1. Trang chủ
  2. » Giáo án - Bài giảng

Nâng cao hiẹu quả dạy so sánh phân số

18 1,1K 7
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 736 KB

Nội dung

Nâng cao hiệu quả dạy so sánh phân số Toán 4 a- đặt vấn đề I- Cơ sở lý luận Căn cứ vào nhiệm vụ và mục tiêu giáo dục, căn cứ vào thực trạng dạy và học toán hiện nay, cần có hớng đổi mới phơng pháp dạy toán ở Tiểu học là tích cực hoá hoạt động học tập của HS, tập trung vào việc rèn luyện khả năng tự học, tự phát hiện và tự giải quyết vấn đề, nhằm hình thành ở HS t duy tích cực, độc lập, sáng tạo . Để đạt đợc điều đó, trong giảng dạy bộ môn Toán, ngời thầy phải giúp học sinh nắm vững tri thức, phát triển t duy, hình thành kĩ năng, kĩ xảo. Trong môn Toán 4, mảng kiến thức về phân số chiếm một vị trí hết sức quan trọng. ở mảng kiến thức này có một số vấn đề HS sẽ mắc phải khó khăn trong đó có vấn đề "So sánh phân số". Vậy để khắc phục khó khăn phần nào cho HS ,trong quá giảng dạy tôi luôn rèn cho HS khả năng định hớng và tìm tòi, phát hiện cách giải bài toán, đồng thời giúp HS nhận dạng, phân loại bài tập. Trong mỗi dạng, mỗi bài toán, tôi cố gắng cung cấp cho HS một số phơng pháp, cách thức nhất định để giải . II- Cơ sở thực tiễn. 1- Với học sinh: Vớng mắc khi gặp: - Một số bài toán so sánh phân số không đợc quy đồng. - Một số bài toán so sánh phân số phức tạp mà việc so sánh bằng cách quy đồng mẫu số sẽ gặp khó khăn. - Một số bài toán yêu cầu học sinh so sánh bằng nhiều cách. - Một số bài toán cần so sánh nhiều phân số. - Một số bài tập yêu cầu lựa chọn cách làm hợp lí nhất. - Việc lựa chọn phơng pháp nào để giải học sinh còn rất lúng túng. 2- Với giáo viên. Nhằm giúp cho HS có cách giải nhanh, gọn, hợp lý, đồng thời phát triển t duy lôgíc cho HS. Từ đó nâng cao chất lợng môn Toán nên tôi đã mạnh dạn nghiên cứu và hoàn thiện sáng kiến kinh nghiệm " Nâng cao hiệu quả dạy so sánh phân số ở lớp 4". III- mục đích nghiên cứu 1 Nâng cao hiệu quả dạy so sánh phân số Toán 4 - Giúp GV dạy lớp 4 hệ thống đợc các phơng pháp so sánh phân số. - Giải quyết những khó khăn, những lỗi cơ bản trong việc tiếp thu kiến thức về "So sánh phân số" của học sinh. - Rèn cho HS kĩ năng giải toán, t duy lô gíc, khái quát hoá . - Rèn cho HS các năng lực hoạt động trí tuệ, rèn tính cẩn thân, sáng tạo. - Rèn cho HS khả năng phân tích, xem xét bài toán. Mặt khác, khuyến khích HS tìm ra nhiều cách giải cho một bài tập để tập cho HS nhìn nhận một vấn đề theo nhiều khía cạnh khác nhau. IV- Phơng pháp nghiên cứu. Để hình thành và viết chuyên đề sáng kiến, tôi đã sử dụng một số phơng pháp sau: - Phơng pháp tra cứu tập hợp hồ sơ, tài liệu - Phơng pháp tổng hợp so sánh, phân tích kết quả. - Phơng pháp thực nghiệm. V- Phạm vi nghiên cứu. - Thực hiện ở lớp 4 A của trờng. - Dạy toán 4 phần "So sánh phân số" B- phần nội dung I- Tình hình nghiên cứu: Đối với HS phát huy triệt để tính tích cực học tập, hăng say khi giải các bài toán về so sánh phân số. Các em có nhu cầu tự tìm tòi, tự phát hiện cách giải (căn cứ vào cách phân dạng và phơng pháp GV cung cấp) và nhờ đó t duy sáng tạo phát triển rõ rệt. II - Nhiệm vụ của sáng kiến kinh nghiệm - Đa ra một số phơng pháp so sánh phân số. - Chọn ra các bài tập có hệ thống từ dễ đến khó phù hợp với từng trình độ của HS. Nâng cao hiệu quả dạy so sánh phân số Chơng I: những kiến thức liên quan 2 Nâng cao hiệu quả dạy so sánh phân số Toán 4 Trớc khi bắt tay vào việc dạy học sinh các phơng pháp so sánh phân số, tôi đã hệ thống, bổ sung cho các em các kiến thức có liên quan đến việc so sánh phân số. 1- Khái niệm về phân số. Phân sốsố chỉ một hoặc một số nguyên phần đơn vị thờng đợc viết dới dạng b a ; a gọi là tử số, b gọi là mẫu số trong đó b # 0. Ví dụ: 2 1 ; 4 3 .là những phân số. 2- Quy đồng mẫu số. Ví dụ: Quy đồng mẫu số các cặp phân số sau: a, 3 2 và 5 4 b, 3 2 và 6 5 Bài giải a, Ta có: 3 2 = 53 52 x x = 15 10 5 4 = 35 34 x x = 15 12 b, Vì 6: 3 = 2 nên 3 2 = 23 22 x x = 6 4 Kết luận: Quy đồng mẫu sốquá trình ta đa 2 phân số khác mẫu số về hai phân số có cùng mẫu số. b a và d c (b, d # 0) b a = bxd axd d c = dxb cxb 3- Quy đồng tử số. Ví dụ: Quy đồng tử số các cặp phân số sau: a, 7 3 và 9 2 b, 7 3 và 8 6 [ Bài giải a, Ta có: 7 3 = 27 23 x x = 14 6 9 2 = 39 32 x x = 27 6 b, Vì 6: 3 = 2 Nên 7 3 = 27 23 x x = 14 6 Kết luận: Quy đồng tử sốquá trình ta đa hai phân số khác tử số về hai phân số có cùng tử số. 3 Nâng cao hiệu quả dạy so sánh phân số Toán 4 b a và d c (b, d # 0) b a = bxc axc d c = dxa cxa 4- Tính chất của phân số. Ví dụ: Viết phân số bằng phân số 14 6 bằng cách. a- Nhân cả tử và mẫu với 3 b- Chia cả tử và mẫu cho 2 a. 14 6 = 314 36 x x = 42 18 b. 14 6 = 2:14 2:6 = 7 3 Tính chất: Nếu ta nhân hay chia tử số và mẫu số của một phân số với cùng một số tự nhiên khác 0 thì ta đợc một phân số mới bằng phân số đã cho. b a = bxc axc (b, c # 0) b a = cb ca : : (b, c # 0; cả a và b đều chia hết cho c) 5- Rút gọn phân số: a- Rút gọn phân số là gì? Rút gọn phân số là đa phân số đó về một phân số mới có tử số và mẫu số bé đi mà phân số mới ấy vẫn bằng phân số đã cho. Ví dụ: Rút gọn phân số : 2525 1313 Bài làm: 2525 1313 = 101:2525 101:1313 = 25 13 b- Cách làm: - Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn 1. - Chia tử số và mẫu số cho số đó. Cứ làm nh thế cho đến khi nhận đợc phân số tối giản. Chơng II: Một số phơng pháp so sánh phân số Sau khi đã hệ thống các kiến thức liên quan tôi bắt tay vào việc dạy từng phơng pháp phù hợp với các đối tợng học sinh. A- Học sinh đại trà 1- So sánh phân số bằng cách quy đồng mẫu số: a- So sánh hai phân số cùng mẫu số. 4 Nâng cao hiệu quả dạy so sánh phân số Toán 4 Ví dụ 1: So sánh hai phân số 7 2 và 7 3 Bài giải: Ta thấy 2 < 3 nên 7 2 < 7 3 Quy tắc: Hai phân số có cùng mẫu số, phân số nào có tử số lớn hơn thì phân số đó lớn hơn và ngợc lại. b a và b c (b # 0) - Nếu a > c b a > b c - Nếu a < c b a < b c - Nếu a = c b a = b c b- So sánh hai phân số khác mẫu số. (thờng dùng cho bài toán có mẫu số nhỏ). Ví dụ 2: So sánh các cặp phân số sau: a, 4 3 và 7 5 ; b, 12 5 và 6 4 Bài giải: a, Ta có: 4 3 = 74 73 x x = 28 21 ; 7 5 = 47 45 x x = 28 20 Vì 28 21 > 28 20 nên 4 3 > 7 5 b, Vì 12: 6 = 2 nên 6 4 = 26 24 x x = 12 8 ; ta thấy 12 8 > 12 5 nên 6 4 > 12 5 * Chốt kiến thức: nếu hai phân số không cùng mẫu số, ta quy đồng mẫu số hai phân số đó rồi so sánh tử số của chúng với nhau. 2- So sánh hai phân số bằng cách quy đồng tử số: a- So sánh 2 phân số cùng tử số. Ví dụ 3: So sánh 2 phân số 8 3 và 11 3 Bài giải: 8 < 11 nên 8 3 > 11 3 . Quy tắc: Hai phân số cùng tử số, phân số nào có mẫu số bé hơn thì phân số đó lớn hơn và ngợc lại. b a và d a (b, d # 0) 5 Nâng cao hiệu quả dạy so sánh phân số Toán 4 + Nếu b > d b a < d a + Nếu b < d b a > d a + Nếu b = d b a = d a b- So sánh hai phân số khác tử số. (Thờng dùng cho các bài toán có tử số nhỏ) Ví dụ 4: So sánh các cặp phân số a, 7 3 và 8 5 ; b, 7 3 và 8 9 Bài giải :a, 7 3 = 57 53 x x = 35 15 ; 8 5 = 38 35 x x = 24 15 Vì 35 15 < 24 15 nên 7 3 < 8 5 b, 7 3 = 37 33 x x = 21 9 Vì 21 9 < 8 9 nên 7 3 < 8 9 Chốt kiến thức: Muốn so sánh hai phân số không cùng tử số ta có thể quy đồng tử số hai phân số đó rồi so sánh mẫu số của chúng với nhau. 3- So sánh phân số với đơn vị. Ví dụ 5: So sánh phân số sau với 1. a, 5 3 ; b, 2 7 c, 4 4 Bài giải: a, Ta thấy 5 3 < 5 5 mà 5 5 = 1 nên 5 3 < 1 b, Ta có: 2 7 > 2 2 mà 2 2 = 1 nên 2 7 > 1 c, Ta có 4 4 = 1 Kết luận: - Nếu phân số có tử số bé hơn mẫu số thì phân số bé hơn 1. b a nếu a < b thì b a < 1 - Nếu phân số có tử số lớn hơn mẫu số thì phân số lớn hơn 1. 6 Nâng cao hiệu quả dạy so sánh phân số Toán 4 b a nếu a > b thì b a > 1 - Nếu phân số có tử số bằng mẫu số thì phân số bằng 1. b a nếu a = b thì b a = 1 4- So sánh các phân số dựa vào các tính chất cơ bản của phân số. Ví dụ 6: Trong các phân số sau, phân số nào lớn nhất, phân số nào nhỏ nhất: 507 307 ; 507507 307307 ; 507507507 307307307 Bài giải: Ta thấy 507507 307307 = 101507 1001307 x x = 507 307 507507507 307307307 = 1001001507 1001001307 x x = 507 307 Vậy 507 307 = 507507 307307 = 507507507 307307307 *Nhận xét: Gặp bài toán so sánh phân số, học sinh thờng nghĩ xem phân số nào lớn hơn, phân số nào nhỏ hơn nên tìm mọi cách để so sánh. Nhng điều bất ngờ là các phân số đó lại bằng nhau. Nh vậy để so sánh phân số thì trớc hết ta nên đa các phân số đó về phân số tối giản (nếu có thể). Sau đó sẽ so sánh. B- Học sinh khá , giỏi 5- So sánh phân số dựa vào phân số trung gian. Ví dụ 7: So sánh các cặp số sau mà không quy đồng. [[ a, 23 16 và 29 15 b, 9 2 và 12 5 c, 9 7 và 10 13 Bài giải: a, + Cách 1: Ta có: 23 16 > 29 16 và 29 16 > 29 15 nên 23 16 > 29 15 + Cách 2: Ta thấy 23 16 > 23 15 và 23 15 > 29 15 nên 23 16 > 29 15 b, + Cách 1: 9 2 < 9 3 ; 12 5 > 12 4 mà 9 3 = 12 4 = 3 1 Vậy 9 2 < 3 1 < 12 5 nên 9 2 < 12 5 + Cách 2: 9 2 < 8 2 mà 8 2 = 4 1 = 12 3 ; 12 3 < 12 5 nên 9 2 < 12 5 c, Ta có: 9 7 < 1 và 10 13 > 1 Vậy 9 7 < 1 < 10 13 hay 9 7 < 10 13 *Kiến thức cần nhớ: 7 Nâng cao hiệu quả dạy so sánh phân số Toán 4 So sánh qua phân số trung gian là ta tìm một phân số trung gian sao cho phân số trung gian lớn hơn phân số này nhng nhỏ hơn phân số kia. Lu ý: Có 3 loại phân số trung gian Loại 1: Phân số trung gian có tử số bằng tử số của một trong hai phân số đã cho, mẫu trùng với mẫu của phân số còn lại loại phân số trung gian này có hai cách chọn. Cách 1: Phân số trung gian có tử số là tử của phân số thứ nhất, mẫu là mẫu của phân số thứ hai. Cách 2: Phân số trung gian có mẫu số là mẫu của phân số thứ nhất, tử là tử của phân số thứ 2. Loại phân số trung gian này chỉ áp dụng với những bài toán so sánh hai phân số mà tử của phân số thứ nhất bé hơn tử của phân số thứ hai và mẫu của phân số thứ nhất lớn hơn mẫu của phân số thứ hai. (nh ví dụ 7a). Loại 2: Phân số trung gian thể hiện mối quan hệ giữa tử và mẫu của hai phân số. (Ví dụ 7 phần b). Loại 3: Phân số trung gian là đơn vị (Ví dụ 7 phần c) áp dụng với các bài toán so sánh hai phân số mà trong đó một phân số lớn hơn đơn vị, phân số còn lại nhỏ hơn đơn vị. 6- So sánh hai phân số dựa vào so sánh phần bù đến 1 của mỗi phân số. Ví dụ 8: So sánh hai phân số: 1999 1998 và 2000 1999 Bài giải: Ta thấy: 1- 1999 1998 = 1999 1 ; 1- 2000 1999 = 2000 1 mà 1999 1 > 2000 1 nên 1999 1998 < 2000 1999 * Kết luận: Trong hai phân số nếu phân số nào có phần bù đến 1 lớn hơn thì phân số đó bé hơn và ngợc lại. 1 - b a < 1 - d c thì b a > d c ; 1 - b a > 1 - d c thì b a < d c Nhận xét: Cách này thờng áp dụng với những bài toán so sánh phân số mà mẫu số 2 phân số cùng lớn hơn tử số hai phân số một lợng nh nhau. 7- Dùng cách nhân tử số của phân số này với mẫu của phân số kia, rồi so sánh hai tích. 8 Nâng cao hiệu quả dạy so sánh phân số Toán 4 Ví dụ 9: So sánh hai phân số: 128 3 và 207 5 Bài giải: Ta thấy: 3 x 207 = 621 5 x 128 = 640 mà 621 <640 nên 128 3 < 207 5 Kết luận: Muốn so sánh hai phân số ta có thể lấy tử số của phân số này nhân với mẫu của phân số kia nếu tích nào lớn hơn thì phân số đó lớn hơn và ngợc lại. Thật vậy b a = bxd axd d c = dxb cxb (Với b, d # 0) b a < d c bxd axd < dxb cxb a x d < c x b b a > d c bxd axd > dxb cxb a x d > c x b b a = d c bxd axd = dxb cxb a x d = c x b Nhận xét: Cách so sánh này xây dựng trên cơ sở của việc so sánh 2 phân số bằng cách quy đồng mẫu số. Cách làm này đợc áp dụng với những bài so sánh phân số mà việc nhân hai mẫu số gặp phức tạp nhng tử số của hai phân số không lớn nó sẽ làm cho ta giảm đi một bớc là nhân hai mẫu số với nhau. 8- So sánh bằng phơng pháp dùng đồ đoạn thẳng. Ví dụ 10: So sánh hai phân số 4 1 và 5 2 Bài giải: Ta có đồ: Từ đồ trên ta thấy 4 1 < 5 2 *Chốt kiến thức: Ta có thể so sánh hai phân số bằng việc biểu diễn từng phân số trên các đơn vị độ dài nh nhau rồi so sánh độ dài biểu thị từng phân số với nhau. Phân số nào có độ dài biểu thị lớn hơn thì phân số đó lớn hơn. Lu ý: Cách này chỉ dùng để so sánh các cặp phân số có tử và mẫu của mỗi phân số đều nhỏ đủ để có thể biểu thị trên đồ. 9 Nâng cao hiệu quả dạy so sánh phân số Toán 4 9- So sánh nhiều phân số: Có những bài toán không chỉ so sánh 2 phân số mà yêu cầu so sánh 3; 4; 5 .phân số. Khi đó ta sẽ phối hợp nhiều phơng pháp để giải. Trên đây là một số phơng pháp so sánh phân số có thể dùng cho học sính lớp 4 mà tôi đã nghiên cứu đa vào thực nghiệm giảng dạy cho học sinh. Tổng quát lại tôi da về các dạng điển hình sau: chơng III- Bài tập áp dụng Dạng 1: Giải bài toán so sánh bằng nhiều cách Học sinh đại trà Bài toán 1: So sánh 2 phân số sau: 9 2 và 10 4 Bài giải: Cách 1: Quy đồng mẫu số Ta có : 9 2 = 109 102 x x = 90 20 ; 10 4 = 910 94 x x = 90 36 mà 90 20 < 90 36 nên 9 2 < 10 4 Cách 2: Quy đồng tử số: Ta thấy 9 2 = 49 42 x x = 36 8 ; 10 4 = 210 24 x x = 20 8 Vì 36 8 < 20 8 nên 9 2 < 10 4 Cách 3: Dùng tính chất cơ bản của phân số: Ta có: 10 4 = 2:10 2:4 = 5 2 mà 9 2 < 5 2 nên 9 2 < 10 4 Cách 4: Dùng so sánh "phần bù" tới đơn vị. Ta có 1- 9 2 = 9 7 và 1- 10 4 = 10 6 mà 9 7 > 10 7 và 10 7 > 10 6 nên 9 7 > 10 7 > 10 6 Vậy 9 2 < 10 4 Học sinh khá giỏi làm thêm các cách: Cách 5: Phân số trung gian: 10 [...]... hiệu quả dạy so sánh phân số Toán 4 a, Nhìn bao quát ta thấy có 9 8 > 1 (lớn hơn tất cả các phân số khác vì các phân số này đều nhỏ hơn 1 + Ta so sánh 4 phân số còn lại + 1 2 = 4 8 + 1 2 = 5 10 + 4 7 > 5 9 1 2 2 4 = > 2 5 4 7 < < 5 9 (so sánh tử số) (quy đồng mẫu số 36 63 35 > 63 ) Vậy ta xếp nh sau: b, ; 4 7 5 3 9 8 5 9 > 1, các phân số khác đều nhỏ hơn 1, nên ; ; 1 2 ; 2 5 5 3 là lớn nhất Ta so sánh. .. các phân số còn lại: * 12 26 = 6 13 < * 6 13 > 8 25 (Quy đồng mẫu số: * 2005 2006 7 13 > 7 13 150 325 > 104 ) 325 (Nhân mẫu số của phân số này với tử số của phân số kia) Vậy ta viết nh sau: 5 3 ; 2005 2006 ; 7 13 ; 12 26 ; 8 25 Nhận xét: ở bài toán trên ta đã sử dụng các phơng pháp nh: so sánh phân số với 1; so sánh bằng cách quy đồng tử số; so sánh bằng quy đồng mẫu số; so sánh bằng cách nhân mẫu số. .. làm hợp lý nhất C- Kết luận chung 1, Điều kiện để áp dụng kinh nghiệm sáng kiến 16 Nâng cao hiệu quả dạy so sánh phân số Toán 4 Đây là một số kinh nghiệm về dạy so sánh phân số của môn toán ở lớp 4 tôi đã nghiên cứu và áp dụng vào việc giảng dạy ở lớp 4A, tôi thấy chuyên đề này có thể áp dụng vào việc dạy so sánh phân số lớp 4, nhất là với các lớp học 10 buổi/tuần nh hiện nay và có thể áp dụng cho các... 49 29 43 và 47 25 207 429 và Nâng cao hiệu quả dạy so sánh phân số Toán 4 B IV- kết quả đạt đợc Sau mỗi phần học tôi đều cho các em khảo sát chất lợng Đối chứng kết quả cách dạy lớp tôi (4A) với lớp 4B (cha áp dụng cách dạy này) cụ thể: Đề bài kiểm tra 15 phút Bài 1: ( 2 điểm ) Khoanh tròn vào phân số bé nhất 4 3 5 4 ; 7 4 ; 8 9 ; 9 9 ; Bài 2: ( 2 điểm ) So sánh phân số bằng cách nhanh nhất 197 198... cách giải nhanh và hợp lí nhất Dạng 2: So sánh bằng cách hợp lí nhất Bài toán 1: Hãy so sánh các cặp phân số sau bằng phơng pháp hợp lí nhất a, 200 1000 và 2 5 ; b, 7772 7778 và 88881 88889 c, ; 1000 9999 và 2222 8000 nên 200 1000 < 2 5 Bài giải: a, Ta có: 200 1000 = 2 x100 10 x100 = 2 10 Vì (Dùng tính chất phân số) 11 2 10 < 2 5 Nâng cao hiệu quả dạy so sánh phân số Toán 4 7772 7778 b, Ta thấy: 1 60... cách nhân mẫu số của phân số nay với tử số của phân số kia Vậy những bài toán tổng hợp các phơng pháp giải đòi hỏi học sinh không chỉ nắm kiến thức một cách đơn lẻ mà phải biết tổng hợp các kiến thức đó để lựa chọn và kết hợp các phơng pháp đó vào giải toán * Đề bài luyện tập 13 Nâng cao hiệu quả dạy so sánh phân số Toán 4 Sau khi dạy xong các phơng pháp, tôi cho các em làm một số bài tập tơng tự hoặc... a, Khoanh vào phân số lớn nhất 3 9 5 9 ; 9 8 ; ; 7 9 ; 4 9 b, Khoanh vào phân số bé nhất 5 8 Bài 2: Vân ăn ; 7 5 3 8 2 5 cái bánh Lan ăn ; 2 5 ; 2 8 ; 2 7 cái bánh đó Hỏi ai ăn nhiều bánh hơn? Đúng ghi (Đ); sai ghi (S) vào Vân ăn nhiều bánh hơn Lan Lan ăn nhiều bánh hơn Vân Bài 3: so sánh các phân số a, 4 25 7 25 và b, 245 12 và 245 25 c, 12 48 và 9 24 2004 2005 Bài 4: So sánh các phân số sau với 1... ; 7 3 ; 19 19 ; 2005 2006 d, 2005 2006 Bài 5: Viết các phân số sau theo thứ tự từ bé đến lớn a, 1 5 ; 3 5 ; 4 5 và 9 7 ; b, Bài 6: Tìm 10 phân số khác nhau nằm giữa 2 5 3 7 và ; 28 49 ; 294 343 ; 5 4 3 5 Bài 7: So sánh các phân số sau bằng các cách khác nhau: a, 4 101 và 5 303 b, 222 221 và 666 665 c, 315 425 ; 315 429 ; Bài 8: So sánh các phân số sau bằng cách thuận tiện nhất a, d, 14 5 và 25 7 997... hẹp, cha bao quát đợc hết tất cả các vấn đề, chắc hẳn sẽ không tránh khỏi những thiếu sót Tôi rất mong các cấp quản lý và các bạn đồng nghiệp góp ý kiến để tài liệu này thêm phong phú và đợc áp dụng vào giảng dạyhiệu quả hơn Tôi xin chân thành cảm ơn! 17 Nâng cao hiệu quả dạy so sánh phân số Toán 4 Mục lục: Stt A I II III IV V B I II III IV C 1 2 3 4 5 Nội dung Đặt vấn đề Cơ sở lí luận Cơ sở thực... triển khai đợc hết tất cả các phơng pháp so sánh phân số 4- Những kiến nghị - Nhà trờng và Phòng Giáo dục & Đào tạo: Tiếp tục tổ chức các cuộc hội thảo chuyên đề về dạy Toán theo từng mảng nhỏ để giáo viên đợc tham dự, học hỏi kinh nghiệm nâng cao trình độ chuyên môn nghiệp vụ 5- Lời kết Trên đây là một số kinh nghiệm nhỏ trong quá trình giảng dạy mà tôi thấy có hiệu quả và đã mạnh dạn viết lại những việc . Nâng cao hiệu quả dạy so sánh phân số Toán 4 So sánh qua phân số trung gian là ta tìm một phân số trung gian sao cho phân số trung gian lớn hơn phân số. nh: so sánh phân số với 1; so sánh bằng cách quy đồng tử số; so sánh bằng quy đồng mẫu số; so sánh bằng cách nhân mẫu số của phân số nay với tử số của phân

Ngày đăng: 02/09/2013, 22:10

HÌNH ẢNH LIÊN QUAN

Qua bảng thống kê tôi thấy kết quả thu đợc khi dạy thực nghiệm loại toán này thật khả quan 100% học sinh lớp 4A (lớp đợc dạy thực nghiệm) làm bài đạt yêu cầu - Nâng cao hiẹu quả dạy so sánh phân số
ua bảng thống kê tôi thấy kết quả thu đợc khi dạy thực nghiệm loại toán này thật khả quan 100% học sinh lớp 4A (lớp đợc dạy thực nghiệm) làm bài đạt yêu cầu (Trang 16)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w