cắt trục hoành điểm phân biệt phương trình x3  x  mx   m  (1) có nghiệm phân biệt 1,0 x3  x  mx   m   ( x  1)( x  x  m  2)  Phương trình (1) có nghiệm phân biệt  x  x  m   (2) có hai nghiệm phân  '   m  biệt khác    m  (*) 1   m   1,0 Gọi x1 , x2 nghiệm phương trình (2), suy tổng hệ số góc tiếp tuyến đồ thị hàm số giao điểm A, B, C là: 1,5 y '(1)  y '( x1 )  y '( x2 )  3( x1  x2 )  x1 x2  6( x1  x2 )  3m    3m Tổng HSG tiếp tuyến   3m   m  (t/m đk (*)) 0.5 ĐS: m  Giải phương trình: sin x  cos x    sin x.cos x  sin x  cos x  a 1,0    2cos x   sin 2x  2cosx -1  s inx  2cosx -1    cos2x =    sin 2x.cosx - sin2x   2cosx -1 sin x - sin2x  2cosx - 2 1,0    2cosx +1   2cosx -1   1  cosx =    s inx + cosx   2sinx.cosx - = + (1)  x   + (2)  x      2cosx -1 sin 2x - s inx +2  0.5  2  k 2 0.5  k  x    k 2 , Kết luận phương trình có họ nghiệm : ……… b  x3   y   x  xy  Giải hệ phương trình:   x  x  y  2  x  x   x  y   Viết lại hệ:   x  x  x  y  2 1,0 Đặt u  x  x, v  x  y Dễ có: u  1 u.v  Hệ trở thành:  u  v  2 0.5 u  1 Suy ra:   v  1 0.5  x  x  1 Ta có   x  y  1 0.5  x  1  y  0.5 Cho dãy số  un  2020  u1  xác định bởi:  , n  * 2019 2u  u  2u  n 1 n n Đặt S n  1 Tính: lim Sn    u1  u2  un  Ta chứng minh un  1, n  * (1) phương pháp qui nạp toán học Với n  1, u1  2020   (1) với n  2019 Giả sử (1) với n  k (k  1) ta có uk  1 gtqn  Ta phải chứng minh (1) với n  k  tức phải chứng minh uk 1  Thật uk 1   uk2  2uk u  2(uk  1) uk2 1  k     uk 1    uk 1  2 2 Theo ngun lý qui nạp tốn học ta có un  1, n  * Mặt khác un 1  un  un2  un  0, n  * dãy số un  nên dãy số  un  dãy số tăng 1,0 Với k  N*, ta có : 2uk 1  uk (uk  2)   (u  2)  uk 1 1   k     uk (uk  2) uk 1 uk (uk  2) uk 1 uk uk  uk 1 1,0 1 1    Sn   uk  uk uk 1 u1 un 1 Ta chứng minh dãy số  un  dãy số không bị chặn Giả sử phản chứng dãy số (un) bị chặn Do dãy số  un  dãy tăng (cmt) nên ta có dãy  un  tăng bị chặn dãy số  un  có giới hạn hữu hạn Giả sử lim  un   a Vì un  Nên ta có a  Từ định nghĩa 2un 1  un2  2un Chuyển qua giới hạn ta có: 1,0  2a = a2 + 2a  a = Mâu thuẫn với a ≥1 Vậy giả sử sai, suy dãy  un  không bị chặn  un  dãy tăng nên lim  un     lim 1 1 2019   lim S n  lim (  )  un u1 un 1 u1 2020 1,0 S M B A O H N C Chứng minh x  y  xy Kẻ SO  MN , O  MN  SMN    ABC   SO   ABC  a Do hình chóp S ABC hình chóp nên O tâm đương tròn ngoại tiếp tam giác ABC Gọi H trung điểm BC Và O trọng tâm tam giác ABC 1,0     AB  AC     Ta có AB  AC  AH  AM  AN  AH  AM  AN  AO AM AN x y Vì  M  AB, N  AC  1,0    x AM  y AN  xy AO Do M , N , O thẳng hàng nên x  y  xy (đpcm) 1 SO.MN  SSMN nhỏ MN nhỏ SSMN  SO.MN  SSMN 2 lớn MN lớn S SMN  2 Ta có MN  x  y  xy.cos600  x  y  xy   x  y   xy   xy   xy 1,0 Từ giả thiết ta có  x; y  Từ (1) ta có xy  x  y  xy  xy   x  1 y  1   xy   x  y  xy   xy  xy  0.5 4 1 Đặt t = xy, t   ;   MN  9t  3t 9 2 4 1 Lập bảng biến thiên hàm số f  t   9t  3t ; t   ;  ta 9 2 MN nhỏ t  x  y  x    x  MN lớn t    y    y 1 0,5 Cho a, b, c số thực dương thoả mãn a  b  c  Chứng minh rằng: abc abc  3 1  ab  bc  ca 1  a 1  b 1  c  Đặt : P  abc abc  3  ab  bc  ca 1  a 1  b 1  c  0.5 Áp dụng bất đẳng thức:  x  y  z    xy  yz  zx  x, y, z   0.5 Với a, b, c  ta có:  ab  bc  ca   3abc  a  b  c   9abc   ab  bc  ca  abc  Ta có: 1  a 1  b 1  c    abc  a, b, c  Thật vậy: 1  a 1  b 1  c     a  b  c    ab  bc  ca   abc    3 abc  3  abc   abc   abc Khi đó: P   Đặt: 3  abc    abc abc   abc abc  t  abc  t , 0.5 abc  t  abc Vì a, b, c  nên  abc    1  t 1   Xét hàm số f (t )  f '(t)  t2   t , t   0; 1 1  t   t  t 2t 2t t2  t2    t    2  (1  t ) (1  t ) 2  (1  t ) (1  t )  0.5 (1  t )(1  t ) t2  2t   0, t  (0;1] (1  t ) (1  t ) 2 Suy f (t ) đồng biến f (t ) (0;1] ta có f (t )  f (1)  1, t  (0;1]  abc abc  3 1  ab  bc  ca 1  a 1  b 1  c  Dấu ‘=’ xảy a  b  c  Vậy MaxP  a  b  c  Lưu ý: Học sinh giải cách khác mà cho điểm tối đa 0.5 ...  x  x  1 Ta có   x  y  1 0.5  x  1  y  0.5 Cho dãy số  un  2020  u1  xác định bởi:  , n  * 2019 2u  u  2u  n 1 n n Đặt S n  1 Tính: lim Sn    u1  u2  un ... un  Ta chứng minh un  1, n  * (1) phương pháp qui nạp toán học Với n  1, u1  2020   (1) với n  2019 Giả sử (1) với n  k (k  1) ta có uk  1 gtqn  Ta phải chứng minh (1) với n... dãy  un  không bị chặn  un  dãy tăng nên lim  un     lim 1 1 2019   lim S n  lim (  )  un u1 un 1 u1 2020 1,0 S M B A O H N C Chứng minh x  y  xy Kẻ SO  MN , O  MN  SMN

Ngày đăng: 25/10/2019, 23:53

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN