1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số kinh nghiệm hướng dẫn học sinh xây dựng câu hỏi trắc nghiệm thông qua dạy học chủ đề hàm số trong chương trình giải tích lớp 12, nhằm nâng cao hiệu quả thi THPT QG ở trường

27 129 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 1,05 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA TRƯỜNG THCS VÀ THPT QUAN HÓA SÁNG KIẾN KINH NGHIỆM MỘT SỐ KINH NGHIỆM HƯỚNG DẪN HỌC SINH XÂY DỰNG CÂU HỎI TRẮC NGHIỆM THÔNG QUA DẠY HỌC CHỦ ĐỀ “HÀM SỐ” TRONG CHƯƠNG TRÌNH GIẢI TÍCH LỚP 12, NHẰM NÂNG CAO HIỆU QUẢ THI THPT QUỐC GIA Ở TRƯỜNG THCS VÀ THPT QUAN HÓA Người thực hiện: Vũ Ngọc Minh Chức vụ: Giáo viên SKKN thuộc mơn: Tốn MỤC LỤC Trang PHẦN 1: MỞ ĐẦU 1.1 Lý chọn đề tài ……………………………………………….…… 1.2.Mục đích nghiên cứu ………………………………………….… … 1.3 Đối tượng nghiên cứu ……………………………………….….…… 1.4 Phương pháp nghiên cứu ……………………………………… PHẦN NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lý luận ………………………………………………… … 2.2 Thực trạng vấn đề …………………………………………….….… 2.3 Giải pháp thực …………………………………………… …… 2.3.1 Kiến thức bản: …………………………………………….….… 2.3.2 Xây dựng dạng tập bản: ………………….……….…… 2.3.3 Bài tập tự luyện …………………………………………… 2.4 Hiệu sáng kiến kinh nghiệm ……………………….……… 2.4.1 Tổ chức thực nghiệm …………………………………… ……… 2.4.2 Kết định lượng ……………………………………….… …… 2.4.3 Kết định tính ………………………………………….……… 2.4.4 Kết luận chung thực nghiệm …………………………….……… PHẦN KẾT LUẬN VÀ KIẾN NGHỊ 3.1 Kết luận ……………………………………….……………….… … 3.2 Kiến nghị …………………………………….……………… …… TÀI LIỆU THAM KHẢO ………………………….….…………… …… PHỤ LỤC ………………………….….………… … …… 1 1 2 3 12 14 14 15 15 16 17 17 19 20 PHẦN MỞ ĐẦU 1.1 Lý chọn đề tài Trong thực tiễn dạy học nói chung dạy học tốn nói riêng, địi hỏi người thầy phải người thực dẫn dắt, định hướng khơi gợi học sinh niềm đam mê, hứng thú học tập để em tự tìm tịi, tự phát vấn đề giải vấn đề Những năm gần đây, yêu cầu thực tiễn, Bộ Giáo dục Đào tạo đổi hình thức thi THPT Quốc gia mơn Tốn từ hình thức thi tự luận chuyển sang hình thức thi trắc nghiệm Chính lí đó, người giáo viên cần phải thay đổi phương pháp giảng dạy cho phù hợp Mỗi tiết dạy cần cho học sinh nắm vấn đề gì, khơng phải giáo viên dạy Chương trình SGK giải tích lớp 12, chương I: “ ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ” nội dung trọng tâm quan trọng chương trình Tốn học bậc THPT Chính lí đề thi THPT Quốc gia năm gần đây, Bộ Giáo dục Đào tạo đưa nhiều câu hỏi nội dung Là giáo viên dạy Toán bậc THPT, năm học 2018 – 2019 phân công phụ trách giảng dạy hai lớp 12 trường, để em đạt kết tốt kì thi tới, tơi mạnh dạn đưa sáng kiến: “ Một số kinh nghiệm hướng dẫn học sinh xây dựng câu hỏi trắc nghiệm thông qua dạy học chủ đề “Hàm Số” chương trình giải tích lớp 12, nhằm nâng cao hiệu thi THPT Quốc gia trường THCS & THPT Quan Hóa” 1.2 Mục đích nghiên cứu: Hệ thống hóa kiến thức kỹ năng, giới thiệu số dạng toán ứng dụng đạo hàm nhằm phát huy lực học sinh góp phần phát triển lực tư sáng tạo kỹ giải vấn đề thực tế thi THPT Quốc gia 1.3 Đối tượng nghiên cứu: Học sinh khối lớp mà phân công trực tiếp giảng dạy năm học 20182019 Cụ thể lớp 12A1, 12A3 1.4 Phương pháp nghiên cứu: Phương pháp nghiên cứu lý thuyết - Sử dụng phương pháp sưu tầm, phân tích tài liệu, đề thi thử THPT - Nghiên cứu cấu trúc nội dung chương trình Tốn 11, 12 Phương pháp trao đổi - Gặp gỡ, trao đổi, tiếp thu ý kiến đồng nghiệp để tham khảo ý kiến làm sở cho việc nghiên cứu đề tài Phương pháp thống kê toán học - Sử dụng phương pháp để thống kê, xử lý, đánh giá kết thu sau tiến hành nghiên cứu Phương pháp thực nghiệm (thông qua thực tế dạy học lớp, giao tập, củng cố học, hướng dẫn học sinh chuẩn bị kết hợp với kiểm tra, đánh giá) PHẦN NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lý luận Nhiệm vụ trọng tâm trường THPT hoạt động dạy thầy hoạt động học trò, xuất phát từ mục tiêu “ Nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài” Giúp học sinh củng cố kiến thức phổ thơng, đặc biệt mơn Tốn, môn học cần thiết thiếu đời sống người Mơn Tốn trường THPT môn độc lập, chiếm phần lớn thời gian chương trình học học sinh Mơn Tốn có tầm quan trọng to lớn, mơn khoa học nghiên cứu có hệ thống, phù hợp với hoạt động nhận thức tự nhiên người Mơn Tốn có khả giáo dục cho học sinh rèn luyện phương pháp tư duy, phương pháp suy luận logic, hình thành nhân cách tốt đẹp cho người lao động thời đại Học sinh THPT lứa tuổi gần hồn thiện nhân cách, có sức khỏe dẻo dai, hiếu động thích thể Các em nghe giảng dễ hiểu qn khơng tập trung cao độ Vì vậy, người giáo viên phải tạo hứng thú học tập cho học sinh cho em thường xuyên tập luyện Người dạy cần phải chắt lọc đơn vị kiến thức để củng cố khắc sâu cho học sinh Sách giáo khoa Giải tích lớp 12 từ chỉnh sửa bổ sung vào năm 2006 – 2007, nội dung có phần thay đổi, có phần đưa thêm kiến thức mới, toán thực tế đưa vào nhiều đem lại chuyển biến định kết dạy học, làm cho học sinh hứng thú ý vào nội dung học Nhất thời đại ngày nay, thơng tin bùng nổ với tốc độ chóng mặt, việc dạy học theo hướng thực tiễn việc làm thực cần thiết Do mạnh dạn đưa sáng kiến kinh nghiệm với mục đích giúp cho học sinh THPT nói chung học sinh Trường THCS & THPT Quan Hóanói riêng vận dụng tìm phương pháp giải gặp loại tốn ứng dụng đạo hàm 2.2 Thực trạng vấn đề Từ năm học 2016-2017 GD-ĐT chuyển đổi hình thức thi THPT quốc gia mơn Tốn từ thi tự luận sang hình thức thi trắc nghiệm địi hỏi phương pháp dạy học phải thay đổi cho phù hợp Trong đề thi tham khảo Bộ GD-ĐT đề thi thử trường THPT, học sinh thường gặp nhiều câu hỏi ứng dụng đạo hàm như: Xét biến thiên hàm số, cực trị hàm số, giá trị lớn nhỏ hàm số, tiệm cận, đồ thị hàm số, tương giao đồ thị… Qua khảo sát thực tế, học sinh THPT nói chung học sinh Trường THCS & THPT Quan Hóa nói riêng (chất lượng đầu vào thấp), tư hệ thống, logic khái quát em hạn chế, điều kiện kinh tế gia đình cịn nhiều khó khăn, tình trạng sinh viên học đại học trường khó xin việc làm Vì khoảng 80% số học sinh trường khơng có nhu cầu học đại học, em chủ yếu lựa chọn học nghề vừa thời gian, lại có tay nghề tốt, xin việc lại dễ Vì dạy học, giáo viên cần phải phân dạng tập rõ ràng cho em luyện tập để tăng tính tập trung em vận dụng kiến thức tốt để làm tốt kỳ thi THPT Quốc gia Vì cần có phương pháp phù hợp để học sinh tiếp thu vận dụng, sau làm nhanh, xác đáp án 2.3 Giải pháp thực Để hiểu vận dụng toán liên quan đến ứng dụng đạo hàm vào làm đề thi THPT quốc gia, giáo viên cần xây dựng dạng toán thường gặp Trước hết cho học sinh củng cố phần lí thuyết: 2.3.1 Kiến thức bản: SGK Giải tích lớp 12 Sự biến thiên hàm số: a/ Định lí 1: Cho hàm số y  f (x) có đạo hàm K -Nếu f '(x)   x �K hàm số đồng biến K -Nếu f '(x)   x �K hàm số nghịch biến K b/ Định lí 2: (Mở rộng định 1) Giả sử hàm số y  f (x) có đạo hàm K Nếu f '(x) �0 ( f '(x) �0 ), x �K f '(x)  số hữu hạn điểm hàm số đồng biến (nghịch biến) K Cực trị hàm số: a/ Định lí 1: Cho hàm số y  f (x) liên tục khoảng K  (x  h; x  h) có đạo hàm K K \  x0  , với h  + Nếu f '(x)  khoảng (x  h; x ) f '(x)  khoảng (x ; x  h) x0 điểm cực đại hàm số f (x) + Nếu f '(x)  khoảng (x  h; x ) f '(x)  khoảng (x ; x  h) x0 điểm cực tiểu hàm số f (x) b/ Định lí 2: Giả sử hàm số y  f (x) có đạo hàm cấp hai khoảng (x  h; x  h) , với h  Khi đó: + Nếu f '(x )  0, f ''(x )  x0 điểm cực tiểu + Nếu f '(x )  0, f ''(x )  x0 điểm cực đại Giá trị lớn nhỏ hàm số đoạn  a; b  : Cho hàm số y  f (x) xác định đoạn  a; b có đạo hàm f '(x) khoảng  a; b  Ta có quy tắc tìm giá trị lớn nhỏ sau: Bước 1: Tìm điểm x1 , x2 , , xn khoảng  a; b  , f '(x) f '(x) khơng xác định Bước 2: Tính giá trị f (a), f (x1 ), f (x ), , f (x n ), f (b) Bước 3: Tìm số lớn M số nhỏ m số Ta có M  max f (x), m  f (x)  a ;b  a ;b Chú ý: Nếu tìm giá trị lớn nhất, nhỏ hàm số y  f (x) khoảng  a; b  ,  a; b  ,  a; b  ta phải lập bảng biến thiên Đường tiệm cận: + Cho hàm số y  f (x) xác định khoảng vô hạn (là khoảng dạng  a; � ,  �; b   �; � ) Đường thẳng y  y0 đường tiệm cận ngang (hay tiệm cận ngang) đồ thị hàm số y  f (x) điều kiện sau lim f (x)  y , lim f  x   y0 x �� thỏa mãn x�� + Đường thẳng x  x0 gọi đường tiệm cận đứng (hay tiệm cận đứng) đồ thị hàm số y  f (x) điều kiện sau thỏa mãn lim f (x)  �, lim f (x)  �, lim f (x)  �, lim f (x)  � x � x0 Củng cố cho học sinh dạng đồ thị, tương giao đồ thị Nhắc lại cho học sinh dạng đồ thị quen thuộc: Hàm số bậc 3, bậc trùng phương, hàm phân thức 2.3.2 Xây dựng dạng tập bản: x �x0 x �x0 x � x0 Do đặc điểm học sinh miền núi, điều kiện kinh tế cịn nhiều khó khăn, nhiều em xa trường nên ảnh hưởng đến việc lại học tập Chính em tiếp thu chậm nên tập thường cho dạng nhận biết thơng hiểu Bài 1: (Trích đề thi thức THPT QG năm 2018 – Mã đề 112) Cho hàm số y  f  x  có bảng biến thiên sau: Hàm số cho đồng biến khoảng đây? A (2;3) B (3; �) C (�; 2) D ( 2; �) HD: Trên khoảng  2;3 đạo hàm y '  Nên hàm số đồng biến khoảng  2;3 Chọn A Từ việc phân tích bảng biến thiên, hướng dẫn cho học sinh xây dựng hệ thống câu hỏi ôn tập sau: Câu hỏi 1: Hàm số nghịch biến khoảng nào? A (2; �) B (�; �) HD: Nghịch biến khoảng  �; 2  Chọn C Câu hỏi 2: Hàm số đạt cực đại điểm nào? A y  B y  C Chọn D Câu hỏi 3: Giá trị cực tiểu hàm số? A y  B y  C Chọn B Câu hỏi 4: Điểm cực đại đồ thị hàm số? A (3; 4) Chọn A x  2 D x  x  2 D x  f (x)  2 D  1; 2  C  4;3 B (2;1) Câu hỏi 5: Giá trị nhỏ hàm số khoảng  �;3 ? f (x)  D (2; 4) C (�; 2) f (x)  f (x)  A  �;3 B  �;3 C  �;3 D  �;3 Chọn A Câu hỏi 6: Số nghiệm phương trình f (x)   là? A B C D HD: f (x)  Đường thẳng y  cắt đồ thị ba điểm phân biệt nên phương trình cho có nghiệm phân biệt Chọn D Câu hỏi 7: Số nghiệm phương trình f (x)   là? A B C D Chọn B Câu hỏi 8: Số nghiệm phương trình f (x)    là? A B C D Chọn D Câu hỏi 9: Số giao điểm đồ thị với trục hoành là? A B C D Chọn B Câu hỏi 10: Khoảng cách hai điểm cực đại cực tiểu đồ thị hàm số bằng: A B C 34 D HD: Gọi A, B điểm cực đại điểm cực tiểu đồ thị hàm số Ta có A(3; 4), B(2;1) � AB  34 Chọn C Câu hỏi 11: Phương trình đường thẳng qua hai điểm cực đại, cực tiểu là: y  x3 B y x 3 y 11 x 5 A y  3x  11 C D Chọn D Câu hỏi 12: Gọi A, B điểm cực đại điểm cực tiểu đồ thị hàm số Điểm điểm sau thuộc đường thẳng AB (0; 11 ) (0;3) ( ;6) D (1;3) A B C Chọn A Câu hỏi 13: Tìm tham số m để phương trình f (x)  m có hai nghiệm thực phân biệt ? A m  B m  C m  1, m  D  m  Chọn C Câu hỏi 14: Tìm tham số m để phương trình f (x)  m  có ba nghiệm thực phân biệt ? A 2  m  B  m  C  m  D  m  Chọn D Câu hỏi 15: Tập tất giá trị tham số m để phương trình f (x)  m   vô nghiệm là: A (0; �) B (1; 2) C � Chọn C Câu hỏi 16: Trong mệnh đề sau, mệnh đề sai ? A Đồ thị hàm số khơng có tiệm cận B.Đồ thị hàm số không cắt trục tung C Giá trị cực đại hàm số yCD  D (1;1  2) D.Giá trị lớn hàm số đoạn  4; 0 số dương Chọn B Bài 2: (Trích đề khảo sát chất lượng lớp 12 THPT – năm 2019, Sở GD – ĐT Thanh Hóa) Cho hàm số y  f (x) có bảng biến thiên sau x y' -� y - + - +� -� -� -� Tổng số tiệm cận ngang tiệm cận đứng đồ thị hàm số là: A B C D HD: Ta có lim f  x   x �� nên đường thẳng y  tiệm cận ngang lim f (x)  �, lim f (x)  � x �0 x �0 nên x  tiệm cận đứng Chọn A Tương tự 1, yêu cầu học sinh xây dựng câu hỏi: Câu hỏi 1: Hàm số đồng biến khoảng nào? A (�;1) B (�; �) C (0; �) D (0;1) HD: Trên khoảng  0;1 đạo hàm y '  nên hàm số đồng biến khoảng  0;1 Chọn D Câu hỏi 2: Hàm số đạt cực đại điểm nào? A x  B x  C x  D y  Chọn B Câu hỏi 3: Giá trị cực đại hàm số? A y  B x  C y  D x  Chọn C Câu hỏi 4: Điểm cực đại đồ thị hàm số? A (1;1) B (1;1) C (0; 2) D (0;1) Chọn A Câu hỏi 5: Giá trị lớn hàm số khoảng  0; � ? A max f (x)  (0; �) max f (x)  B max f (x)  (0;�) C (0;�) D.Không tồn Chọn C Câu hỏi 6: Số nghiệm phương trình f (x)   là? A B C f (x)   � f (x)  D 3 y Đường thẳng cắt đồ thị điểm HD: nên phương trình cho có nghiệm Chọn B Câu hỏi 7: Số giao điểm đồ thị với trục hoành là? A B C Chọn D Câu hỏi 8: Số giao điểm đồ thị với trục tung là? A B C Chọn A f (x)   Câu hỏi 9: Số nghiệm phương trình A B C Chọn A D D là? D f (x)  m   Câu hỏi 10: Tìm tham số m để phương trình có hai nghiệm thực phân biệt ? A m  B m C m  D m  Từ giả thiết câu hỏi 10, ta có câu hỏi thứ 11: Câu hỏi 11: Số điểm cực trị hàm số y  f (x) là: A B C D HD: Nhìn vào đồ thị đạo hàm f '(x) ta thấy đạo hàm đổi dấu lần nên hàm số có hai cực trị Chọn D Bài 4: (Trích đề thi thức THPT QG năm 2017 – Mã đề 101) y xm y  x  (m tham số thực) thỏa mãn  2;4 Mệnh đề Cho hàm số mệnh đề đúng? A m  1 B  m �4 HD: TXĐ: D  �\  1 y'   m 1 (x  1) D �m  C m  TH1: m   � m  1 � y '  Hàm số nghịch biến khoảng  2;  4m  3� m  Suy  2;4 (thỏa mãn điều kiện) TH2: m   � m  1 � y '  Hàm số đồng biến khoảng  2;  y  y (4)  y  y (2)  2m  3� m 1 (không thỏa mãn điều kiện) Suy  2;4 Vậy m  Chọn C Tương tự tập trên, em tiếp tục đặt câu hỏi: Câu hỏi 1: Tìm tất giá trị tham số m để hàm số đồng biến khoảng xác định ? HD: y '  � m   � m  1 Câu hỏi 2: Tìm m để đồ thị hàm số có tiệm cận đứng tiệm cận ngang ? (ĐS m �1 ) Câu hỏi 3: Tìm m để đồ thị hàm số cho cắt đường thẳng y  x  hai điểm phân biệt A, B cho: AB  (ĐS m  ) Bài 5: (Trích đề thi thức THPT QG năm 2017 – Mã đề 101) Cho hàm số y   x  mx  (4 m  9) x  với m tham số Có giá trị nguyên m để hàm số nghịch biến khoảng  �; � A B C D HD: Ta có y '  3x  2mx  m , hàm số nghịch biến khoảng  �; � �a  y ' �0, x �� �  3x  2mx  4m  �0, x ��� � � '  m  3(4 m 9) �0 m � 9; 8; 7; 6; 5; 4; 3 �  �m �3 m �� Do nên Chọn A 10 Dưới hướng dẫn giáo viên, học sinh đặt câu hỏi liên quan: Câu hỏi 1: Tìm m để hàm số đồng biến đoạn có độ dài ? A m  B m  C m  D m  5 Gọi x1 , x2 nghiệm phương trình y '  �  3x  2mx  m  HD: m0 � x2  x1  �  x1  x2   x1.x2  12 � � m  12 � Chọn A Nhận xét: Ngoài cách giải trên, học sinh thử đáp án Chọn A Câu hỏi 2: Có giá trị nguyên tham số m đoạn  hàm số có cực đại cực tiểu ? A 4030 B 4031 C 4032 D 4033 2019; 2019 để m  3 �  '  � m  12m  27  � � m  9 � HD: Hàm số có cực đại cực tiểu Chọn C Câu hỏi 3: Tìm m để hàm số đạt cực tiểu x  1 ? 6m   �y '(1)  � �� � m  1 � y ''(  1)   m  x   � � HD: Hàm số đạt cực tiểu Câu hỏi 4: Tìm giá trị tham số m để hàm số nghịch biến khoảng  2; � ��  �y ' 0, x  2; HD: Hàm số nghịch biến khoảng  2;  � x �2mx ��۳ 4m� � 0, x g ( x)   2;  m 3 x  , x 2x   2;   3 x  x  khoảng  2; � Lập bảng biến thiên ta có kết Xét hàm số m �9 Bài 6: (Trích đề tham khảo THPT QG năm 2019 – Bộ GD ĐT) Cho hàm số y  f (x) Hàm số y  f '(x) có bảng biến thiên sau: x Bất phương trình f (x)  e  m với x � 1;1 11 m  f (1)  m �f (1)  e e m �f (1)  A B C x x HD: Theo đề ta có f (x)  e  m � f (x)  e  m f (x)  e x �m�x �۳ g (x)  1;1 f (x) e x m x ( 1;1) x có D m  f (1)  e x Đặt g (x)  f (x)  e Khiđó g '(x)  f '(x)  e f '(x)  0; e x  x ��� g '(x)  x � 1;1 Ta e Trên m max g (x)  1;1  1;1 khoảng Suy g (x) nghịch biến khoảng  1;1 Vậy max g (x)  g( 1)  f (1)  e 1  f ( 1)   1;1 1 m �f (1)  e Suy e Chọn C Dựa vào bảng biến thiên học sinh đặt câu hỏi: Câu hỏi 1: Hàm số y  f ( x) nghịch biến khoảng ? A  �; 3 B  3; � C  �;1 D  �; � HD: Trên khoảng  3; � , f '( x) �0 Chọn B Câu hỏi 2: Hàm số y  f '( x) có điểm cực trị ? (2 điểm) Câu hỏi 3: Hàm số y  f ( x) có điểm cực trị ? (1 điểm) Câu hỏi 4: Hàm số A  2;  y f ( x  1)  x3  nghịch biến khoảng ?  �; 3  �;1  �; � B C D y '  f '( x  1)  x 2 HD: Ta có Xét 2  x  �   x   � f '( x  1)  6 x �0 y '  0, x � 2;  Vậy Chọn A Bài 7: (Trích đề tham khảo THPT QG năm 2019 – Bộ GD ĐT) Cho hàm số f (x) có bảng xét dấu đạo hàm sau: Hàm số y  f (x  2)  x  x đồng biến khoảng ? A (1; �) B  �; 1 C  1;0  HD: Ta có y  f (x  2)  x  3x � y '  f '(x  2)  x  0; D    x   � f '(x  2)  � � f '(x  2)  x   x � 0;1 �2 Xét 1  x  ta có: �x  � x   12 Vậy hàm số cho đồng biến khoảng Câu hỏi 1: Hàm số f ( x)  1;0  Chọn C đồng biến khoảng ? A (1; �) B  �;1 C  1;  Chọn D Câu hỏi 2: Tổng số cực trị hàm số f ( x) là: A B C Chọn C D  1;3 D 2.3.3 Bài tập tự luyện: Bài 1: (Trích đề thi thử THPT năm 2018 lần – THPT Chuyên Đại Học Vinh) Cho hàm số y  f (x) liên tục � có bảng xét dấu đạo hàm hình vẽ Hàm số cho có điểm cực trị ? A B C D Chọn D Bài 2: (Trích đề thi thử THPT năm 2018 lần – THPT Chuyên Đại Học Vinh) Cho hàm số y  f (x) xác định, liên tục �và có bảng biến thiên hình vẽ y  f (x) y  2018 Đồ thị hàm số cắt đường thẳng điểm B C D A Chọn B Bài 3: (Thử sức trước kì thi năm 2019 – Đề số – Báo Toán học tuổi trẻ) Cho hàm số y  f (x) có bảng biến thiên hình vẽ đây: 13 Đồ thị hàm số cho có tổng số tiệm cận đứng tiệm cận ngang ? A B C D Chọn C Bài 4: Tìm tất giá trị thực tham số m để đồ thị hàm số y  x  2mx  có điểm cực trị tạo thành tam giác vuông cân A m  0, m  B m  C m  �1 D m  Chọn B 2x  (C) x 1 Bài 5: Cho hàm số Tìm m để đường thẳng d : y  x  m cắt đồ thị (C) hai điểm phân biệt A B cho độ dài đoạn thẳng AB  Đáp số: m  10, m  2 y Bài 6:(Trích đề thi thức THPT QG năm 2018 – Mã đề 112) Có giá trị nguyên tham số m để hàm số khoảng  �; 6  ? A B C Vô số y x2 x  3m đồng biến D HD: TXĐ: D  �\  3m Để hàm số đồng biến khoảng  �; 6  ta phải có �6  3m � � m2 3m  � �y '  (x  3m)2  � Vậy có hai giá trị nguyên tham số m m  1, m  Chọn A Bài 7: (Trích đề thi thử THPT QG năm 2019 – Lần – Khối THPT Chuyên – Đại học sư phạm Hà Nội) Tập hợp số thực m để hàm số y  x  3mx  (m  2) x  m đạt cực tiểu x  là: A  1 B  1 HD: Ta có y '  3x  6mx  (m 2) , y ''  x  6m C �  5m  �y '(1)  � �� � � Hàm số đạt cực tiểu x  �y''(1)  �6  6m  D � m 1 � � �m  vơ lí 14 Chọn C Bài 8: (Trích đề thi thử THPT năm 2019 lần – Liên trường THPT Nghệ An) Gọi S tập hợp tất giá trị tham số thực m cho đồ thị hàm số x f (x)  x  mx   x  x   m x nhận trục tung làm tiệm cận đứng Khi tích phần tử S bằng: A  B C D  Lời giải: Đặt u  u ( x)  x  mx  , v  v( x)  x  x  lim f ( x )  lim x �0 Ta có: Mà lim x �0 x �0 x  mx   x  x   m x x 3 x  mx   x  x   m x x � �u  � u  v  m2 x � v3   lim �    lim   m2 � � � x �0 x x � x�0 �x(u  1) x(v  v  1) �x � ( x  m) ( x  1) m � lim(   m2 )  �   m2  x �0 (u  1) (v  v  1) Đồ thị hàm số f ( x) nhận trục tung làm tiệm cận đứng � 6m  3m   Vậy m1.m2   Chọn D 2.4 Hiệu sáng kiến kinh nghiệm 2.4.1 Tổ chức thực nghiệm Tổ chức thực nghiệm Trường THCS & THPT Quan Hóa, huyện Quan Hóa Gồm: Lớp thực nghiệm 12A3 Lớp đối chứng 12A1 Trình độ hai lớp tương đương nhau, lớp 12A3 có 33 học sinh, lớp 12A1 có 38 học sinh, thời gian tiến hành thực nghiệm từ tháng 10 năm 2018 đến tháng năm 2019 2.4.2 Kết định lượng - Lớp đối chứng (ĐC): 12A1 - Lớp thực nghiệm (TN): 12A3 Tôi cho kiểm tra (Phần phụ lục), chấm chữa thu kết sau: (Kết làm tròn) 15 Điểm Lớp TN 12A3 ĐC 12A1 10 1 6 Số 33 7 38 Kết lớp thực nghiệm có 29/33 (chiếm 88%) đạt điểm trung bình trở lên, có 17/33 (chiếm 51%) đạt giỏi Lớp đối chứng có 25/38 (chiếm 65,8%) đạt điểm trung bình trở lên, có 13/38 (chiếm 34,2%) đạt giỏi Qua kết nghiên cứu ta thấy rằng, lớp thực nghiệm tỷ lệ đạt điểm giỏi cao lớp đối chứng Ngược lại, tỷ lệ điểm trung bình trung bình lớp đối chứng lại cao Điều phần cho thấy học sinh lớp thực nghiệm tiếp thu kiến thức nhiều tốt Một nguyên nhân là: Ở lớp thực nghiệm, lớp học diễn nghiêm túc, học sinh hứng thú học tập, tích cực, chủ động “đóng vai”, số lượng học sinh tham gia xây dựng nhiều làm cho khơng khí lớp học sơi nổi, kích thích sáng tạo, chủ động nên khả hiểu nhớ tốt Còn lớp đối chứng, lớp học diễn nghiêm túc, học sinh chăm nghe giảng, em tiếp thu kiến thức chủ yếu thông qua giáo viên Giáo viên sử dụng phương pháp thuyết trình, giải thích nên q trình làm việc thường nghiêng giáo viên 2.4.3 Kết định tính Qua trình phân tích kiểm tra lớp thực nghiệm lớp đối chứng theo dõi suốt q trình giảng dạy, tơi có nhận xét sau: - Ở lớp đối chứng: + Phần lớn học sinh dừng lại mức độ nhớ tái kiến thức Tính độc lập nhận thức khơng thể rõ, cách trình bày rập khn SGK ghi giáo viên + Nhiều khái niệm em chưa hiểu sâu nên tính tốn cịn gặp nhiều sai sót, dẫn đến kết sai, phải tính lại nhiều lần, nhiều thời gian + Việc vận dụng kiến thức đa số em cịn khó khăn, khả khái quát hóa hệ thống hóa học chưa cao + Giờ học trầm lắng, hứng thú, em trả lời câu hỏi chưa nhiệt tình 16 Tuy nhiên, có số học sinh hiểu tốt, vận dụng công thức, làm nhanh, xác - Ở lớp thực nghiệm: + Phần lớn học sinh hiểu tương đối xác đầy đủ + Lập luận rõ ràng, chặt chẽ + Đa số em có khả vận dụng kiến thức học kiến thức thực tế + Các em đặt câu hỏi trả lời câu hỏi với tinh thần say mê, hào hứng, khơng khí học thoải mái + Tuy nhiên, cịn số học sinh chưa nắm vững nội dung học, khả phân tích, tổng hợp, khái quát hóa vận dụng kiến thức chưa tốt 2.4.4 Kết luận chung thực nghiệm Với kết thực nghiệm này, tơi có thêm sở thực tiễn để tin tưởng vào khả ứng dụng phương pháp dạy học gắn liền với thực tiễn Qua thực nghiệm dạy học, nhận thấy: - Hứng thú học tập học sinh cao hơn, hoạt động thảo luận sôi hiệu cao hơn, học sinh tập trung để quan sát phân tích, phát biểu xây dựng tốt - Tăng cường thêm số kỹ hoạt động học tập cho HS quan sát, phân tích, tổng hợp, so sánh, kỹ làm việc độc lập - Hoạt động giáo viên nhẹ nhàng, thuận lợi để tập trung vào việc đưa HS vào trung tâm hoạt động dạy học - HS nhóm nhóm phát biểu ý kiến, tranh luận, bổ sung ý kiến tạo khơng khí học tập tích cực, nâng cao hiệu tiếp thu, lĩnh hội tri thức HS - Kiến thức cung cấp thêm, bổ sung làm rõ SGK, đồng thời gắn với thực tiễn nhiều Do giới hạn thời gian điều kiện khác nên chưa thực thực nghiệm quy mơ lớn Chính mà kết thực nghiệm chắn chưa phải tốt Mặc dù vậy, qua thời gian giảng dạy, nhận thấy rằng, việc sử dụng phương pháp dạy học trắc nghiệm kết hợp với ứng dụng công nghệ thông tin điều cần thiết, góp phần nâng cao hiệu giảng dạy, phát huy lực học sinh, đáp ứng yêu cầu đổi nội dung phương pháp dạy học PHẦN KẾT LUẬN VÀ KIẾN NGHỊ 3.1 Kết luận Từ kết nghiên cứu rút kết luận sau: 17 - Bước đầu hệ thống hóa sở lý luận thực tiễn việc sử dụng phương pháp dạy học trắc nghiệm gắn với thực tiễn Nhằm phát huy tính tích cực, chủ động sáng tạo học sinh - Xây dựng quy trình dạy học trắc nghiệm: xây dựng lý thuyết, tập vận dụng dạng tự luận để ghi nhớ công thức, tập trắc nghiệm tập tự luận - Tiến hành thực nghiệm số lớp, kết bước đầu đánh giá hiệu phương pháp dạy dạy học Từ kết luận phương pháp - Giúp học sinh có hội vừa tiếp thu kiến thức vừa có điều kiện để thể lực thân gia đình 3.2 Kiến nghị Qua nghiên cứu đề tài này, rút số kiến nghị sau: - Cần phát huy tối đa vai trò phương pháp dạy học trắc nghiệm gắn liền với thực tiễn - Giáo viên cần có biện pháp cụ thể để rèn luyện kỹ làm tập dạng trắc nghiệm đối tượng học sinh - Để góp phần nâng cao hiệu sử dụng phương pháp dạy học trắc nghiệm gắn liền với thực tiễn đòi hỏi giáo viên phải có đầu tư thiết kế để tạo cho học sinh hứng thú học tập tốt - Ngồi cần bố trí phịng máy chiếu hợp lí để học sinh khơng nhiều thời gian di chuyển ổn định trật tự thời gian đầu Do khả thời gian có hạn nên kết nghiên cứu dừng lại kết luận ban đầu nhiều vấn đề chưa sâu Vì khơng thể tránh khỏi thiếu sót, kính mong nhận góp ý q thầy đồng nghiệp để đề tài dần hồn thiện 18 XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh hố, ngày 28 tháng năm 2019 Tơi xin cam đoan SKKN viết, khơng chép nội dung người khác Người viết Vũ Ngọc Minh 19 TÀI LIỆU THAM KHẢO Chuẩn kiến thức kĩ mơn Tốn THPT, Bộ Giáo dục Đào tạo Luyện thi trung học phổ thông quốc gia năm 2018, 2019 Nhà xuất giáo dục Giáo trình Đại số Giải tích lớp 11, Nhà xuất giáo dục năm 2006 Giáo trình Giải tích lớp 12, Nhà xuất giáo dục năm 2006 Một số tài liệu, chuyên đề ôn thi đại học, đề thi thử số trường THPT Tuyển tập đề thi OLYMPIC toán THPT Việt Nam (1990-2006), Nhà xuất giáo dục năm 2007 Tuyển tập 30 năm tạp chí tốn học tuổi trẻ, Nhà xuất giáo dục năm 2003 Tuyển tập năm tạp chí tốn học tuổi trẻ, Nhà xuất giáo dục năm 2007 20 PHỤ LỤC SỞ GD & ĐT THANH HÓA TRƯỜNG THCS & THPT QUAN HÓA ĐỀ KIỂM TRA Thời gian làm bài: 45 phút Họ tên: …………………………………… Lớp: …… … Câu 1: Cho hàm số y  f (x) có bảng biến thiên sau: Hàm số cho đồng biến khoảng khoảng sau ? 0; A   �;0  B  2;  C  0; � D  2x 1 Câu Hàm số y = x  nghịch biến khoảng sau đây? A R B ( - �;-1) (-1;+ �) C ( - �;1) (1;+ �) D R \ {-1; 1} Câu Hàm số y =  x  3x  x nghịch biến tập sau đây? A R B ( - �; -1) ( 3; + �) C ( 2; + �) D (-1;3) Câu 4: Hàm số y  x  x  2019 đồng biến khoảng: A [-1; + �) B [3; + �) C (4; + �) D (- �; 13) Câu Giá trị lớn nhất, nhỏ hàm số: y  x  x  đoạn  0; 4 là: A 10; -2 B 4; -18 Câu 6: Giá trị nhỏ hàm số A B – C 20; -2 y D 14; -6 2x  1  x đoạn  2; 4 : C -10 D – Câu 7: Hàm số y  x  2018x  2019 có điểm cực trị 21 A B C D Câu Tọa độ điểm cực đại hàm số y =  x  x  là: A (2;0) B ( 6; 2) C (0; 2) D ( 2; 6) Câu 9: Đồ thị sau hàm số ? A y  x  3x  C B y  x3  x  D Câu 10: Cho hàm số y  x  x  Chọn đáp án sai ? A Hàm số ln có cực đại cực tiểu; B Hàm số đạt cực tiểu x = 2; C Hàm số đồng biến khoảng (0; 2) ; D Điểm uốn đồ thị hàm số là(1;0) Câu 11 Đồ thị hàm số nhận đường thẳng x  2 làm tiệm cận đứng: A y  x x 1 B Câu 12 Cho hàm số A lim y  � x �2 y y x  C x 1 y 2x 1 x  Trong câu sau, câu sai B lim y  � x �2 D y 5x 2 x C TCN y= Câu 13 Phương trình đường tiệm cận đồ thị hàm số D TCĐ x = y 3x  x  : A y= x = B y = x+2 x = 22 C y = x = Câu 14 Hàm số A m < D y = -3 x = y x  2mx  có cực đại cực tiểu khi: B m > D m �0 C m �0 Câu 15 Giá trị nhỏ hàm số: y  x  3x  nửa khoảng [0; + �) là: A B -2 C D; - Câu 16 Giá trị lớn nhất, nhỏ hàm số: y  x  16  x là: A 4; -4 B ; C ; -4 D ; 2 Câu 17 : Tìm m để hàm số y  sin x  m cos x đạt cực tiểu điểm m  2 A B m  C m  6 x  D m  mx  Câu 18 Hàm số y = x  m Với giá trị m hàm số ln đồng biến khoảng xác định A m2 � � m  2 m  B m  2 C � D 2  m  Câu 19: Giá trị m để phương trình x  2x  m  có nghiệm phân biệt A 1  m  B  m  C 1 �m �0 D 1  m  Câu 20 Số giao điểm đường thẳng (d): y  x  đồ thị (C) A B C.1 Câu 21: Phương trình tiếp tuyến với đồ thị hàm số là: A y  x  5; y  3x  B y  x  2; y  3x  C y  3 x  3; y  3 x  y x 1 x  là: D y x3 x có hệ số góc k  D y  x  1; y  x  23 y   x  mx  mx  2019 Câu 22: Tìm giá trị m để hàm số nghịch biến R A ( -1; 0) B [-1; 0] C ( - �; -1) � (0; + �) D ( - �; -1] � [ 0; + �) Câu 23 Hàm số y = x   m  3 x  mx  m  đạt cực tiểu x  A m  B m  1 C m  2 D m  3 Câu 24: Giá trị lớn hàm số giá trị bằng: A y 2mx  1  2;3   m  x đoạn m nhận C 5 B D 2 Câu 25 Đường thẳng (d): y  mx  2m  cắt (C) : y  x  x  12 x  ba điểm phân biệt khi: A m  3 B m  C m  D m 1 Đáp án: Mỗi câu trả lời 0.4 điểm Câu 10 11 12 13 14 15 Đáp án A C B C D B A D A C B D C B D Câu 16 17 18 19 20 21 22 23 24 25 Đáp án C A C D D A B D A B 24 ... giảng dạy hai lớp 12 trường, để em đạt kết tốt kì thi tới, mạnh dạn đưa sáng kiến: “ Một số kinh nghiệm hướng dẫn học sinh xây dựng câu hỏi trắc nghiệm thông qua dạy học chủ đề ? ?Hàm Số? ?? chương trình. .. GD-ĐT đề thi thử trường THPT, học sinh thường gặp nhiều câu hỏi ứng dụng đạo hàm như: Xét biến thi? ?n hàm số, cực trị hàm số, giá trị lớn nhỏ hàm số, tiệm cận, đồ thị hàm số, tương giao đồ thị… Qua. .. hóa sở lý luận thực tiễn việc sử dụng phương pháp dạy học trắc nghiệm gắn với thực tiễn Nhằm phát huy tính tích cực, chủ động sáng tạo học sinh - Xây dựng quy trình dạy học trắc nghiệm: xây dựng

Ngày đăng: 08/07/2019, 15:55

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w