1. Trang chủ
  2. » Giáo án - Bài giảng

chuyen de casio

24 442 3
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 1,26 MB

Nội dung

ĐẶT VẤN ĐỀ PHẦN I Bồi dưỡng, phát triển trí tuệ và năng lực hoạt động sáng tạo của học sinh là nhiệm vụ trọng tâm của mỗi nhà trường. Sử dụng MTĐT BT để giải toán cũng là một hoạt động phát triển trí tuệ và năng lực sáng tạo của học sinh rất hiệu quả. Xuất phát từ những kỹ năng đơn giản về sử dụng MTĐT BT để tính toán thông thường như tính giá trị của biểu thức số, tìm nghiệm của phương trình bậc 2 – 3, khai phương, hay tìm tỉ số lượng giác của một góc . học sinh còn được rèn luyện lên một mức độ cao hơn đó là rèn tư duy thuật toán- một thao tác tư duy cực kỳ cần thiết cho lập trình viên máy tính PC sau này - thông qua các bài toán về tìm số, bài toán về phân tích một số ra thừa số nguyên tố, tìm ƯCLN hay bài toán phân tích đa thức thành nhân tử . Hiện nay, với sự phát triển như vũ bão của khoa học-kỹ thuật (KHKT) nhất là các ngành thuộc lĩnh vực công nghệ thông tin (CNTT), trong đó MTĐT BT là một thành quả của những tiến bộ đó. MTĐT BT đã được sử dụng rộng rãi trong các nhà trường với tư cách là một công cụ hỗ trợ việc giảng dạy, học tập hay cả việc đổi mới phương pháp dạy học theo hướng hiện đại như hiện nay một cách có hiệu quả. Đặc biệt, với nhiều tính năng mạnh như của các máy CASIO Fx-500MS, CASIO Fx-570MS . trở lên thì học sinh còn được rèn luyện và phát triển dần tư duy thuật toán một cách hiệu quả. Trong những năm gần đây, các cơ quan quản lý giáo dục cũng như các tổ chức kinh tế tài trợ thiết bị giáo dục (nhất là các công ty cung cấp thiết bị điện tử và máy văn phòng) rất chú trọng việc tổ chức các cuộc thi giải toán trên MTĐT BT. Từ năm 2001, BGD& ĐT bắt đầu tổ chức cuộc thi “Giải toán trên MTĐT BT”- cho HS THCS - đến cấp khu vực; báo Toán tuổi thơ2 tổ chức thi giải toán bằng MTĐT BT qua thư - cho HS THCS- do tập đoàn CASIO tài trợ, báo Toán học & Tuổi trẻ tổ chức cuộc thi tương tự - cho cả HS THCS và THPT- do tập đoàn SHARP tài trợ, nhằm góp phần phát huy trí lực của học sinh và tận dụng những tính năng ưu việt của MTĐT BT để hỗ trợ học tốt các môn học khác nữa như Lý, Hoá, Sinh, Địa . Thực tế, qua 3 năm phụ trách bồi dưỡng HSG giải toán trên MTĐT BT, tôi nhận thấy các em học sinh thực sự say mê tìm tòi, khám phá những công dụng của chiếc MTĐT BT đơn giản nhưng vô cùng hữu ích này và vận dụng tốt trong quá trình học tập của mình. Từ những lý do trên, tôi mạnh dạn triển khai chuyên đề “CASIO FX500MS VỚI VIỆC GIẢI TOÁN” rộng ra toàn trường với mục đích là: • Để tất cả các em học sinh có điều kiện nắm được những chức năng cơ bản nhất của MTĐT BT CASIO Fx-500MS, từ đó biết cách vận dụng các tính năng đó vào giải các bài toán tính toán thông thường rồi dần đến các bài toán đòi hỏi tư duy thuật toán cao hơn. • Tạo không khí thi đua học tập sôi nổi hơn, nhất là giáo dục cho các em ý thức tự vận dụng kiến thức đã được học vào thực tế công việc của mình và ứng dụng những thành quả của khoa học hiện đại vào đời sống. • Tạo nguồn HSG cho các năm tiếp sau. NỘI DUNG VÀ PHƯƠNG PHÁP I. GIỚI THIỆU CƠ BẢN VỀ MÁY FX-500MS. 1. Các phím thông thường : - Có 3 loại phím: + Phím màu trắng: bấm trực tiếp. + Phím màu vàng: bấm sau phím IFTSH + Phím màu đỏ: bấm sau phím ALPHA - Các phím chức năng: (xem trong CATAlO giới thiệu máy). - Cài đặt cho máy: + Ấn MODE nhiều lần để chọn các chức năng của máy. + Ấn MODE 1 : Tính toán thông thường. + Ấn MODE 2 : Tính toán với bài toán thống kê. + Ấn MODE MODE 1 2 : Giải hệ phương trình bậc1, 2 ẩn. + Ấn MODE MODE 1 3 : Giải hệ phương trình bậc1, 3 ẩn. + Ấn MODE MODE 1 > 2 : Giải phương trình bậc 2. + Ấn MODE MODE 1 > 3 : Giải phương trình bậc 3. + Ấn IFTSH CLR 1 = : Xoá giá trị ở các ô nhớ A,B . + Ấn IFTSH CLR 2 = : Xoá cài đặt trước đó (ô nhớ vẫn còn) + Ấn IFTSH CLR 3 = : Xoá tất cả cài đặt và các ô nhớ. - Phép gán vào các ô nhớ: + 10 IFTSH STO A : Gán 10 vào ô nhớ A. + 12 IFTSH STO B : Gán 10 vào ô nhớ B. + 0 IFTSH STO A : Xoá ô nhớ A. + STO A ( ALPHA A = ): Kiểm tra giá trị của ô nhớ A. Chú ý: Các ô nhớ A, B, C, D, E, F, X, Y, M là các biến nhớ mà khi gán giá trị mới vào thì giá trị mới sẽ thay thế giá trị trước đó. Còn riêng ô nhớ M-ngoài chức năng trên-Nó còn là 1 số nhớ độc lập, nghĩa là có thể thêm vào hoặc bớt ra ở ô nhớ này. 2. Cách SD phím EXP : Tính toán với các số dạng a.10 n . VD: 3.10 3 + 4.10 5 = ? Ấn phím: 3 x EXP 3 + 4 x EXP 5 = (Kết quả là 403 000) PH Ç N II 3. Cách SD phím Ans : Kết quả tự động gán vào phím Ans sau mỗi lần ấn phím = hoặc IFTSH % hoặc M + hoặc IFTSH M − hay IFTSH STO ( là 1 chữ cái) VD: Tính giá trị của biểu thức: 3 1 1 1 1 1 1 1 1 1 1 + + + + + Cách ấn phím và ý nghĩa của từng lần ấn như sau: 3 = Nhớ 3 vào phím Ans 1 + 1 b c a Ans = Máy thực hiện phép tính s 1 1 An + được kq là 3 1 1 nhớ vào Ans = Máy thực hiện phép tính s 1 1 An + được kq là 4 3 1 nhớ vào Ans = Máy thực hiện phép tính s 1 1 An + được kq là 7 4 1 nhớ vào Ans = Máy thực hiện phép tính s 1 1 An + được kq là 11 7 1 nhớ vào Ans = Máy thực hiện phép tính s 1 1 An + được kq là 18 11 1 nhớ vào Ans Kết quả cuối cùng là 18 11 1 Nhận xét: Dòng lệnh 1 1 Ans + được máy thực hiện liên tục.Sau mỗi lần ấn dấu = thì kết quả lại được nhớ vào phím Ans ( 1 1 Ans + → Ans ), cứ ấn dấu = một số lần nhất định ta sẽ nhận được kết quả của biểu thức. Phím Ans có tác dụng rất hữu hiệu với bài toán tính giá trị của biểu thức dạng phân số chồng như VD trên. II. SỬ DỤNG CASIO FX-500MS ĐỂ GIẢI TOÁN NHƯ THẾ NÀO? 1. Quy trình lặp cơ bản của máy FX-500MS. Dòng lệnh 1. Dòng lệnh 2. . Dòng lệnh 9. 8 IFTSHK 1 44 2 4 43 # # # # (Gọi các dòng lệnh để đưa vào quy trình) = (Máy thực hiện dòng lệnh 1 lần thứ nhất) = (Máy thực hiện dòng lệnh 2 lần thứ nhất) . = (Máy thực hiện dòng lệnh 9 lần thứ nhất) = (Máy thực hiện dòng lệnh 1 lần thứ hai) = (Máy thực hiện dòng lệnh 2 lần thứ hai) = (Máy thực hiện dòng lệnh 9 lần thứ hai) = (Máy thực hiện dòng lệnh 1 lần thứ ba) = (Máy thực hiện dòng lệnh 2 lần thứ ba) . = (Máy thực hiện dòng lệnh 9 lần thứ ba) = (Máy thực hiện dòng lệnh 1 lần thứ tư) VD1: Dòng lệnh 1. Dòng lệnh 2. Dòng lệnh 3. Dòng lệnh 4. 8 IFTSHK 1 44 2 4 43 # # # # 10 + 1 = 10 + 2 = 10 + 3 = 10 + 4 = 3 IFTSH 1 4 2 4 3 # # # # = (máy thực hiện dòng lệnh 10 + 1). = (máy thực hiện dòng lệnh 10 + 2). = (máy thực hiện dòng lệnh 10 + 3). = (máy thực hiện dòng lệnh 10 + 4). Lần thứ nhất = (máy thực hiện dòng lệnh 10 + 1). = (máy thực hiện dòng lệnh 10 + 2). = (máy thực hiện dòng lệnh 10 + 3). = (máy thực hiện dòng lệnh 10 + 4). Lần thứ hai VD2: 10 IFTSH STO A . 100 IFTSH STO B . DL1: ALPHA A + 1 IFTSH STO A .(A tăng thêm 1, được 11 và 11 nhớ vào A) DL2: ALPHA B + 1 IFTSH STO B .(B tăng thêm 1, được 101 và 101 nhớ vào B) Lặp: # IFTSH # = (A tăng thêm 1, được 12 và 12 nhớ vào A) = (B tăng thêm 1, được 102 và 102 nhớ vào B) = (A tăng thêm 1, được 13 và 13 nhớ vào A) = (B tăng thêm 1, được 103 và 103 nhớ vào B) . * Chú ý: ALPHA A + 1 IFTSH STO A . sau này kí hiệu là A+1→ A ALPHA B + 1 IFTSH STO B . sau này kí hiệu là B+1→ B VD3: 10 IFTSH STO A . 100 IFTSH STO B . 1000 IFTSH STO C . DL1: ALPHA A + 1 IFTSH STO A .(A tăng thêm 1, được 11 và 11 nhớ vào A) DL2: ALPHA B + 1 IFTSH STO B .(B tăng thêm 1, được 101 và 101 nhớ vào B) DL3: ALPHA C + 1 IFTSH STO C .(C tăng thêm 1, được 1001 và 1001 nhớ vào C) Lặp: # # IFTSH # = (A tăng thêm 1, được 12 và 12 nhớ vào A) = (B tăng thêm 1, được 102 và 102 nhớ vào B) = (C tăng thêm 1, được 1002 và 1002 nhớ vào C) = (A tăng thêm 1, được 13 và 13 nhớ vào A) = (B tăng thêm 1, được 103 và 103 nhớ vào B) = (C tăng thêm 1, được 1003 và 1003 nhớ vào C) . 2. DẠNG I:Tính toán cơ bản trên dãy các phép tính cồng kềnh. Kiến thức bổ sung cần nhớ: Cách chuyển đổi số thập phân vô hạn tuần hoàn sang phân số. Nhận xét: 1 0,(1) 9 1 0,(01) 99 1 0,(001) 999 = = = Ta có: 1 3 1 0,(3) 3.0,(1) 3. 9 9 3 = = = = 1 1 7 2,(3) 2 0,(3) 2 3.0,(1) 2 3. 2 9 3 3 = + = + = + = + = [ ] [ ] 1 1 1 1 8 2,5(3) 25,(3) 25 0,(3) 25 2 10 10 10 3 15   = = + = + =     [ ] [ ] 53 53 2,(53) 2 0,(53) 2 0,(01).53 2 2 99 99   = + = + = + =     VD1: Tính giá trị của biểu thức. (Tính chính xác đến 0,000001) a. A = 5 4 :)5,0.2,1( 17 2 2). 4 1 3 9 5 6( 7 4 :) 25 2 08,1( 25 1 64,0 )25,1. 5 4 (:8,0 + − − + − (ĐS: 1 2 3 ) b. B = 1 1 7 90 2 3 0,3(4) 1,(62) :14 : 11 0,8(5) 11 + + − (ĐS: 106 315 ) VD2: Tìm x. (Tính chính xác đến 0,0001) a. 4 6 (2,3 5: 6,25).7 1 5 : :1,3 8,4. . 6 1 7 7 8.0,0125 6,9 14 x   +   + − =     +     (x = -20,384) b. 1 3 1 4 : 0,003 0,3 .1 1 2 20 2 : 62 17,81: 0,0137 1301 1 1 3 1 20 3 2,65 .4 : 1,88 2 . 20 5 25 8 x       − −  ÷  ÷         − + =       − +  ÷  ÷         (x= 6) 3. DẠNG II: Tính giá trị của biểu thức đại số. VD1: Tính giá trị của biểu thức: 20x 2 -11x – 2006 tại a) x = 1; b) x = -2; c) x = 2 1 − ; d) x = 23456,1 12345,0 ; Cách làm: *Gán 1 vào ô nhớ X: 1 IFTSH STO X . Nhập biểu thức đã cho vào máy: 20 ALPHA X 2 x − 11 ALPHA X − 2006 = (Ghi kết quả là -1 997) *Sau đó gán giá trị thứ hai vào ô nhớ X: 2− IFTSH STO X . Rồi dùng phím # để tìm lại biểu thức, ấn = để nhận kết quả. (Ghi kết quả là -1 904) Làm tương tự với các trường hợp khác ta sẽ thu được kết quả một cách nhanh chóng, chính xác. (ĐS c) 1 1995 2 − ; d) -2006,899966). VD2: Tính giá trị của biểu thức: x 3 + 3xy 2 – 2x 2 y - 3 2 y 3 tại: a) x = 2; y = -3. b) x = 4 3 − ; y = -2 7 3 c) x = 5 72 + y = 69,2 35,2 Cách làm: Gán 2 vào ô nhớ X: 2 IFTSH STO X . Gán -3 vào ô nhớ Y: 3− IFTSH STO Y . Nhập biểu thức đã cho vào máy như sau: ALPHA X ^ 3 + 3 ALPHA X ALPHA Y 2 x − 2 ALPHA X 2 x ALPHA Y − 2 b c a 3 ALPHA Y ^ 3 = (Ghi kết quả là - 4 ) Sau đó gán giá trị thứ hai vào ô nhớ X: 3 4 − IFTSH STO X . 3 2 7 − IFTSH STO Y . Rồi dùng phím # # để tìm lại biểu thức, ấn = để nhận kết quả. (Ghi kết quả là 25,12975279) Làm tương tự với trường hợp c) (Ghi kết quả là -2,736023521) Nhận xét: Sau mỗi lần ấn dấu = ta phải nhớ ấn tổ hợp phím IFTSH b c a để đổi kết quả ra phân số (nếu được). 4. DẠNG III: Tính giá trị của biểu thức số có quy luật. VD1:Tính giá trị của các biểu thức sau: a) A = 1+2+3+ .+49+50. Nhận xét: Ta thấy tổng trên là tổng các số tự nhiên liên tiếp từ 1 đến 50, có quy luật là số sau lớn hơn số liền trước 1 đơn vị. Ta phải lập một quy trình cho máy để sau một số lần ấn dấu = ta thu được kết quả của biểu thức. 1 → A 2 → B A + B → A B + 1 → B Gán 1 vào ô nhớ A. (A là biến chứa). Gán 2 vào ô nhớ B. (B là biến chạy). Dòng lệnh 1 Dòng lệnh 2 # IFTSH # = . Đưa 2 DL vào quy trình lặp rồi ấn dấu = đến khi B + 1 → B có giá trị là 50 thì ấn = và đọc kq :(1 275) b) B = 1 1 1 1 1 . 1 2 3 49 50 + + + + + ? Nhận xét: Ta thấy tổng trên là tổng các phân số với tử số không đổi, mẫu là các số tự nhiên tăng dần từ 1 đến 50. Ta cũng phải lập một quy trình cho máy để sau một số lần ấn dấu = ta thu được kết quả của biểu thức. 1 → A 2 → B A + B 1 → A B + 1 → B Gán 1 vào ô nhớ A Gán 2 vào ô nhớ B Dòng lệnh 1 Dòng lệnh 2 # IFTSH # = . Đưa 2 DL vào quy trình lặp rồi ấn dấu = đến khi B + 1 → B có giá trị là 50 thì ấn = và đọc kết quả. (KQ: 4,499205338) c) C = 1 1 1 1 1 1 1 . 1 2 3 4 48 49 50 − + − + − + − ? Nhận xét: Ta thấy biểu thức trên là một dãy các phép toán + và - xen kẽ các phân số với tử số không đổi, mẫu là các căn bậc hai của các số tự nhiên tăng dần từ 1 đến 50. Nếu mẫu là CBH của STN lẻ thì dấu là +, còn mẫu là CBH của STN chẵn thì dấu là -. Ta cũng phải lập một quy trình cho máy để sau một số lần ấn dấu = ta thu được kết quả của biểu thức. Cách lập tương tự như VD2, song ta phải chú ý đến dấu của từng số hạng. 1 → A 2 → B A + (-1) B+1 B 1 → A B + 1 → B Gán 1 vào ô nhớ A Gán 2 vào ô nhớ B Dòng lệnh 1 Dòng lệnh 2 # IFTSH # = . Đưa 2 DL vào quy trình lặp rồi ấn dấu = đến khi B + 1 → B có giá trị là 50 thì ấn = và đọc kết quả. (KQ:0,534541474) 5. DẠNG IV: Bài toán về số. 5.1- Tìm số hạng thứ n của dãy số? VD1: Cho U 1 = 8; U 2 = 13; U n+2 = U n+1 +U n (n ≥ 2) a) Lập quy trình bấm phím liên tục để tính U n ? b) Áp dụng quy trình trên để tính U 13 , U 17 ? Cách làm: 8 → A 13 → B B+A → A A +B→ B Gán 8 vào ô nhớ A (U 1 ) Gán 13 vào ô nhớ B (U 2 ) Dòng lệnh 1 (U 3 ) Dòng lệnh 2 (U 4 ) # IFTSH # = . Đưa 2 DL vào quy trình lặp rồi ấn dấu = n – 4 lần và đọc kết quả. (U 13 = 2 584; U 17 = 17 711) VD2: Cho U 1 = 1; U 2 = 2; U n+2 = 2U n+1 - 4U n (n ≥ 2) a) Lập quy trình bấm phím liên tục để tính U n ? b) Áp dụng quy trình trên để tính U 15 ,U 16 , U 17 ? Cách làm: 1 → A 2 → B 2B - 4A → A 2A - 4B → B Gán 1 vào ô nhớ A (U 1 ) Gán 2 vào ô nhớ B (U 2 ) Dòng lệnh 1 (U 3 ) Dòng lệnh 2 (U 4 ) # IFTSH # = . Đưa 2 DL vào quy trình lặp rồi ấn dấu = n – 4 lần và đọc kết quả. (U 15 = 0; U 16 = -32 768; U 17 = - 65 536) VD3: Cho U 1 = 1; U 2 = 2; U 3 = 3; U n+3 = 2U n+2 - 3U n+1 +2U n (n ≥ 2) a) Lập quy trình bấm phím liên tục để tính U n ? b) Áp dụng quy trình trên để tính U 19 ,U 20 , U 66, U 67 , U 68 ? c) Tính tổng 20 số hạng đầu tiên của dãy (S 20 )? Cách làm:Câua+b) 1 → A 2 → B 3 → C 2C – 3B + 2A → A 2A – 3C + 2B → B 2B – 3A + 2C → C Gán 1 vào ô nhớ A (U 1 ) Gán 2 vào ô nhớ B (U 2 ) Gán 3 vào ô nhớ C (U 3 ) DL1:U 4 = 2U 3 - 3U 2 +2U 1 DL2:U 5 = 2U 4 - 3U 3 +2U 2 DL3:U 6 = 2U 5 - 3U 4 +2U 3 # # IFTSH # = . Đưa 3 DL vào quy trình lặp rồi ấn dấu = n – 6 lần và đọc kết quả. (U 19 = 315; U 20 = -142; U 66 = 2 777 450 630; U 67 = -3 447965 925; U 68 = -9 002 867 128 ) c) Đặt S n = U 1 +U 2 +U 3 +U 4 + . + U n Và từ công thức U n+3 = 2U n+2 - 3U n+1 +2U n → U n = 2U n-1 - 3U n-2 +2U n-3 Theo CT truy hồi đó thì ta có: + U 4 = 2U 3 - 3U 2 +2U 1 U 5 = 2U 4 - 3U 3 +2U 2 U 6 = 2U 5 - 3U 4 +2U 3 U n = 2U n-1 - 3U n-2 +2U n-3 U 4 +U 5 +U 6 + . + U n = 2(U 3 +U 4 +U 5 + . + U n-1 )-3(U 2 +U 3 +U 4 + . + U n-2 ) +2(U 1 +U 2 +U 3 + . + U n-3 ) ↔ S n -(U 1 +U 2 +U 3 )= 2[S n -(U 1 +U 2 +U n )] - 3[S n -(U 1 +U n-1 +U n )] +2[S n -(U n-2 +U n-1 +U n )] Rút gọn đi ta được công thức truy hồi mới: Làm tương tự trên với CT truy hồi mới này ta được: + U 4 =U 3 - 2U 2 + 3 U 5 =U 4 - 2U 3 + 3 U 6 =U 5 - 2U 4 + 3 U n =U n-1 - 2U n-2 + 3 U 4 +U 5 +U 6 + . + U n = (U 3 +U 4 +U 5 + . + U n-1 )-2(U 2 +U 3 +U 4 + . + U n-2 ) + (n-4).3 ↔ S n -(U 1 +U 2 +U 3 )= [S n -(U 1 +U 2 +U n )] - 2[S n -(U 1 +U n-1 +U n )] +3(n-4) Rút gọn và thay các giá trị đã biết của U 1 ; U 2 ; U 3 vào ta được: 1 2 3 4 2 n n n U U n S − + + − = U n =U n-1 - 2U n-2 + 3 [...]... mà số liệu thường rất to và lẻ 9 DẠNG VIII: Bài toán hình học VD1: Cho tam giác ABC đồng dạng với tam giác CDE theo tỷ số đồng dạng k=1,3 Tính diện tích tam giác CDE biết diện tích tam giác ABC là 112 cm2? Giải: S 112 2 2 ABC Ta có S = k thay số vào ta được S = 1,3 → SCDE = 66,2722 cm2 CDE CDE VD2: Một hình thang cân có hai đường chéo vuông góc với nhau Đáy nhỏ 13,724 cm; cạnh bên 21,867 cm Tính diện... là 2 ước Được 10 và 6 là 2 ước = (các dấu = ở đây là của các kết quả nguyên) = Vậy Ư(60) = { ± 1; ±2; ±3; ±4; ±5; ±6; ±10; ±12; ±15; ±20; ±30; ±60 } 5.4-Tìm ƯCLN của các số? (Ta sử dụng thuật toán Ơclide) Nhận xét: Nếu a không chia hết cho b, giả sử a = b.q + r gọi d là ƯCLN của a và b, thế thì ta có a = d.a’; b = d.b’ thay vào (1) ta được d.a’= d.b’.q + r hay d.a’ = d.(b’.q) + r theo tính chất chia . trình bậc1, 2 ẩn. + Ấn MODE MODE 1 3 : Giải hệ phương trình bậc1, 3 ẩn. + Ấn MODE MODE 1 > 2 : Giải phương trình bậc 2. + Ấn MODE MODE 1 > 3 : Giải phương. Ấn MODE nhiều lần để chọn các chức năng của máy. + Ấn MODE 1 : Tính toán thông thường. + Ấn MODE 2 : Tính toán với bài toán thống kê. + Ấn MODE MODE 1

Ngày đăng: 04/09/2013, 01:10

Xem thêm

HÌNH ẢNH LIÊN QUAN

Mô hình sơ đồ Hoocner: - chuyen de casio
h ình sơ đồ Hoocner: (Trang 18)
9. DẠNG VIII: Bài toán hình học. VD1: - chuyen de casio
9. DẠNG VIII: Bài toán hình học. VD1: (Trang 22)
Cho hình chữ nhật ABCD. Qua B kẻ đường vuông góc với AC tại H. Biết BH= 1,2547 cm,  BAC· =37 28'50''0 - chuyen de casio
ho hình chữ nhật ABCD. Qua B kẻ đường vuông góc với AC tại H. Biết BH= 1,2547 cm, BAC· =37 28'50''0 (Trang 24)

TỪ KHÓA LIÊN QUAN

w