Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 61 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
61
Dung lượng
2,4 MB
Nội dung
Trờng THCS on Kt Website:http://duongmanhha81/violet.vn Cácchuyênđềcasio ************** Môn: Toán Lớp: 8 + 9 Năm : 2009- 2010 >>> Chuyênđề : Kiến thức cần nhớ .1- Công thức tính tổng: a) ( 1) 1 2 3 . 2 n n n + + + + + = b) 2 1 3 5 . (2 1)n n+ + + + = c) 2 4 6 . 2 ( 1)n n n+ + + + = + d) 2 2 2 ( 1)(2 1) 1 2 . 6 n n n n + + + + + = e) 2 2 3 3 3 3 ( 1) 1 2 3 . 4 n n n + + + + + = .2 - Bất đẳng thức Bunhiakôpxki: Cho hai bộ số bất kì : ( a , b), (x , y) thì ta có: (ax + by) 2 2 2 2 2 ( )( )a b x y + + Dấu = xảy ra a b x y = .3 - Bất đẳng thức côsi: a) Với hai số a, b 0 thì : 2 a b ab + Dấu = xảy ra a b = b) Với ba số a, b, c 0 thì : 3 3 a b c abc + + Dấu = xảy ra a b = = c c) Với bốn số a, b, c, d 0 thì : 4 4 a b c d abcd + + + Dấu = xảy ra a b = = c = d e) Với n số a 1 , a 2 ,, a n 0 thì : 1 2 1 2 . . n n n a a a a a a n + + + Dấu = xảy ra 1 2 . n a a a = = = .4 - Hằng đẳng thức vạn năng: a) a 3 + b 3 + c 3 = (a + b +c )(a 2 + b 2 + c 2 - ab - bc - ca ) + 3abc b) (a +b + c) 3 = a 3 + b 3 + c 3 + 3(a + b)(b + c)(c+ a) c) (a + b) n = 0 1 1 1 2 2 2 1 1 1 . . . . n n n n n n n n n n n n C a C a b C a b C a b C b + + + + + Với: ! ( , ,0 ) !.( )! k n n C k n k n k n k = Là tổ hợp chập k của n .5 - Các định lí: Định lý Phécma lớn: Với mọi p là số nguyên tố và với mọi a ta có: (mod ) p a a p Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 1 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn Định lý Phécma nhỏ: Nếu a là 1 số nguyên không chia hết cho 1 số nguyên tố p thì ta có: a p 1 1(mod p) Định lý ơ le: Nếu a, m , m > 0 , (a , m) = 1 thì ta có: ( ) 1(mod ) m a m Với 1 2 1 2 . . n n m p p p = là tích các thừa số nguyên tố , ( ) 1 2 1 1 1 (1 )(1 ) .(1 ) m n m p p p = >>> Chuyênđề 1: Tính giá trị Dạng 1.1: Liên quan đến hàm số(có dạng đa thức) Bài 1.1.1: Cho F(x) = x 5 + ax 4 + bx 3 + cx 2 + dx +e (trong đó a, b, c, d ,e= const) Biết F(1) = 1, F(2) = 3 , F(3) = 6, F(4) = 10, F(5) = 15. Tính F(6), F(7), F(8), F(9). Bài 1.1.2: Cho F(x) = x 5 + ax 4 + bx 3 + cx 2 + dx+e (trong đó a, b, c, d ,e= const) Biết F(1) = 2, F(2) = 4 , F(3) = 6, F(4) = 8, F(5) = 10. Tính F(6), F(7), F(8), F(9). Bài 1.1.3: Cho F(x) = x 5 + ax 4 + bx 3 + cx 2 + dx+e (trong đó a, b, c, d ,e= const) Biết F(1) = 1, F(2) = 4 , F(3) = 9, F(4) = 16, F(5) = 25. Tính F(6), F(7), F(8), F(9). Bài 1.1.4: Cho F(x) = x 5 + ax 4 + bx 3 + cx 2 + dx+e (trong đó a, b, c, d,e = const) Biết F(1) = 0, F(2) = 3 , F(3) = 8, F(4) = 15, F(5) = 24. Tính F(6), F(7), F(8), F(9). Bài 1.1.5: Cho P(x) = x 5 + ax 4 + bx 3 + cx 2 + dx +e . (trong đó a, b, c, d,e = const) Biết P(1) = 4, P(2) = 16, P(3) =36 , P(4) = 64, P(5) = 100. Tính P(6), P(7), P(8), P(9). Bài 1.1.6: Cho P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1) = 5 ; P(2) = 14 ; P(3) = 29 ; P(4) = 50 . Hãy tính P(5) ; P(6) ; P(7) ; P(8). Bài 1.1.7: Cho P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1) = 0 ; P(2) = 4 ; P(3) = 18 ; P(4) = 48 . Hãy tính P(2002) . Bài 1.1.8: Cho P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1) = 0,5 ; P(2) = 2 ; P(3) = 4,5 ; P(4) = 8 . Hãy tính P(2002) ; P(2003) . Bài 1.1.9: Cho P(x) = x 5 +ax 4 + bx 3 + cx 2 + dx +e . (trong đó a, b, c, d,e = const) Biết P(1) = 1, P(2) = 5, P(3) =14, P(4) = 30, P(5) = 55. Tính P(6), P(7), P(8), P(9). Bài 1.1.10: Cho P(x) = x 5 +ax 4 + bx 3 + cx 2 + dx +e . (trong đó a, b, c, d,e = const) Biết P(1) = 9, P(2) = 25, P(3) =49 , P(4) = 81, P(5) = 121. Tính P(6), P(7), P(8), P(9). Bài 1.1.11: Cho P(x) = x 5 + ax 4 + bx 3 + cx 2 + dx +e . (trong đó a, b, c, d,e = const) Biết P(1) = 2, P(2) = 9, P(3) =28 , P(4) = 65, P(5) = 126. Tính P(6), P(7), P(8), P(9). Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 2 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn Bài 1.1.12: Cho P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1) = 1 ; P(2) = 9 ; P(3) = 25 ; P(4) = 49 . Hãy tính P(5) ; P(6) ; P(7) ; P(8). Bài 1.1.13: Cho đa thức f(x) = x 5 + x 2 + 1 có năm nghiệm là x 1 ; x 2 ; x 3 ; x 4 ; x 5 . Ký hiệu p(x) = x 2 - 81 . Hãy tìm tích p = p(x 1 )p(x 2 )p(x 3 )p(x 4 )p(x 5 ) . Bài 1.1.14: Cho đa thức f(x) = 2x 5 + 3x 2 + 2010 có năm nghiệm là x 1 ; x 2 ; x 3 ; x 4 ; x 5 . Ký hiệu p(x) = x 2 - 100 . Hãy tìm tích p = p(x 1 )p(x 2 )p(x 3 )p(x 4 )p(x 5 ) . Bài 1.1.15: Cho đa thức f(x) = x 5 +2 x 3 + 20112012 có năm nghiệm là x 1 ;x 2 ; x 3 ; x 4 ; x 5 .Ký hiệu p(x) = x 2 . Hãy tìm tích p = p(x 1 )p(x 2 )p(x 3 )p(x 4 )p(x 5 ) . Bài 1.1.16: Cho hàm số :F(x) =50x 4 +ax 3 +bx 2 +cx+d (trong đó a, b, c, d = const) Biết F(1) = 3 ;F(2) = 10 ; F(3) = 29 ; F(4)=67 . Tính F(100) và F(122). Bài 1.1.17: Cho đa thức f(x) = 3x 4 +2009 x+ 2011 có 4 nghiệm là x 1 ;x 2 ; x 3 ; x 4 . Ký hiệu p(x) = x 2 - 49 . Hãy tìm tích p = p(x 1 )p(x 2 )p(x 3 )p(x 4 )p(x 5 ) . Bài 1.1.18: Đa thức F(x) khi chia cho x-3 thì d 10 , khi chia cho x+5 thì d 2 còn khi chia cho (x-3)(x+5) thì đợc thơng là x 2 +1 và còn d. 1/Xác định F(x). 2/Xác định đa thức d. 3/Tính F(10) ; F(1002). Bài 1.1.19: Đa thức F(x) khi chia cho x-3 thì d 7, khi chia cho x+5 thì d -9 còn khi chia cho x 2 - 5x+6 thì đợc thơng là x 2 +1 và còn d. 1/Xác định F(x). 2/Xác định đa thức d. 3/Tính F(10) ; F(1001). Bài 1.1.20: Cho đa thức P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1)=10 ; P(2) = 20 ; P(3) = 30 . 1/Tính A = 2011.[ P(12) + P(- 8) ] . 2/Tính A = 2011 2 .[ P(12) + P(- 8) ] . Bài 1.1.21: Đa thức F(x) khi chia cho x-2 thì d 5, khi chia cho x-3 thì d 7 còn khi chia cho 2x 2 - 5x+6 thì đợc thơng là 1-2x 2 và còn d. 1/Xác định F(x). 2/Xác định đa thức d. 3/Tính F(10) ; F(1000). Bài 1.1.22: Đa thức F(x) khi chia cho x-2 thì d 2, khi chia cho x-3 thì d 7 còn khi chia cho x 2 - 25x+16 thì đợc thơng là 2-3x 2 và còn d. Tính F(10) ; F(1003). Bài 1.1.23: Cho F(x) = x 5 + ax 4 + bx 3 + cx 2 + dx+e (trong đó a, b, c, d,e = const) Biết F(1) = 3, F(2) = 9 , F(3) = 19, F(4) = 33, F(5) = 51. Tính F(10), F(100), F(1000), F(10000). Bài 1.1.24: Đa thức F(x) khi chia cho x- 3 thì d 7, khi chia cho x+5 thì d -9 , khi chia cho x- 6 thì d 19 còn khi chia cho 2x 3 -5x 2 +6 thì đợc thơng là 3x 2 +2 và còn d. Tính F(100) ; F(1000). Bài 1.1.25: Cho đa thức P(x) = 2x 5 + ax 4 + bx 3 + cx 2 + dx+e. (trong đó a, b, c, d = const) Biết P(1)=8 ; P(2) = 14 ; P(3) = 20 ; P(4) = 26 . Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 3 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn 1/Tính A = 2011.[ P(11) - P(- 6) ] . 2/Tính A = 2011 2 .[ P(11) - P(- 6) ] . Bài 1.1.26: Cho đa thức P(x) = x 5 + ax 4 + bx 3 + cx 2 + dx+e. (trong đó a, b, c, d = const) Biết P(1)=-2 ; P(2) = 1 ; P(3) = 6 ; P(4) = 13 . 1/Tính A = [ P(15) - P(- 10) ] :25 2/Tính A 2 ,A 3 ,A 4 . Bài 1.1.27: Cho đa thức P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1) =1 ; P(2) = 3 ; P(3) = 7 . 1/Tính A = [ P(20) + P(- 16) ] :6 2/Tính A 2 , A 3 , A 4 . 3/ Tính S = A + A 2 + A 3 + A 4 . Bài 1.1.28: Cho đa thức f(x) = 5x 4 - 4x 2 + 3 có 4 nghiệm là x 1 ; x 2 ; x 3 ; x 4 . Ký hiệu p(x) = 4x 2 - 100 . Hãy tìm tích p = p(x 1 )p(x 2 )p(x 3 )p(x 4 ) . Bài 1.1.29: Cho P(x) là đa thức với hệ số nguyên có giá trị P(21) = 17 ;P(37) = 33. Biết P(N) = N + 51 .Tính N Dạng 1.2: Tính giá trị biểu thức Dạng 1.2.1: Tính chính xác kết quả của phép tính tràn màn hình Bài 1.2.1.1: Tính kết quả đúng của các tích sau: a) A = 2222255555 ì 2222266666 b) B = 20032003 ì 20042004 c) C = 1980 11 Bài 1.2.1.2: Nêu một phơng pháp (kết hợp trên giấy và máy tính) để tính kết quả đúng của phép tính sau: 12578963.14375 Bài 1.2.1.3: Tính giá trị chính xác của số: a) B = 123456789 2 b) C = 1023456 3 c) 20122003 2 Bài 1.2.1.4: 1) Nêu một phơng pháp tính chính xác số 1038471 3 2)Tìm giá trị chính xác của 1038471 3 . Bài 1.2.1.5: Tính chính xác các phép tính sau: a/ A= 5555566666.6666677777 b/ B = 20! c/ C = 1.1! +2.2! + 3.3! + +16.16! d/ D = 13032006.13032007 e/ E = 3333355555.3333377777 f) Tính chính xác tổng sau: S = 1 ì 1! +2 ì 2! + +10 ì 10! . g) Tính chính xác tổng sau: S = 1 ì 1! +2 ì 2! + +20 ì 20! . Bài 1.2.1.6: Tính chính xác các phép tính sau: a/ A = 1322007.1322009 b/ B = 6666688888.7777799999 c/ C = 20072008 2 Bài 1.2.1.7: Tính chính xác giá trị của M rồi tính tổng các chữ số của M. M = 9876543210123456789.12345 Bài 1.2.1.8: Tính chính xác giá trị của N rồi tính tổng các chữ số của N. Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 4 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn N = 9876543210123456789.123456789 Dạng 1.2.2: Tính giá trị của biểu thức lợng giác Bài 1.2.2.1: Hãy tính giá trị của biểu thức: A = '1520sin'1872sin '4035sin'3654sin 00 00 + ; B = '1052cos'2240cos '1763cos'2536cos 00 00 + ; H = (cotg22 0 17- cotg15 0 16)(cos 2 16 0 11- sin 3 20 0 12)(Hãy tính chính xác đến 0,0001) Bài 1.2.2.2: 1) Tính : A = sin 2 2 0 + sin 2 4 0 + + sin 2 86 0 + sin 2 88 0 2) Chứng minh rằng biểu thức sau không phụ thuộc vào x : P = 1994(sin 6 x + cos 6 x) - 2991(sin 4 x + cos 4 x) Bài 1.2.2.3: Cho 0,7651cos = với 0 0 < < 90 0 1) Tính số đo của góc (độ , phút , giây) 2) Tính B = 8 cos 4 - 8cos 2 - cos 4 + 1,05678 Bài 1.2.2.4: Cho cot = 20 21 . Tính A = 2 2cos cos 3 sin 3sin 2 2 + đúng đến 7 chữ số thập phân. Bài 1.2.2.5: Tính: 1) 3 3 2 3 3 3 cos .(1 sin ) tan . (cos sin ).cot M + + = + Biết sin = 0,3456 (0 0 < < 90 0 ) . 2) 2 3 2 3 3 3 4 sin (1 cos ) cos (1 sin ) . (1 tan )(1 cot ) 1 cos N + + + = + + + Biết cos 2 = 0,5678 (0 0 < < 90 0 ) . 3) 2 3 2 3 3 3 tan (1 cos ) cot (1 sin ) . (sin cos )(1 sin cos ) K + + + = + + + Biết tan = tan35 0 .tan36 0 .tan52 0 . tan53 0 . (0 0 < < 90 0 ) . Bài 1.2.2.6: Cho sina = 0,7895 ; cosb = 0,8191 ( a , b là góc nhọn) Tính X = a + 2b (độ và phút). Bài 1.2.2.7: a/Tính A = 2 3 1 2 3 4cos cos cos + + + biết 3sin 2cos + = b/ Tính A = 2 3 4 3 2cos cos cos + + + biết 2sin 2cos + = c/ Tính A = 2 3 4 3sin 2sin sin + + + biết sin 1,5cos + = Dạng 1.2.3: Tính giá trị biểu thức dãy có quy luật Bài 1.2. 3.1: 1/Hãy tính giá trị của biểu thức: ( ) ( ) 1 1 1 1 1.2.3 2.3.4 3.4.5 1 2 A n n n = + + +ììì+ + + 2/Hãy tính giá trị của biểu thức: 1 1 1 1 1.2.3 2.3.4 3.4.5 970200 A = + + +ììì+ 3/Hãy tính giá trị của biểu thức: 5 5 5 5 1.2.3 2.3.4 3.4.5 2009.2010.2011 A = + + +ììì+ Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 5 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn 4/Hãy tính giá trị của biểu thức: ( ) ( ) ( ) 1 1 1 1 1.3.5 3.5.7 5.7.9 2 1 2 3 2 5 A n n n = + + +ììì+ + + + 5/Hãy tính giá trị của biểu thức: 36 36 36 36 1.3.5 3.5.7 5.7.9 2009.2011.2013 A = + + +ììì+ Bài 1.2.3.2: 1/Tính giá trị của biểu thức: 2 1 1 1 1 1 1 1 1 3 9 16 A n = ì ì ììì ì ữ ữ ữ ữ 2/Tính giá trị của biểu thức: 1 1 1 1 1 1 1 1 3 9 16 10000 A = ì ì ììì ì ữ ữ ữ ữ Bài 1.2.3.3: Tính tổng và viết quy trình tính: 1/ S = 1 + 2 + 3 + .+ 72 2/ 1 1 1 1 1 . 2 3 71 72 P = + + + + + 3/ 1 1 1 1 1 . 2 3 4 72 Q = + + 4/ K = 1 + 3 + 5 + + 99 5/ H = 1.2 +2.3 +3.4 + + 49.50 6/A = 1. 2 2. 3 3. 4 . 49. 50+ + + + Bài 1.2.3.4: 1/Hãy tính giá trị của biểu thức: A = )1.( 1 12 1 6 1 2 1 + ++++ nn 2/ Hãy tính giá trị của biểu thức: A = 9999900000 1 12 1 6 1 2 1 ++++ Bài 1.2.3.5: Tính ( làm tròn đến 6 chữ số thập phân): 1 / 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10A = + + + + 2/ M = P Q với P = 3 + 3 2 ++ 3 19 ; Q = 2 3 19 1 1 1 1 . 3 3 3 3 + + + + 3/ N = 1 1 1 1 1 1 1 1 1 2 2 3 2 3 15 + ì + + ììì + + +ììì ữ ữ ữ (chính xác tới 0,0001) Bài 1.2.3.6: Cho S 1 = 100 ; S 2 = S 1 + 15 2 ; S 3 = S 1 + S 2 + 30 2 S 4 = S 1 + S 2 + S 3 +55 2 ; S 5 = S 1 + S 2 + S 3 + S 4 +90 2 Tính S 8 ; S 9 ; S 10 ;S 20 Bài 1.2.3.7: Cho S 1 = 100 ; S 2 = S 1 + 13 2 ; S 3 = S 1 + S 2 + 21 2 S 4 = S 1 + S 2 + S 3 + 34 2 ; S 5 = S 1 + S 2 + S 3 + S 4 +52 2 Tính S 8 ; S 9 ; S 10 ;S 30 Bài 1.2.3.8: Cho S 1 = 196 ; S 2 = S 1 + 2 2 ; S 3 = S 1 + S 2 + 9 2 S 4 = S 1 + S 2 + S 3 + 23 2 ; S 5 = S 1 + S 2 + S 3 + S 4 + 44 2 Tính S 8 ; S 9 ; S 10 ;S 50 Bài 1.2.3.9: Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 6 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn Cho dãy số u n = 4 3n n .và S n = u 1 + u 2 ++u n . a/ Viết quy trình bấm phím tính S n . b/ Hãy tính S 5 ;S 10 ;S 15 ;S 20 . Bài 1.2.3.10: Cho dãy số u n Với u 1 = 7 ;u 2 = 7 7+ ;u n = 7 7 . 7+ + 1 4 42 4 43 a/ Viết quy trình bấm phím tính u n . b/ Tính u 1000 Bài 1.2.3.11: Cho dãy số u n .Tính u 10000 với u 1 = 10 ;u 2 = 10 10+ ;u n = 10 10 . 10+ + 1 4 44 2 4 4 43 Bài 1.2.3.12: Cho dãy số u n = 3 4 5n n + .và S n = u 1 + u 2 ++u n .Hãy tính S 5 ;S 10 ;S 15 ;S 20 . Bài 1.2.3.13: Cho dãy số u n .Tính u 10000 với u 1 = 3 15 ;u 2 = 3 3 15 15+ ;u n = 3 3 3 15 15 . 15+ + + 1 4 4 42 4 4 43 Bài 1.2.3.14: Cho dãy số :S n = (1 3 +2 3 )(1 3 +2 3 +3 3 )(1 3 +2 3 +3 3 ++n 3 ) a/ Viết quy trình bấm phím tính S n . b/ Tính S n với n = 1,2,3,,10. Bài 1.2.3.15: Cho dãy số :S n = 1 4 +(1 4 +2 4 )+(1 4 +2 4 +3 4 )++(1 4 +2 4 +3 4 ++n 4 ) a/ Viết quy trình bấm phím tính S n . b/ Tính S n với n = 5;10;15;20. Bài 1.2.3.16: Cho dãy số :S n = 1 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 . ( 1) 2 2 3 2 3 n n + + ììì + + ì ữ ữ ữ a/ Viết quy trình bấm phím tính S n . b/ Tính S n với n = 5;7 . Bài 1.2.3.17: Với mỗi số nguyên dơng n > 1.Đặt S n = 1.2 +2.3 +3.4 + +n.(n+1) a/Viết quy trình tính S n b/Tính S 50 ; S 2005 ; S 20052005 c/ So sánh 2 2005 S với S 20052005 Bài 1.2.3.18: Cho 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 . 1 2 3 3 4 4 5 ( 1) n S n n = + + + + + + + + + + + + + a/ Viết quy trình bấm phím tính S n . Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 7 n dấu căn n dấu căn n dấu căn Trờng THCS on Kt Website:http://duongmanhha81/violet.vn b/ Tính S 10 ; S 12 và S 2007 ;S 2011 với 6 chữ số ở phần thập phân. Bài 1.2.3.19: Với mỗi số nguyên dơng n . Đặt 3 6 4 2 3. 7 4 3 ( ) 9 4 5. 2 5 n A n n n + = + + + a/Tính A(2007). b/So sánh A(2008) với A(20072008). Bài 1.2.3.20: Cho S 1 = 81 ; S 2 = S 1 + 15 2 ; S 3 = S 1 + S 2 + 25 2 S 4 = S 1 + S 2 + S 3 +39 2 ; S 5 = S 1 + S 2 + S 3 + S 4 +57 2 Tính S 8 ; S 9 ; S 10 . Bài 1.2.3.21: Tính giá trị biểu thức : a/ A = 3 + 8 + 15 + + 9800 b/ B = 1.2.3 + 3.5.7 + 5.7.9 ++ 95.97.99 c/C=3 + 6 + 11 + 20 + 37 ++ (2 n + n) với n = 10, n = 20, n= 30 d/D = 1 + 3 2 + 3 4 + 3 6 ++ 3 100 e/E = 7 + 7 3 + 7 5 + 7 7 ++ 7 99 Bài 1.2.3.22: 1/ Tính A = 1 (1 2) (1 2 3) . (1 2 3 . 2008) 1.2008 2.2007 3.2006 . 2007.2 2008.1 + + + + + + + + + + + + + + + + 2/ Tính B = 1 - 2 4 + 3 4 - 4 4 + + 49 4 - 50 4 . 3/ Tính C = 1 1 1 1 1 2! 3! 4! 50! + + + + ììì+ . 4/ Tính D = 40 38 36 . 4 2 . 5/ Tính E = 40 39 38 . 3 2 . 6) 3 4 5 6 7 8 9 9 2 3 4 5 6 7 8 9 2010A = + + + + Bài 1.2.3.23: Tính (làm tròn đến 6 chữ số thập phân): 9 8 7 6 5 4 3 9 8 7 6 5 4 3 2C = Bài 1.2.3.24: Cho C n = ( 1) ( 2) 3 ( 1) ( 2) .4 3 2 n n n n n n a/ Viết quy trình tính C n . b/ TínhC 50 ; C 100 . Bài 1.2.3.25: Cho T n = ( ) ( ) ( ) 2 0 2 0 2 0 2 0 2 0 2 0 1 1 2 . 1 2 .Sin Sin Sin Sin Sin Sin n+ + + + + + a/ Viết quy trình tính T n b/Tính T 100 . Bài 1.2.3.26: Tính gần đúng (làm tròn đến 6 chữ số thập phân) : A = 3 4 5 6 7 6 5 4 3 2 1 7 2 3 4 5 6 7 + + + Bài 1.2.3.27: Với mỗi số nguyên dơng n > 1 .Đặt S n = 1.2 + 2.3 + 3.4 + .+ n(n + 1) Tính S 100 và S 2005 . Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 8 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn Dạng 1.2.4: Tính giá trị biểu thức đại số Bài 1.2.4.1: Cho biểu thức: M = (4x 4 - 2x 3 + x - 1) 3 Hãy tính giá trị của biểu thức M khi x = 3 2 733 + - 3 2 Bài 1.2.4.2: 1/Hãy tính giá trị của biểu thức: A = 5 +55 +555 + .+ 55 .5 142 43 2/Hãy tính giá trị của biểu thức: A = 5 +55 +555 + .+ 55 .5 142 43 3/Hãy tính giá trị của biểu thức: A = 7 +77 +777 + .+ 77 .7 14 2 43 Bài 1.2.4.3: 1) Hãy tính giá trị của biểu thức: A = 1 99 2 98 . 98 2 99 1 100 1 99 1 . 3 1 2 1 ++++ ++++ 2) Trục căn thức ở mẫu số rồi dùng máy tính tính giá trị của biểu thức B = 3 3 2 2 2 2 4+ + với độ chính xác càng cao càng tốt. Bài 1.2.4.4: 1/Hãy tính giá trị của biểu thức: P = ( ) +++ 25332.35 2/ Tính P 80 . 3/Tính P 100 . Bài 1.2.4.5: Hãy tính giá trị của biểu thức: P = ( )( ) 154.610.154 + . Bài 1.2.4.6: Hãy tính giá trị của biểu thức: P = ( ) ( ) ( ) ( ) 12,22112,0 9811,412340,2 + Bài 1.2.4.7: Hãy tính giá trị của biểu thức: P = ( ) [ ] 0125,0: 4 1 1 .).8333,125,0: 5 1 136:2,1( 8,12 1 822,925,2:35,675,6 + + Bài 1.2.4.8: Hãy tính giá trị của biểu thức: P = 7 1 3. 5 6 2 9 1 7 5 8 : 37 2 75,6 6251,7 137 4 5 :5,7 + Bài 1.2.4.9: Hãy tính giá trị của biểu thức: P = 22,8: 76,6 32 75 32 3715 + + + Bài 1.2.4.10: Thực hiện phép tính: a. A = 2008.2006.2004.2002 2007).12006).(12004).(12002( 222 +++ b. B = 2012.2020.2005.2003 2008.2007.2006).340202003).(20122005( 22 + ; Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 9 n số 5 12 số 5 17 số 7 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn Bài 1.2.4.11: Tính giá trị các biểu thức sau: A = ( 5 - 3 ).( 32 + + 53 + - 2 ). 1 1 1 1 . 2 3 99 2005 1 2 2003 2004 . 2004 2003 2 1 + + + + + + + + B = 2008.2007.2006.2005.2004.2003.2002.2001 2011.2010).560202009).(6100302008).(960102007( 222 Bài 1.2.4.12: Cho 3 điện trở R 1 = 4,18 , R 2 = 5,23 , R 3 = 6,17 đợc mắc song song trên 1 mạch điện. Tính điện trở tơng đơng R tđ ( biết 1 2 3 1 1 1 1 R R R R = + + ) Bài 1.2.4.13: a) Tính: A = 321930 291945 2171954 3041945+ + + b) Tính : P(x) = 19 x - 13 x - 11 x khi x = 1,51425367. c) Cho : P(x) = 3 x - 12 x - 2002 x .Tính P(1,0012) Bài 1.2.4.14: Cho a , b là các số thoả mãn : 3 2 3 2 3 2 3 11 a ab b a b = = a) Tính: P = 2010(a 2 + b 30 ) b) Nêu một phơng pháp (kết hợp trên giấy và máy tính) để tính kết quả đúng của: Q = 2010(a 30 + b 2 ) Bài 1.2.4.15: 1) Tìm số C , biết rằng 7,5 % của nó bằng 7 17 3 (8 6 ) 1 55 110 217 2 3 7 ( ) :1 5 20 8 ì 2) Tính bằng máy tính A = 1 2 + 2 2 + .+ 10 2 . Có thể dùng kết quả đó để tính đợc tổng S = 2 2 + 4 2 + + 20 2 mà không sử dụng máy tính . Em hãy trình bày lời giải tính tổng S . Bài 1.2.4.16: Tính A = 2 2 3 2 3 5 (1,263) (3,124) 15 (2,36) ì ì . Bài 1.2.4.17: Tính gần đúng đến 7 chữ số thập phân: 1 1 1 2 2 2 1 2 91919191 3 9 27 3 9 27 182 : 4 4 4 1 1 1 80808080 4 1 7 49 343 7 49 343 B + + + + + + ữ = ì ì ữ ữ + + Bài 1.2.4.18: Tính 22 25 18 2,6 7 47 50 9 28 16 h ph g h ph g h ph g A ì + = chính xác tới 5 chữ số thập phân. Bài 1.2.4.19: Bài 1.2.4.20: 1) Tính 2 2 2 0,19981998 . 0,019981998 . 0,0019981998 . A = + + 2) Tìm tất cả các ớc nguyên tố của số A . Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 10 [...]... ta trồng dừa trên một đám đất hình vuông thành từng hàng song song , cách đều theo cả hai chiều Biết rằng , hàng cây ngoài cùng cách cạnh của đám đất bằng khoảng cách giữa hai hàng cây liên tiếp Nếu chọn khoảng cách giữa hai cây liên tiếp là 4 m thì số cây trồng trên toàn đám đất nhiều hơn số cây đợc trồng theo cách chọn khoảng cách giữa hai cây liên tiếp là 5 m , là 136 cây Tính cạnh của đám đất... >>> Chuyênđề 4: 2011 190 99 Hình học Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 23 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn Bài 4.1: Cho tam giác ABC có chu vi là 95,3768 cm Tỉ lệ các cạnh của tam giác là 3 : 5 : 7 Tính độ dài các cạnh của tam giác( Tính chính xác đến 0,001) Bài 4.2: Cho tam giác ABC vuông cân tại A, biết BC = 10,26cm Tính các cạnh góc vuông và diện tích tam... 4.18 Một hình thoi có cạnh bằng 24,13 cm, khoảng cách giữa hai cạnh là 12,25 cm 1) Tính các góc của hình thoi ( độ , phút , giây) 2) Tính diện tích của hình tròn (0) nội tiếp hình thoi chính xác đến chữ số thập phân thứ ba Các chuyênđề casio lớp 8+9 Giỏo viờn : ng Mnh H 25 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn 3) Tính diện tích tam giác đều ngoại tiếp đờng tròn (0) Bài 4.19: Hai tam... cắt AC tại D 1) Tính độ dài đoạn thẳng BD 2) Tính tỉ số diện tích của các tam giác ABD và ABC 3) Tính diện tích tam giác ABD Bài 4.25: a/Tính chu vi và diện tích của hình tròn nội tiếp tam giác đều có cạnh a = 4,6872 cm a/Tính chu vi và diện tích của hình tròn ngoại tiếp tam giác đều có cạnh a = 4,6872cm Bài 4.26: Các chuyênđề casio lớp 8+9 Giỏo viờn : ng Mnh H 26 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn... độ dài các cạnh còn lại của tam giác ABC Bài 4.36: Cho hình thang cân ABCD , CD = 10 cm , đáy nhỏ bằng đờng cao,đờng chéo vuông góc với cạnh bên.Tính độ dài đờng cao Các chuyênđề casio lớp 8+9 Giỏo viờn : ng Mnh H 28 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn Bài 4.37: Cho tam giác ABC ,BC = 40 cm , đờng phân giác AD = 45 cm , đờng cao AH = 36 cm.Tính BD , CD Dãy số >>> Chuyênđề 5: Dạng... Tìm các hệ số b , c , d của đa thức P(x) b) Tìm số d r1 trong phép chia P(x) cho x - 4 c) Tìm số d r2 trong phép chia P(x) cho 2x + 3 (Tính chính xác đến 0,01) Bài 3.2.8: a) Tìm a, b để x3 + ax2 + 2x + b chia hết cho x2 + x - 2 b) Tìm tất cả các số nguyên dơng n sao cho đa thức x3n+1 + x2n + 1 chia hết cho đa thức x2 + x + 1 Bài 3.2.9: Cho đa thức: P(x) = x4 + 5x3 - 4x2 + 3x - 50 Các chuyênđề casio. .. b) 22 + 15n 1M 7 9 Giải:a) Với n = 1 thì: 42 + 22 + 1 = 42 + 22 + 1 = 21M 7 Giả sử mệnh đề đúng với n = k (k N , k 1) tức là: 42 + 22 + 1M 7 Ta phải chứng minh mệnh đề đúng với n = k + 1 tức là: 42 + 22 + 1M 7 2 Thật vậy: 4 2 nếu k chẵn và 4 nếu k lẻ 69 220 119 5 n n n n n 1 1 k k k +1 k +1 k+1 Các chuyênđề casio lớp 8+9 Giỏo viờn : ng Mnh H 21 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn... 0,1, 2, 3,4,5,6,7,8 b) Lập công thức truy hồi tính Un+1 theo Un và Un-1? Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 31 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn c/ Lập quy trình bấm phím liên tục tính Un+1 theo Un và Un-1? Bài 5.3.7: Cho un = 3 2n (n 1) ; Sn= u1+ u2 + + un Tính S 20 n Liên phân số >>> Chuyênđề 6: Bài 6.1: Tính: A= 20 1 2+ 2 ; 1 3+ 4+ 1 5+ B= 1 5 ; C= 1 6+ 7+ 2+... trình bấm phím tính giá trị của liên phân số:M = 2) Tính 1 2003 M 1 7+ 1 15 + 1 1+ 1 292 Rút gọn biểu thức >>> Chuyênđề 7: Bài 7.1: Cho biểu thức P = 1 x 1 - 1 1 x3 x ( 2 + 2 2 x +1 x 2x + 1 1 x ) a Tìm điều kiện của x để giá trị phân thức đợc xác định b Rút gọn phân thức ; Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 34 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn 1 3 c Tính giá... 1(mod 41) Vậy: 512002 1(mod 41) Bài 3.3 A.9: a) Viết quy trình tìm số d khi chia (515 + 1) cho (212 +1) 100 100 100 100 Cácchuyênđềcasio lớp 8+9 Giỏo viờn : ng Mnh H 20 Trờng THCS on Kt Website:http://duongmanhha81/violet.vn b) Hãy tìm số d r Bài 3.3 A.10: Tính phần d của các số 70 ; 71 ; 72 ; 73 ; 74 ; 75 ; 76 ; 77 ; 78 ; 79 ; 710 ; 711 khi chia cho 13 và điền vào bảng sau: 70 71 72 73 74 75 . Website:http://duongmanhha81/violet.vn Các chuyên đề casio ************** Môn: Toán Lớp: 8 + 9 Năm : 2009- 2010 >>> Chuyên đề : Kiến thức cần nhớ .1-. hợp chập k của n .5 - Các định lí: Định lý Phécma lớn: Với mọi p là số nguyên tố và với mọi a ta có: (mod ) p a a p Các chuyên đề casio lớp 8+9 Giỏo viờn