Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
0,98 MB
Nội dung
BÁO CÁO KẾT QUẢ TẬP HUẤN Xây dựng kế hoạch học Đơn vị: Trường THPT Phương Sơn TÊN BÀI HỌC: HÀM SỐ BẬC HAI A- Hoạt động khởi động Mục đích: -Tạo tò mò, gây hứng thú cho học sinh ứng dụng Parabol thực tế - Hình dung hình ảnh ban đầu Parabol Nội dung: Giáo viên chiếu hình ảnh số tượng, số cơng trình kiến trúc đặt câu hỏi Cách thức: Quan sát hình ảnh trả lời câu hỏi Hãy quan sát tượng, cơng trình kiến trúc,…Từ rút đặc điểm, hình dạng chúng? Cầu vồng Vßi phun n-íc Hầm đường qua đèo Hải Vân nối Thừa Thiên Huế - Đà Nẵng 3 GV: Hãy rút đặc điểm, hình dáng chúng? HS: Đó số hình ảnh parabol thực tiễn GV: Những hình ảnh gợi cho em nhớ đến kiến thức học chương trình mơn Tốn THCS? HS: Những hình ảnh gợi cho em nhớ đến đồ thị hàm số y ax2 Sản phẩm: - Học sinh đặt câu hỏi: Tại thường phải xây dựng cầu hay hầm đường có hình dạng parabol ? -Học sinh mơ tả cách hiểu Parabol qua đồ thị hàm số y ax B- Hoạt động hình thành kiến thức - Mục đích: + Phát biểu định nghĩa hàm số bậc hai + Chỉ đặc điểm đồ thị hàm số bậc hai + Nắm cách vẽ đồ thị hàm số bậc hai + Phát biểu định lý chiều biến thiên hàm số bậc hai + Xét chiều biến thiên hàm số bậc hai - Nội dung: + Thực nhiệm vụ học tập GV yêu cầu, nghiên cứu SGK + Phát biểu cách vẽ đồ thị hàm số bậc hai, định lý, làm ví dụ GV yêu cầu - Cách thức: + Giáo viên định nghĩa hàm số bậc hai, giao nhiệm vụ học tập cho nhóm thực hiện, nhóm thảo luận trình bày bảng GV nhận xét điểm đồ thị hàm số bậc hai yêu cầu học sinh đưa cách vẽ đồ thị hs bậc hai + Giáo viên yêu cầu học sinh làm VD vẽ đồ thị hàm số bậc hai + Giáo viên hướng dẫn học sinh dựa vào đồ thị hàm số bậc hai để suy chiều biến thiên + Giáo viên yêu cầu học sinh làm VD xét chiều biến thiên hàm số bậc hai -Hàm số bậc hai cho công thức y = ax2 + bx + c (a ) TXĐ: D = I ĐỒ THỊ CỦA HÀM SỐ BẬC HAI Nhóm Nhóm Nhóm Giao Vẽ đồ thị hàm số Vẽ đồ thị hàm số Tự nghiên cứu SGK phần 2 việc y = -2x y = 2x nhận xét (trang 43) Nhận xét điểm Nhận xét điểm Nhắc lại cách biến đổi: đồ thị hàm đồ thị hàm y = ax2 + bx + c b số số = a(x + ) + 2 2a 4a y = ax với a0 Kết Đồ thị đường Đồ thị đường parabol -Nếu a > I (quả parabol Đỉnh O(0;0)và điểm b ; )là điểm thấp 2a 4a Đỉnh O(0;0)và điểm thấp đồ thị đồ thị cao đồ thị Trục đối xứng Oy b Trục đối xứng Oy Bề lõm quay lên Nếu a < I (- ; )là 2a 4a Bề lõm quay xuống điểm cao đồ thị b GV ; GV:Như điểm I()của đồ thị hàm số bậc hai đóng vai trò tương tự 2a 4a chốt điểm O đồ thị hàm số y = ax2 GV: Từ kết yêu cầu học sinh xác định toạ độ đỉnh trục đối xứng đồ thi hs bậc hai HS: Xác định toạ độ đỉnh trục đối xứng đồ thi hs bậc hai GV: Nhận xét Đồ thị hàm số bậc hai: Đồ thị hàm số y = ax2 + bx + c (a ) Parabol + Đỉnh I (- b ; ) 2a 4a + Trục đối xứng đường thẳng: x b 2a + Bề lõm: Hướng lên a > Hướng xuống a < Cách vẽ đồ thị hàm số bậc hai b ; ) 2a 4a b 2,Vẽ trục đối xứng x = 2a y = ax2 + bx + c (a ) 1,Xác định toạ độ đỉnh I ( 3,Xác định toạ độ giao điểm parabol với trục tung trục hồnh (nếu có) 4,Vẽ parabol qua điểm lấy Ví dụ Chọn đáp án : Parabol y x2 2x có đỉnh là: A I 1;1 B I 2;0 C I 1;1 D I 1;2 2 : Parabol y x 4x có đỉnh là: A I 1;1 B I 2;0 C I 1;1 D I 1;2 Ví dụ Đồ thị hàm số f x 2x 3x có trục đối xứng đường thẳng : A x B x Ví dụ Vẽ đồ thị hàm số y 3x2 x C x D x II CHIỀU BIẾN THIÊN CỦA HÀM SỐ BẬC HAI GV:+ Dựa vào đồ thị hai hàm số vẽ, yêu cầu HS xác định khoảng đồng biến nghịch biến hàm số + Từ ví dụ ,hãy tổng quát lên biến thiên hàm số bậc hai a >0 a < Dựa vào đồ thị hàm số y ax bx c (a 0) ta có bảng biến thiên hai trường hợp a > a < sau: Từ ta có định lý sau: Định lý: Nếu a > hàm số y = ax2 + bx + c b b Nghịch biến khoảng ; ; đồng biến khoảng ; 2a 2a Nếu a < hàm số y = ax + bx + c b b Đồng biến khoảng ; ; Nghịch biến khoảng ; 2a 2a Ví dụ Tìm đáp án đúng: 1: Hàm số: y x2 2x A đồng biến ;1 B nghịch biến ;1 C đồng biến ;2 D nghịch biến trn ;2 2: Hàm số: y x2 4x A đồng biến ;4 B nghịch biến ;4 D nghịch biến ;2 C đồng biến ;2 - Sản phẩm: + Học sinh phát biểu định nghĩa hàm số bậc hai + Học sinh vẽ đồ thị hàm số bậc hai + Học sinh xét chiều biến thiên hàm số bậc hai C- Hoạt động luyện tập - Mục đích: + Làm số dạng tập hàm số bậc hai: + Lập bảng biến thiên hàm số bậc hai + Xác định tọa độ đỉnh, trục đối xứng, chiều quay bề lõm + Vẽ đồ thị hàm số bậc hai + Đọc đồ thị hàm số bậc hai: Từ đồ thị xác định tọa độ đỉnh, trục đối xứng; tìm giá trị x để y >0; y