1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ THI HSG TOÁN - THANH HÓA 2009

1 410 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 37,5 KB

Nội dung

Sở Giáo dục và đào tạo thanh hoá CHNH THC Kỳ thi chọn HọC SINH GIỏI TỉNH Nm hc: 2008-2009 Mụn thi: Toán LP : 12 THPT Ngy thi: 28/03/2009 Thi gian: 180 phỳt (khụng k thi gian giao ) Bài 1(5,0 điểm) Cho hàm số 23 23 += xxy có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Biện luận theo m số nghiệm của phơng trình: 2323 2323 +=+ mmxx 3. Với mỗi điểm M thuộc (C) kẻ đợc bao nhiêu tiếp tuyến với (C)? Bài 2(4,0 điểm) 1. Tính tích phân: I = dx xx xe ++ 1 0 2 22 44 2. Có bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau mà trong đó chỉ có một chữ số lẻ ? Bài 3 (5,0 điểm) 1. Giải phơng trình: ) 4 sin(.2sin) 4 3sin( += xxx 2. Tìm giá trị của m để bất phơng trình sau nghiệm đúng với mọi x 0) 1 log1(2) 1 log1(2) 1 log2( 22 2 2 < + + + + + m m x m m x m m . 3. Với giá trị nào của x, y thì 3 số y yx yx uuu 5, log 2, log 8 3 2 2 2 1 = = + = theo thứ tự đó, đồng thời lập thành một cấp số cộng và một cấp số nhân. Bài 4 (5,0 điểm) 1.Trong mặt phẳng toạ độ Oxy cho đờng tròn (C) có phơng trình: ( ) 11 2 2 =+ yx Chứng minh rằng với mỗi điểm M(m; 3) trên đờng thẳng y = 3 ta luôn tìm đợc hai điểm T 1 , T 2 trên trục hoành, sao cho các đờng thẳng MT 1` , MT 2 là tiếp tuyến của (C). Khi đó hãy viết phơng trình đờng tròn ngoại tiếp tam giác MT 1 T 2 . 2. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân (AB = BC =1) và các cạnh bên SA = SB = SC = 3. Gọi K, L lần lợt là trung điểm của AC và BC. Trên cạnh SA, SB lần lợt lấy các điểm M, N sao cho SM = BN = 1. Tính thể tích của tứ diện LMNK. Bài 5 (1,0 điểm) Cho n là số nguyên lẻ và n >2. Chứng minh rằng với mọi a khác 0 luôn có: 1) !)!1( . !3!2 1)( ! . !3!2 1( 13232 < ++++++++ n a n aaa a n aaa a nnn Hết S bỏo danh . tạo thanh hoá CHNH THC Kỳ thi chọn HọC SINH GIỏI TỉNH Nm hc: 200 8-2 009 Mụn thi: Toán LP : 12 THPT Ngy thi: 28/03 /2009 Thi gian: 180 phỳt (khụng k thi. ) Bài 1(5,0 điểm) Cho hàm số 23 23 += xxy có đồ thị (C) 1. Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số. 2. Biện luận theo m số nghiệm của phơng trình:

Ngày đăng: 31/08/2013, 20:10

TỪ KHÓA LIÊN QUAN

w