MỞ ĐẦU Hiện nay vật liệu rắn xốp được xem là có nhiều ứng dụng trong thực tiễn, trong đó không thể không kể đến zeolit, than hoạt tính…, đã mang tính thương mại, với các ứng dụng trong nhiều lĩnh vực: hấp phụ, xúc tác, phân tách khí, trao đổi ion… Các vật liệu này có cấu trúc xốp và bề mặt riêng lớn, chẳng hạn [20]: zeolit đạt 904 m 2 .g -1 , than hoạt tính 1030 m 2 .g -1 . Việc nghiên cứu các loại vật liệu này đã thu hút nhiều nhà khoa học trong suốt các thập kỷ qua. Với sự phát triển không ngừng của khoa học đã mở ra nhiều nghiên cứu khác nhau, trong đó một loại vật liệu mới mang nhiều đặc điểm nổi bật hơn zeolit, than hoạt tính hay các vật liệu vi mao quản khác đó là vật liệu khung hữu cơ kim loại. Đây là loại vật liệu có cấu trúc xốp và diện tích bề mặt riêng rất lớn (có thể đạt từ 2000 m 2 .g -1 đến 6500 m ) [44] được xây dựng trên bộ khung hữu cơ - kim loại (Metal - Organic Framework, viết tắt là MOFs). Năm 1997, lần đầu tiên nhóm nghiên cứu của giáo sư Omar M. Yaghi và cộng sự đã công bố về vật liệu MOF-5. Loại vật liệu này có cấu trúc khung 3D, được tạo nên từ sự liên kết của axit 1,4-benzendicarboxylic với cụm ZnO . Ở Việt Nam, năm 2008 nhóm nghiên cứu của Phan Thanh Sơn Nam đã công bố tổng hợp MOF-5, MOF-199 và ứng dụng làm xúc tác cho các phản ứng acyl hóa, Knoevenagen… Đến nay nghiên cứu về vật liệu MOFs cũng được các nhà khoa học ở một số trường đại học công bố như: Đại học Khoa học và Tự nhiên - ĐHQG Hà Nội, Viện Hàn lâm Khoa học và Công nghệ Việt Nam, Đại học Bách khoa Hà Nội, Đại học Huế… Vật liệu khung hữu cơ kim loại (MOFs) là vật liệu tinh thể rắn xốp, với các cấu trúc mở rộng trong không gian từ một chiều đến ba chiều, được hình thành từ việc “lắp ráp” các ion kim loại hoặc các cụm oxit liên kết với các phối tử là cầu nối hữu cơ [61], [142]. Vật liệu này đã thu hút sự chú ý đáng kể do diện tích bề mặt riêng lớn, bền nhiệt, đa dạng trong cấu trúc cũng như có cấu trúc trật tự cao, dẫn dến có nhiều ứng dụng trong nhiều lĩnh vực như: lưu trữ khí [48], [87], xúc tác [30], [33], [156], cảm biến [78], [94], dẫn thuốc [56], y sinh học [131]… Đặc biệt, trong quá trình tổng hợp các tính chất lý và hóa học của MOFs có thể được điều chỉnh bằng cách kết hợp các nhóm chức năng trên liên kết hữu cơ hoặc trên các vị trí không bão hòa của kim loại trong khung mạng của MOFs. 2 .g 4 -1 MIL-101(Cr) (Matérial Institute Lavoisier) là loại vật liệu trong họ MOFs, có công thức: [Cr 3 O(F,OH)(H 2 O) 2 (bdc) 3 .nH O] (bdc = 1,4 - benzendicarboxylate, n ~ 2,5), được công bố đầu tiên bởi Férey và cộng sự vào năm 2005 [42], có độ ổn định cao về nhiệt và hóa học. Các vị trí của Cr(III) trong khung mạng đã tạo nên các tiềm năng đặc biệt hấp dẫn của MIL-101(Cr) trong nhiều lĩnh vực: hấp phụ khí [29], [144], [157], xúc tác [27], [52], [98], [97], [99], [113], lưu trữ khí CO 2 [92], [148]. Đặc biệt, việc biến tính vật liệu MIL-101(Cr) vẫn được quan tâm nghiên cứu về quy trình tổng hợp và những ứng dụng của nó. Hiện nay thường có hai cách hay được sử dụng để biến tính vật liệu, đó là: (i) đưa kim loại hoặc oxit kim loại chuyển tiếp vào vật liệu, (ii) gắn các nhóm chức năng hữu cơ lên bề mặt mao quản. Chính vì vậy, các tiềm năng ứng dụng của vật liệu MIL-101(Cr) khi được gắn một số loại oxit lên khung của nó vẫn chưa được khai thác nhiều. Các ứng dụng của vật liệu khung hữu cơ kim loại này về phương diện hấp phụ kim loại nặng, hấp phụ thuốc nhuộm trong dung dịch, xúc tác cho các phản ứng oxy hóa hợp chất hữu cơ và làm chất xúc tác quang hóa, cũng hứa hẹn đầy ý nghĩa thực tiễn. Xuất phát từ những quan điểm đề cập trên, chúng tôi thực hiện đề tài: “Nghiên cứu tổng hợp vật liệu MIL-101(Cr) biến tính bằng oxit sắt và ứng dụng”. Để đạt được mục đích của đề tài, các nội dung nghiên cứu bao gồm: - Tổng hợp vật liệu MIL-101(Cr) và biến tính MIL-101(Cr) bằng phương pháp thủy nhiệt. - Khảo sát của tỉ lệ mol Cr(III)/Fe(III) đến quá trình biến tính vật liệu MIL- 101(Cr) bằng oxit sắt (Fe 2 O 3 /MIL-101(Cr)). - Xác định một số đặc trưng vật liệu MIL-101(Cr) và Fe 2 O /MIL-101(Cr) bằng các phương pháp phân tích hóa lý hiện đại. - Nghiên cứu ứng dụng vật liệu MIL-101(Cr) và Fe 2 O /MIL-101(Cr): hấp phụ ion kim loại nặng Pb(II) trong dung dịch nước; chất xúc tác cho phản ứng oxy hóa oct-1-en. - Tổng hợp vật liệu Fe 3 O 4 3 3 2 và H /MIL-101(Cr) và ứng dụng làm xúc tác cho phản ứng quang phân hủy thuốc nhuộm xanh methylen trong dung dịch. 2
iii MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii MỤC LỤC iii DANH MỤC CÁC CHỮ VIẾT TẮT vi DANH MỤC CÁC BẢNG vii DANH MỤC CÁC HÌNH viii MỞ ĐẦU CHƯƠNG TỔNG QUAN 1.1 Giới thiệu vật liệu khung hữu kim loại 1.2 Giới thiệu vật liệu MIL-101(Cr) 1.3 Các phương pháp tổng hợp MIL-101(Cr) 1.3.1 Phương pháp thủy nhiệt 1.3.2 Phương pháp vi sóng 1.3.3 Phương pháp chuyển đổi gel khô 10 1.4 Biến tính vật liệu MIL-101(Cr) .10 1.4.1 Phương pháp sol - gel .10 1.4.2 Phương pháp lắng đọng nguyên tử 13 1.4.3 Phương pháp ngâm tẩm 16 1.5 Ứng dụng vật liệu MIL-101(Cr) làm xúc tác oxy hóa hợp chất hữu .16 1.5.1 Phản ứng oxi hóa anken 17 1.5.2 Phản ứng oxi hóa cyclohexan 18 1.5.3 Phản ứng nối oxit hữu với CO2 20 1.6 Ứng dụng vật liệu MIL-101(Cr) làm chất hấp phụ dung dịch nước 20 1.6.1 Hấp phụ chất hữu dung dịch .21 1.6.2 Hấp phụ kim loại nặng dung dịch 23 1.7 Ứng dụng vật liệu MIL-101(Cr) làm xúc tác quang phân hủy chất hữu 25 1.8 Giới thiệu số vấn đề nghiên cứu hấp phụ .28 1.8.1 Nghiên cứu động học hấp phụ 28 1.8.2 Nghiên cứu đẳng nhiệt hấp phụ 30 iv 1.9 Một số đặc điểm q trình oxy hóa Fenton 31 CHƯƠNG THỰC NGHIỆM VÀ PHƯƠNG PHÁP NGHIÊN CỨU 34 2.1 Hóa chất, dụng cụ thiết bị 34 2.1.1 Hoá chất 34 2.1.2 Dụng cụ thiết bị 34 2.2 Tổng hợp vật liệu 34 2.2.1 Tổng hợp vật liệu MIL-101(Cr) 34 2.2.2 Tổng hợp vật liệu Fe2O3/MIL-101(Cr) .35 2.2.3 Tổng hợp Fe3O4/MIL-101(Cr) 36 2.2.4 Hấp phụ Pb(II) 36 2.2.5 Oxi hóa oct-1-en xúc tác MIL-101(Cr) Fe2O3/MIL-101(Cr) 38 2.2.6 Xúc tác quang phân hủy MB Fe3O4/MIL-101(Cr) .38 2.3 Phương pháp nghiên cứu 38 2.3.1 Phương pháp nhiễu xạ tia X .38 2.3.2 Phổ hồng ngoại 39 2.3.3 Phương pháp quang điện tử tia X .40 2.3.4 Phương pháp tán xạ lượng tia X .41 2.3.5 Hiển vi điện tử quét 41 2.3.6 Hiển vi điện tử truyền qua 42 2.3.7 Phương pháp sắc ký lỏng hiệu cao 43 2.3.8 Phương pháp đẳng nhiệt hấp phụ - khử hấp phụ nitơ 44 2.3.9 Phương pháp phổ hấp thụ nguyên tử 46 2.3.10 Phổ khuếch tán tán xạ tử ngoại - khả kiến 46 2.3.11 Phổ tử ngoại - khả kiến 48 2.3.12 Phương pháp phân tích nhiệt 49 2.3.13 Phương pháp đo từ 49 2.3.14 Phương pháp phổ Raman 50 CHƯƠNG KẾT QUẢ VÀ THẢO LUẬN 51 3.1 Tổng hợp vật liệu MIL-101(Cr), Fe2O3/MIL-101(Cr) ứng dụng 51 3.1.1 Đặc trưng vật liệu .51 3.1.2 Ứng dụng vật liệu MIL-101(Cr) Fe2O3/MIL-101(Cr) làm chất hấp phụ Pb(II) dung dịch nước .60 v 3.1.3 Khả xúc tác MIL-101(Cr) Fe2O3/MIL-101(Cr) cho phản ứng oxy hóa oct-1-en 72 3.2 Tổng hợp vật liệu Fe3O4/MIL-101(Cr) ứng dụng 79 3.2.1 Đặc trưng vật liệu .79 3.2.2 Ứng dụng vật liệu Fe3O4/MIL-101(Cr) làm xúc tác quang phân hủy thuốc nhuộm MB 87 KẾT LUẬN 98 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CÔNG BỐ .99 TÀI LIỆU THAM KHẢO 101 PHỤ LỤC 117 vi DANH MỤC CÁC CHỮ VIẾT TẮT AAS Atomic Absorption Spectrophotometric (Phổ hấp thụ nguyên tử ) ALD Atomic layer deposition (Lắng đọng nguyên tử) BDC Benzendicarboxylate BET Brunauer-Emmett-Taller CD/PVP Colloidal deposition with PVP CTAB Cetyltrimethylammonium bromide CUSs Coordinatively unsaturated site (Vị trí liên kết khơng bão hòa) DGC Dry gel conversion (Chuyển đổi gel khô) DPSH Deposition precipitation with sodium hydroxide DSA Double solvent approach ED Ethylene diamine EDX Energy-dispersive X-ray spectroscopy (Phổ tán sắc lượng tia X) FePcS Iron tetrasulfophthalocyanine FT-IR Fourier transform infrared spectroscopy (Phổ hồng ngoại) IMP Impregnation L-H Langmuir-Hinshelwood MeCpPtMe Methylcyclopentadienyl trimethylplatium MB Xanh methylen MIL Matérial Institute Lavoisier MOFs Metal organic frameworks (Khung hữu kim loại) PED Protonated ethylenediamine PVP Polyvinylpyrrolidone SEM Scanning electron microscopy (Hiển vi điện tử quét) SUBs Secondary building units (Đơn vị cấu trúc thứ cấp) TEM Transmission electron microscopy (Hiển vi điện tử truyền qua) TBHP tert-butyl hydropeoxide TMAOH Tetramethylammonium hydroxide vii DANH MỤC CÁC BẢNG Bảng 1.1 Thơng số hóa lý vật liệu MIL-101(Cr) Bảng 1.2 Tính chất xốp MIL-101(Cr) nghiên cứu khác .9 Bảng 1.3 Tính chất xốp Au/MIL-101 .12 Bảng 2.1 Các hóa chất sử dụng cho nghiên cứu 34 Bảng 2.2 Dụng cụ thiết bị thí nghiệm .34 Bảng 2.3 Tỉ lệ Cr(III)/ Fe(III) dùng để biến tính MIL-101(Cr) 36 Bảng 3.1 Tính chất xốp mẫu M0 mẫu biến tính tỉ lệ mol Cr(III)/Fe(III) khác 56 Bảng 3.2 Bảng so sánh kết tính chất xốp mẫu M9:1 (Fe2O3/MIL-101(Cr)) tổng hợp với kết công bố .56 Bảng 3.3 Thành phần phần trăm khối lượng nguyên tố mẫu M0 M9:1 58 Bảng 3.4 Các tham số động học hấp phụ Pb(II) vật liệu MIL-101(Cr) Fe2O3/MIL-101(Cr) nồng độ Pb(II) khác 65 Bảng 3.5 Các tham số động học hấp phụ Pb(II) vật liệu MIL-101(Cr) Fe2O3/MIL-101(Cr) nhiệt độ khác 66 Bảng 3.6 Các thơng số hoạt hóa trình hấp phụ 68 Bảng 3.7 Các tham số nhiệt động học trình hấp phụ Pb(II) .69 Bảng 3.8 Các thông số đẳng nhiệt hấp phụ Langmuir Freundlich .70 Bảng 3.9 So sánh dung lượng hấp phụ Pb(II) MIL-101(Cr) Fe2O3/MIL101(Cr) với số vật liệu khác 71 Bảng 3.10 Các thông số đẳng nhiệt hấp phụ Langmuir Freundlich 90 Bảng 3.11 Các thông số động học biểu kiến phản ứng phân hủy quang xúc tác phân hủy MB vật liệu Fe3O4/ MIL-101(Cr) .92 viii DANH MỤC CÁC HÌNH Hình 1.1 Một số phối tử hữu thường gặp Hình 1.2 Các kiểu cấu trúc khơng gian MOFs Hình 1.3 Các đơn vị sở cấu trúc tinh thể MIL-101(Cr) Hình 1.4 Giản đồ XRD MIL-101TM (a), MIL-101F- (b), MIL-101 H2O (c) H2BDC (*) .7 Hình 1.5 Hình ảnh SEM MIL-101(Cr): a) khơng có CTAB; b) Cr3+/CTAB (1: 0,25); c) Cr3+/CTAB (1: 0,3) Hình 1.6 Phản ứng oxy hóa ancol H2O2với xúc tác Fe3O4@MIL-101 11 Hình 1.7 Giản đồ XRD đường đẳng nhiệt hấp phụ N2 ML-101 Fe3O4@MIL-101 11 Hình 1.8 Phản ứng oxi hóa 1-phenylethanol 13 Hình 1.9 Ảnh SEM Pt@MIL-101 14 Hình 1.10 Phản ứng dehydro hóa R - NO2 Pd@MIL-101 14 Hình 1.11 (a) Giản đồ XRD; (b) Đường đẳng nhiệt hấp phụ N2 MIL-101 Pd@MIL-101 77 K 15 Hình 1.12 Ảnh TEM MIL-101 NiO-MIL-101 15 Hình 1.13 Sự hình thành vị trí CUSs từ trime crom cấu trúc MIL-101 17 Hình 1.14 Tái sử dụng xúc tác cho trình oxi hóa cyclohexen với TBHP 18 Hình 1.15 Ảnh hưởng tỉ lệ mol cyclohexan/TBHP q trình oxy hóa cyclohexan với có mặt chất xúc tác MIL-101(Cr) .19 Hình 1.16 Giản đồ XRD MIL-101(Cr): (a) ban đầu; (b) sau xử lý với 0,5M TBHP MeCN 80oC 10 giờ; (c) sau q trình oxy hóa cyclohexan 19 Hình 1.17 Các chế hấp phụ vật liệu MOFs 21 Hình 1.18 Dung lượng hấp phụ naproxen theo thời gian vật liệu than hoạt tính, MIL-100(Fe) MIL-101(Cr) 21 Hình 1.19 Dung lượng hấp phụ MO theo thời gian vật liệu than hoạt tính, MIL-53, MIL-101, ED-MIL-101 PED-MIL-101 22 Hình 1.20 Sự hình thành liên kết H phenol HO-MIL-101 .23 Hình 1.21 Số lượng cơng bố MOF trong lĩnh vực hấp phụ kim loại nặng 23 Hình 1.22 Dung lượng hấp phụ Pb(II) MIL-101, ED-MIL-101(2 mmol) ix ED-MIL-101 (5 mmol) 24 Hình 1.23 Dung lương hấp phụ As(V) theo thời gian vật liệu MIL-88B, MIL-53(Fe), Cr-MIL-101 Fe-Cr-MIL-101 .24 Hình 1.24 Cơ chế quang xúc tác phân hủy MB Cd0,8Zn0,2S@MIL-101 26 Hình 1.25 Cơ chế quang xúc tác phân hủy thuốc nhuộm MIL101/RGO/ZnFe2O4 27 Hình 2.1 Sơ đồ tóm tắt qui trình tổng hợp vật liệu Fe2O3/MIL-101(Cr) 35 Hình 2.2 Sơ đồ tổng hợp vật liệu Fe3O4/MIL-101(Cr) 36 Hình 2.3 Sự nhiễu xạ tia X bề mặt tinh thể .39 Hình 2.4 Sắc ký đồ chất 43 Hình 2.5 Đồ thị biểu diễn biến thiên P/[V(Po – P)] theo P/Po 45 Hình 2.6 Sơ đồ bước nhảy electron phân tử .48 Hình 3.1 Giản đồ XRD mẫu M0 mẫu biến tính với tỉ lệ mol Cr(III)/ Fe(III) khác 51 Hình 3.2 Giản đồ XRD góc lớn mẫu M0 mẫu biến tính với tỉ lệ mol Cr(III)/ Fe(III) khác .52 Hình 3.3 Ảnh SEM mẫu: M0 mẫu biến tính tỉ lệ mol Cr(III)/Fe(III) khác 53 Hình 3.4 Ảnh TEM mẫu: M0 mẫu biến tính tỉ lệ mol Cr(III)/ Fe(III) khác 54 Hình 3.5 Đường cong hấp phụ-khử hấp phụ N2 77 K của: M0 mẫu biến tính tỉ lệ mol Cr(III)/Fe(III) khác 55 Hình 3.6 Phổ hồng ngoại M0 M9:1 57 Hình 3.7 Phổ tán xạ EDX mẫu: a) M0; b) M9:1 .58 Hình 3.8 Phổ XPS mẫu M0 M9:1 59 Hình 3.9 Mối quan hệ thời gian hiệu suất trình hấp phụ Pb(II) lên vật liệu MIL-101(Cr) Fe2O3/MIL-101(Cr) 61 Hình 3.10 Ảnh hưởng lượng vật liệu đến hiệu suất hấp phụ Pb(II) 62 Hình 3.11 Ảnh hưởng pH đến hiệu suất hấp phụ Pb(II) 62 Hình 3.12 Đồ thị phân bố dạng tồn Pb(II) nước theo pH 63 Hình 3.13 Ảnh hưởng nồng độ Pb(II) thời gian đến dung lượng hấp phụ vật liệu MIL-101(Cr) Fe2O3/MIL-101(Cr) 64 x Hình 3.14 Ảnh hưởng nhiệt độ đến dung lượng hấp phụ Pb(II) vật liệu MIL101(Cr) Fe2O3/MIL-101(Cr) 66 Hình 3.15 a) Đồ thị Arrhenius; b) đồ thị Eyring biểu diễn ảnh hưởng nhiệt độ đến tốc độ hấp phụ Pb(II) MIL-101(Cr) Fe2O3/MIL-101(Cr) 68 Hình 3.16 Hiệu suất hấp phụ Pb(II) MIL-101(Cr) Fe2O3/MIL-101(Cr) sau tái sinh .71 Hình 3.17 Giản đồ XRD MIL-101(Cr) Fe2O3 /MIL-101(Cr) sau ba lần tái sinh 72 Hình 3.18 Sắc đồ HPLC dung dịch chuẩn axit heptanoic 73 Hình 3.19 Sắc đồ HPLC sản phẩm phản ứng oxy hóa oct-1-en H2O2 xúc tác Fe2O3/MIL-101(Cr) 73 Hình 3.20 Ảnh hưởng lượng xúc tác đến hiệu suất phản ứng 74 Hình 3.21 Ảnh hưởng pH đến hiệu suất phản ứng 75 Hình 3.22 Ảnh hưởng tỉ lệ thể tích H2O2/oct-1-en đến hiệu suất phản ứng 76 Hình 3.23 Kết oxi hóa oct-1-en điều kiện khác xúc tác MIL101(Cr) Fe2O3/MIL-101(Cr) 77 Hình 3.24 Hiệu suất tái sử dụng MIL-101(Cr) Fe2O3/MIL-101(Cr) 78 Hình 3.25 Phổ hồng ngoại MIL-101(Cr) Fe2O3/MIL-101(Cr): a) ban đầu; b) tái sinh 78 Hình 3.26 Giản đồ XRD MIL-101(Cr) Fe O3 /MIL-101(Cr) sau lần tái sinh 79 Hình 3.27 Giản đồ XRD MIL-101(Cr) Fe3O4/MIL-101(Cr) .79 Hình 3.28 Đường cong từ trễ mẫu vật liệu Fe3O4/MIL-101(Cr) 80 Hình 3.29 Phổ hồng ngoại MIL-101(Cr) Fe3O4/MIL-101(Cr) 81 Hình 3.30 (a) Ảnh SEM (b) TEM Fe3O4/MIL-101(Cr) .82 Hình 3.31 Đường cong hấp phụ - khử hấp phụ N2 77 K MIL-101(Cr) Fe3O4/MIL-101(Cr) .82 Hình 3.32 Phổ XPS Fe3O4/MIL-101(Cr) .83 Hình 3.33 Giản đồ phân tích nhiệt TGA - DTA Fe3O4/MIL-101(Cr) 84 Hình 3.34 Phổ Raman vật liệu MIL-101(Cr) Fe3O4/MIL-101(Cr) .85 Hình 3.35 (a) Phổ UV-vis - DR (b) giản đồ Kubelka - Munk MIL-101(Cr) Fe3O4/MIL-101(Cr) 86 xi Hình 3.36 Ảnh hưởng thời gian đến hiệu suất phân hủy MB điều kiện khác 87 Hình 3.37 (a) Phổ UV-vis (b) COD dung dịch thời gian chiếu sáng khác 88 Hình 3.38 Động học quang xúc tác phân hủy MB xúc tác Fe3O4/MIL101(Cr): bóng tối chiếu sáng 89 Hình 3.39 Sự phụ thuộc qe vào Ce MB xúc tác Fe3O4/ MIL-101(Cr) theo mơ hình Langmuir Freundlich 90 Hình 3.40 Sự phụ thuộc lnC + C thời gian theo mơ hình cải tiến K Langmuir -Hinshelwood nồng độ ban đầu MB .92 Hình 3.41 Hiệu suất phân hủy quang xúc tác MB có mặt chất bắt gốc khác 93 Hình 3.42 Sơ đồ phân hủy MB xúc tác Fe3O4/MIL-101(Cr) chiếu sáng 96 Hình 3.43 Giản đồ XRD Fe3O4/MIL-101(Cr) ban đầu sau lần tái sinh 97 MỞ ĐẦU Hiện vật liệu rắn xốp xem có nhiều ứng dụng thực tiễn, khơng thể khơng kể đến zeolit, than hoạt tính…, mang tính thương mại, với ứng dụng nhiều lĩnh vực: hấp phụ, xúc tác, phân tách khí, trao đổi ion… Các vật liệu có cấu trúc xốp bề mặt riêng lớn, chẳng hạn [20]: zeolit đạt 904 m2.g-1, than hoạt tính 1030 m2.g-1 Việc nghiên cứu loại vật liệu thu hút nhiều nhà khoa học suốt thập kỷ qua Với phát triển không ngừng khoa học mở nhiều nghiên cứu khác nhau, loại vật liệu mang nhiều đặc điểm bật zeolit, than hoạt tính hay vật liệu vi mao quản khác vật liệu khung hữu kim loại Đây loại vật liệu có cấu trúc xốp diện tích bề mặt riêng lớn (có thể đạt từ 2000 m2.g-1 đến 6500 m2.g-1) [44] xây dựng khung hữu - kim loại (Metal - Organic Framework, viết tắt MOFs) Năm 1997, lần nhóm nghiên cứu giáo sư Omar M Yaghi cộng công bố vật liệu MOF-5 Loại vật liệu có cấu trúc khung 3D, tạo nên từ liên kết axit 1,4-benzendicarboxylic với cụm ZnO4 Ở Việt Nam, năm 2008 nhóm nghiên cứu Phan Thanh Sơn Nam công bố tổng hợp MOF-5, MOF-199 ứng dụng làm xúc tác cho phản ứng acyl hóa, Knoevenagen… Đến nghiên cứu vật liệu MOFs nhà khoa học số trường đại học công bố như: Đại học Khoa học Tự nhiên - ĐHQG Hà Nội, Viện Hàn lâm Khoa học Công nghệ Việt Nam, Đại học Bách khoa Hà Nội, Đại học Huế… Vật liệu khung hữu kim loại (MOFs) vật liệu tinh thể rắn xốp, với cấu trúc mở rộng không gian từ chiều đến ba chiều, hình thành từ việc “lắp ráp” ion kim loại cụm oxit liên kết với phối tử cầu nối hữu [61], [142] Vật liệu thu hút ý đáng kể diện tích bề mặt riêng lớn, bền nhiệt, đa dạng cấu trúc có cấu trúc trật tự cao, dẫn dến có nhiều ứng dụng nhiều lĩnh vực như: lưu trữ khí [48], [87], xúc tác [30], [33], [156], cảm biến [78], [94], dẫn thuốc [56], y sinh học [131]… Đặc biệt, trình tổng hợp tính chất lý hóa học MOFs điều chỉnh cách kết hợp nhóm chức liên kết hữu vị trí khơng bão hòa kim loại khung mạng MOFs 115 Phosphate from Aqueous Solutions and Eutrophic Water by Fe-based MOFs of MIL-101 Scientific Reports, Vol.7, Iss.1, pp.1–15 [142] Yaghi O.M., O’Keeffe M., Ockwig N.W., et al (2003) Reticular synthesis and the design of new materials Nature, Vol.423, Iss.6941, pp.705–714 [143] Yang J., Zhao Q., Li J., et al (2010) Synthesis of metal-organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogenstorage behavior Microporous and Mesoporous Materials, Vol.130, Iss.1– 3, pp.174–179 [144] Yang K., Sun Q., Xue F., et al (2011) Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape Journal of Hazardous Materials, Vol.195, pp.124–131 [145] Yang Q., Chen Y.-Z., Wang Z.U., et al (2015) One-pot tandem catalysis over Pd@MIL-101: boosting the efficiency of nitro compound hydrogenation by coupling with ammonia borane dehydrogenation Chem Commun., Vol.51, Iss.52, pp.10419–10422 [146] Yang Q., Zhao Q., Shuang S., et al (2016) Fabrication of core-shell Fe3O4@ MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution Journal of Solid State Chemistry, Vol.100, Iss.Vi, [147] Yang S., Peng S., Zhang C., et al (2018) Synthesis of CdxZn1-xS@MIL101(Cr) Composite Catalysts for the Photodegradation of Methylene Blue Vol.13, Iss.10, pp.1–17 [148] Yu Z (2016) Equilibrium and kinetics studies of hydrogen storage onto hybrid activated carbon-metal organic framework adsorbents produced by mild syntheses, Universite Paris Saclay, [149] Yuan B., Pan Y., Li Y., et al (2010) A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media Angewandte Chemie - International Edition, Vol.49, Iss.24, pp.4054–4058 [150] Zalomaeva O V, Chibiryaev A.M., Kovalenko K.A., et al (2013) Cyclic carbonates synthesis from epoxides and CO2 over metal – organic framework Vol.298, pp.179–185 [151] Zalomaeva O V, Kovalenko K a, Chesalov Y a, et al (2011) Iron 116 tetrasulfophthalocyanine immobilized on metal organic framework MIL-101: synthesis, characterization and catalytic properties Dalton Transactions (Cambridge, England : 2003), Vol.40, Iss.7, pp.1441–4 [152] Zalomaeva O V, Kovalenko K.A., Chesalov Y.A., et al (2011) Iron tetrasulfophthalocyanine immobilized on metal organic framework MIL-101: Synthesis, characterization and catalytic properties Dalton Transactions, Vol.40, Iss.7, pp.1441–1444 [153] Zhang J.L., Srivastava R.S., Misra R.D.K (2007) Core - Shell Magnetite Nanoparticles Surface Encapsulated with Smart Stimuli-Responsive Polymer : Synthesis , Characterization , and LCST of Viable Drug-Targeting Delivery System Langmuir, Vol.23, Iss.17, pp.6342–6351 [154] Zhang W., Li X., Zou R., et al (2015) Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites Nature Publishing Group, Iss.February, pp.1–9 [155] Zhang X., Liang Q., Han Q., et al (2016) Metal–organic frameworks@graphene hybrid aerogels for solid-phase extraction of nonsteroidal anti-inflammatory drugs and selective enrichment of proteins The Analyst, Vol.141, Iss.13, pp.4219–4226 [156] Zhang Y., Zhou Y., Zhao Y., et al (2016) Recent progresses in the size and structure control of MOF supported noble metal catalysts Catalysis Today, Vol.263, pp.61–68 [157] Zhang Z., Huang S., Xian S., et al (2011) Adsorption Equilibrium and Kinetics of CO2 on Chromium Terephthalate MIL-101 Energy & Fuels, Vol.25, Iss.2, pp.835–842 [158] Zhao, Zhenxia, Xuemei Li, Sisi Huang, Qibin Xia and Li Z (2011) Adsorption and Diffusion of Benzene on Chromium-Based Metal Organic Framework MIL-101 Synthesized by Microwave Irradiation Journal of Chemical & Engineering Data, Vol.50, pp.2254–2261 [159] Zhong X., Royer S., Zhang H., et al (2011) Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I Acid Orange using sono-photo-Fenton process Separation and Purification Technology, Vol.80, Iss.1, pp.163–171 117 PHỤ LỤC Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - MIL 101 Cr 2000 1900 1800 d=9.778 1700 1600 1500 1400 1300 1100 1000 d=1.532 d=1.559 d=1.647 d=1.747 d=1.719 d=1.820 d=1.783 100 d=1.893 d=2.011 d=2.158 d=2.255 d=2.716 d=2.858 d=3.316 200 d=3.898 300 d=5.365 400 d=17.292 d=15.077 500 d=32.249 600 d=7.810 700 d=9.027 d=8.605 800 d=10.499 d=26.994 900 d=48.770 Lin (Cps) 1200 10 20 30 40 50 60 2-Theta - Scale File : H angQNU M IL101Cr.raw - Type: 2Th/Th locke d - Start: 1.000 ° - End: 70.0 00 ° - Step: 0.030 ° - Ste p tim e: 0.3 s - Temp.: °C (Roo m) - Tim e Starte d: 15 s - 2-Th eta: 1.000 ° - Theta: 0.500 ° - Chi: 0.00 ° - Phi: 0.00 ° - Phụ lục Giản đồ XRD mẫu M0 70 Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - MIL101-9:1 800 d=9.774 700 600 d=2.073 d=2.054 d=2.194 d=2.404 d=2.539 d=2.642 d=3.460 d=3.345 d=3.747 d=4.948 d=4.387 100 d=6.667 d=8.144 d=7.772 d=8.582 d=5.370 d=10.505 d=22.779 200 d=10.912 300 d=18.211 d=17.339 d=15.842 d=15.149 d=52.921 400 d=31.957 d=27.156 Lin (Cps) 500 10 20 30 40 2-Theta - Scale File: TuyenHue M IL1 01 -9 1-May9.raw - Type: 2Th/Th l ocked - Start: 0.908 ° - End : 9.907 ° - Step: 0.03 ° - Ste p time: 0.3 s - Te mp.: 25 °C (Roo m) - Time Sta rted: 12 s - 2-Th eta: 0.908 ° - The ta: 0.500 ° - Chi: 0.00 ° - Ph i: Phụ lục Giản đồ XRD mẫu M9:1 Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - M 8:2 1000 900 800 700 d=1.935 d=2.155 d=2.438 d=2.691 100 d=2 569 d=3.052 d=5.162 d=4.762 d=4 571 d=3.632 200 d=5.315 d=6.183 300 d=7.259 d=9.407 400 d=8.499 500 d=8.018 Lin (Cps) 600 10 20 30 40 50 60 2-Theta - Scale File: H angQN M-8-2.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 70.000 ° - Step: 0.030 ° - Step time: 0.3 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 05/10/2016 8:42:28 AM Phụ lục Giản đồ XRD mẫu M8:2 70 Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - M 7:3 2000 1900 1800 1700 1600 1500 1400 1300 d=7.210 1100 1000 900 800 d=9.623 700 100 d=2.570 d=2.787 d=2.993 200 d=2.893 300 d=3.329 400 d=4.621 500 d=3.562 d=5.106 600 d=5.479 Lin (Cps) 1200 10 20 30 40 50 60 2-Theta - Scale File: H angQN M-7-3.raw - Type: 2Th/Th l ocked - Start: 1.000 ° - End: 70.000 ° - Step: 0.030 ° - Step time: 0.3 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 05/10/2016 8:30:16 AM Phụ lục Giản đồ XRD mẫu M7:3 70 Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - M 5:5 2000 1900 1800 1700 d=7.169 1600 1500 1400 1300 1100 1000 900 800 700 d=1.716 d=1.911 100 d=2.048 200 d=2.693 d=3.902 300 d=2.907 400 d=3.323 d=4.169 500 d=3.565 600 d=5.082 d=9.548 Lin (Cps) 1200 10 20 30 40 50 60 2-Theta - Scale File: HangQN M -5- 5.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 70.000 ° - Step: 0.030 ° - Step time: 0.3 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 05/10/2016 7:44:39 AM Phụ lục Giản đồ XRD mẫu M5:5 70 Meas data: Fe3O4 Intensity (counts) 3000 2000 1000 20 40 2-theta (deg) Phụ lục Giản đồ XRD vật liệu Fe3O4/MIL-101 60 80 Phụ lục Giản đồ EDX vật liệu MIL-101 chụp điểm (1, 2, 3) Phụ lục Giản đồ EDX vật liệu MIL-101 chụp điểm (4, 5, 6) Phụ lục Giản đồ EDX vật liệu Fe2O3/MIL-101 chụp điểm (1, 2, 3) Phụ lục 10 Giản đồ EDX vật liệu Fe2O3/MIL-101 chụp điểm (4, 5, 6) Phụ lục 11 Đường cong từ trể vật liệu Fe3O4/MIL-101 Phụ lục 12 Giản đồ phân tích nhiệt TG-DTA vật liệu Fe3O4/MIL-101 ... CHƯƠNG KẾT QUẢ VÀ THẢO LUẬN 51 3.1 Tổng hợp vật liệu MIL-101(Cr), Fe2O3 /MIL-101(Cr) ứng dụng 51 3.1.1 Đặc trưng vật liệu .51 3.1.2 Ứng dụng vật liệu MIL-101(Cr) Fe2O3 /MIL-101(Cr). .. biến tính vật liệu MIL101(Cr) oxit sắt (Fe2O3 /MIL-101(Cr)) - Xác định số đặc trưng vật liệu MIL-101(Cr) Fe2O3 /MIL-101(Cr) phương pháp phân tích hóa lý đại - Nghiên cứu ứng dụng vật liệu MIL-101(Cr). .. MIL-101(Cr) Fe2O3 /MIL-101(Cr) cho phản ứng oxy hóa oct-1-en 72 3.2 Tổng hợp vật liệu Fe3O4 /MIL-101(Cr) ứng dụng 79 3.2.1 Đặc trưng vật liệu .79 3.2.2 Ứng dụng vật liệu