Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
261 KB
Nội dung
!"#$%&'( )*+,()+- ./0"#$%&+-. .1+-+2345"#$%&2+$6( 7( 8+ 9( )( -:;( .( -;.345424<$++=>&+= !4"?$@$A2"#$%&'-+()B*+C,. .D&+EB44"?$@$4F++4'*7G,*:7:,. .D%$%"?$H+EBI+&4"H&4J*7,2K 4"?$@$42C$=>&+= !L !BM' a 33 a M 2 a 6 2 a 6 + − = − − + a 0;a 9.≥ ≠ .N<$. .D&+42$%5BO$. .D&$%5+$P42$%5$P#.D&$%5 $P42. !L. !4"?$%Q4"?$CRS -N.DI CTUUA 4"?$%Q./!4%P$S 7VS!CWAXAYZ. ./0[!4R$\+$S .!M$+$S Z $L. ./0[!4B]C&%P$S *!C$%^$S ,. /_4B]C&%P$8 !*_C$%^$! ,.VS_ CWAX_Y`. +,!M$M$!_Z`KU4"?$%Q. B,!M$S!.SZ-S_.S`-. G /0"#$%&'( a( )()-. b"$Ac' G'( a( )()- ⇔*( (,*( (,- G *4, .D&4C6(45d+BM 2 1 a) x 25− b) x 2+ ./06"#$%& 2 3 5 x y 3 2 1 x y + = − = *EG4, !"#$%&'( )(- ./0"#$%&-. .!M$%O$"#$%&2$6$%5d+. .D&$6d+"#$%&Ce$B&"#$$6 3$%58]. !L*4, !+$S !$YS7_K4%PS!74"?$%Q 4"?$CR_!X !YZ74"?$@$ _X4"?$%Q4"?$CR _!Y`. !M$%O$' .D+$S !4f$AY$+$Z_!. .DM$S !`KU4"?$%Q. .S!L$d+$2ZS`. !L.*EG4, .!M$%O$ 4 4 33 a b a b ab+ ≥ + +EB. .D&$6$Pd+"#$%&'* ),*( ) ,-a( . b"$Ac' !L' . ( ) ( ) 4 4 33 2 2 2 a b a b ab a b a ab b 0 + ≥ + ⇔ − + + ≥ .* ),*( ) ,-a( ⇔*(, )* (, - 2 2 y 0 xy 2y 0 x 2 y 2x 0 y 2x = − = = ⇔ ⇔ − = = _422$6'*7,7*7,7*7:, ĐỀ THI TUYỂN SINH VÀO LỚP 10 TỈNH NINHBÌNH Gg 'D D?$+B'G< Câu 1'*E4,!VB3]'-()B*, +,bV494f$BU+$5BU%PN=/0R= B, U%O$4f5V*,4F+4S*7,.D&Bh4f5d+ V*,. Câu 2'*E4,!BM 1 1 A 1 a 1 a 1 = − − − + +,D&3(45%<$BMS. B,D&V$PV+4$%5BMSKV$P. Câu 3'*E4, K[+%K$&\32A6RBOA .DR4KA Yd+[+%K$. UU$%K$d+[+%K$P $0Ad+[+%K$4G&A6R[+%K$h$P G . Câu 4'*E4, !4"?$%Q*i7N,.DIK4Jj$4"?$%QCT+U ULB6JSEJ!*SE!U47JSkN,4"?$%Q*i,. +,!M$M$JSi!KU4"HK4"?$%Q. B,D+SiX4"?$%Q*i,Y 74"?$@$F+J$$ S X !Y_.DM$Si_J&$&=!M$. ,/l$+4d+i!J_7m$+4d+J!_i71 %$4d+S_.!M$l7m71@$$. !LG'*E4, !+VA"#$(E2e$BO$.D&$%58]d+BM' 2 2 1 1 P 1 1 x y = − − ÷ ÷ !L' b&h' 1 m l _ i J ! S +,_nF%f. B,!M$M$ iJ_&B&%+M$iSJ_ &\3. ,m$+4+4"?$+%$+$ilJPm%oL. 1%$4S_P1%$4iJ. !M$+$iJlL%+l14"?$+P4F+%oL m+lEmE1@$$. !LG' 2 2 2 2 2 2 2 2 2 1 1 1 1 1 P 1 1 1 x y x y x y 1 1 2 1 P 1 x y xy x y 2 P 1 xy = − − = − − + ÷ ÷ = − + + + ÷ = + D+2'()-%+' ( ) 2 2 x y 2xy 1 *+ + = pC 2 2 2xy x y (**)≤ + DI*q,*qq,%+ 1 xy 4 ≤ _42' 2 P 1 1 8 9 xy = + ≥ + = _]BO$(0%+C (--EG. >3$%58]d+JrC(--EG Đề thi vào 10 Năm học 2006 2007 Bài 1: (2 đ) Cho phơng trình bậc hai: x 2 x 3a 1 = 0 (có ẩn là x) Tìm a để phơng trình nhận x = 1 là nghiệm? Bài 2: (4 đ) Cho biểu thức 33 x x x A x 3 x x 3 x x 1 + = + + + + a. Rút gọn A với x 3 b. Tính giá trị của A khi x = 61 9 2 5+ Bài 3: (4 đ) Cho hàm số y = mx 2 a. Xác định m, biết đồ thị hàm số cắt đờng thẳng y = 3x + 2 tại điểm M có hoành độ bằng 2 b. Với m tìm đợc ở câu a, chứng minh rằng khi đó đồ thị hàm số và đờng thẳng d có phơng trình y = kx 1 luôn cắt nhau tại 2 điểm phân biệt A, B với mọi giá thị của k c. Gọi x 1 ; x 2 tơng ứng là hoành độ của A và B. Chứng minh rằng 1 2 x x 2 Bài 4: (7 đ) Cho đờng tròn (O; R). Điểm M nằm ngoài đờng tròn. Vẽ các tiếp tuyến MC, MD (C, D là các tiếp điểm) và cát tuyến MAB đi qua tâm O của đòng tròn (A ở giữa M và B) a. Chứng minh: MC 2 =MA.MB b. Gọi K là giao điểm của BD và CA. Chứng minh 4 điểm B, C, M, K cùng thuộc một đờng tròn c. Tính độ dài MK theo R khi ã 0 CMD 60= Bài 5: (1,5 đ) Tìm a, b hữu tỉ để phơng trình x + ax + b = 0 nhận x = 2 1 là nghiệm. Bài 6: (1,5 đ) Tìm x, y nguyên thoả mãn phơng trình x + x + x = 4y + 4y ------Hết------ Híng dÉn: Bµi 5: Ph¬ng tr×nh x + ax + b = 0 nhËn x = ² 2 1− lµ nghiÖm ( ) ( ) ( ) 2 2 1 a 2 1 b 0 3 2 2 a 2 a b 0 a 2 0 a 2 2 a 2 a b 3 a b 3 0 b 1 ⇔ − + − + = ⇔ − + − + = − = = ⇔ − = − − ⇔ ⇔ − − = = − Bµi 6. x + x + x = 4y + 4y ² ³ ² ⇔ (x + 1)(x +1) = (1 + 2y) (1)² ² §Æt (x + 1; x + 1) = d (d ² ∈ N * ) Ta cã x + 1 M d ⇒ x + x ² M d ⇒ (x + x) – (x + 1) ² ² M d ⇒ x – 1 M d ⇒ (x + 1) – (x – 1) M d ⇒ 2 M d (2) Tõ (1) ta cã x + 1 vµ x +1 ®Òu lµ sè lÎ (3)² Tõ (2) vµ (3) ta cã d = 1 (4) ( ) ( ) 2 2 2 2 2 2 x 1 m Tõ (1) vµ (4) (m;n Z) x 1 n n x 1 n x 1 Tõ x 1 n n x n x 1 hoÆc n x 1 n x 1 x 0 4y 4y 0 y 0 hoÆc y = -1 + = ⇒ ∈ + = − = − = − + = ⇔ − + = ⇔ + = + = − ⇒ = ⇒ + = ⇒ = Đề thi vào cấp III Năm học 2007 2008 (Thời gian 120 phút) Bài 1: (3 đ) 1. Giải các phơng trình và hệ phơng trình a. 2x 2 = 0 b. x 7x + 6 = 0 c. 2x y 4 x x 2y 1 + = + = 2. Rút gọn các biểu thức sau: a. 2 xy x y A x y xy x xy y = + + với x > 0; y > 0; x y b. B 4 2 3 4 2 3= + + c. 546 84 42 253 4 63 + Bài 2: (2 đ) Cho hai đờng thẳng có phơng trình: y = mx 2 (d 1 ) và 3x + my = 5 (d 2 ) a. Khi m =2, xác định hệ số góc và tìm tọa độ giao điểm của hai đờng thẳng. b. Khi (d 1 ) và (d 2 ) cắt nhau tại M(x 0 ; y 0 ), tìm m để x 0 + y 0 = 1 - 2 2 m m 3+ c. Tìm m để giao điểm của (d 1 ) và (d 2 ) có hoành độ dơng còn tung độ thì âm. Bài 3: (3 đ) Cho nửa đờng tròn (O;R) đờng kính AB. Trên nửa đờng tròn lấy hai điểm C, D (C thuộc cung AD) sao cho CD = R. Qua C kẻ đờng thẳng vuông góc với CD cắt AB ở M. Tiếp tuyến của (O;R) tại A và B cắt CD lần lợt tại E và F, AC cắt BD ở K. a. Chứng minh rằng tứ giác AECM nội tiếp và tam giác EMF là tam giác vuông. b. Xác định tâm và bán kính đờng trón ngoại tiếp tam giác KCD. c. Tìm vị trí của dây CD sao cho diện tích tam giác KAB lớn nhất. Bài 4: (1 đ) Hai máy bơm cùng bơm nớc vào một cái bể cạn (không có nớc), sau 4 giờ thì bể đầy. Biết rằng nếu để máy thứ nhất bơm đợc một nửa bể, sau đó máy thứ hai bơm tiếp (không dùng máy thứ nhất nữa) thì sau 9 giờ bể sẽ đầy. Hỏi nếu mỗi máy bơm riêng thì mất thời gian bao lâu sẽ đầy bể nớc. Bài 5: (1 đ) Tìm các số hữu tỉ x và y sao cho 12 3 y 3 x 3 + = [...]... sinh lớp 10 THPT năm học 2008 2 009 Môn toán Thời gian: 120 phút Câu 1: (2,0 điểm) 1 Giải phơng trình: 2x + 4 = 0 x + y = 4 2 Giải hệ phơng trình sau: 2x + y = 6 3 Cho phơng trình ẩn x sau: x2 6x + m +1 = 0 a) Giải phơng trình khi m = 7 2 b) Tìm m để phơng trình có hai nghiệm x1; x2 thỏa mãn: x1 + x 2 = 26 2 Câu 2: (1,5 điểm) Rút gọn các biểu thức sau: 1 1 + 1 A = 5 +2 5 2 2 B = ( 2008 2 009 ) 2 1... là ba số dơng Chứng minh rằng y z x 2 2 3 Tìm a N để phơng trình x a x + a + 1 = 0 có nghiệm nguyên Hng dn Bai 1: 1) x = -2 2) (x; y) = (2; 2) 3) a) x1 = 2; x2 = 4 b) m = 4 Bai 2: a) 2 5 b) 2 009 2008 c) 2 009 1 Bai 3: Diờn tich khu vn: 5400 m2 Bai 4: A O P N B I H M d 3 R2 R 2 SQ = 3 AOB 33 2 S= R 3 c) Ke OH d, goi giao iờm cua AB va OH la N, giao iờm cua AB va OM la P T giac HMPN nụi tiờp nờn... m = 7 2 b) Tìm m để phơng trình có hai nghiệm x1; x2 thỏa mãn: x1 + x 2 = 26 2 Câu 2: (1,5 điểm) Rút gọn các biểu thức sau: 1 1 + 1 A = 5 +2 5 2 2 B = ( 2008 2 009 ) 2 1 1 1 + + + 1+ 2 2+ 3 2008 + 2 009Câu 3: (2,0 điểm) Một thửa ruộng hình chữ nhật có chu vi là 300m Tính diện tích của thửa ruộng, biết rằng nếu chiều dài giảm đi 3 lần và chiều rộng tăng gấp 2 lần thì chu vi của thửa ruộng không thay . _422$6'*7,7*7,7*7:, ĐỀ THI TUYỂN SINH VÀO LỚP 10 TỈNH NINH BÌNH Gg 'D D?$+B'G<. + = = (v× theo (*) th× x > y) Đề thi tuyển sinh lớp 10 THPT năm học 2008 2 009 Môn toán Thời gian: 120 phút Câu 1: (2,0 điểm) 1. Giải phơng