Rất hay
GV: Nguy ễn Văn Huy ( 0909 64 65 97 ) Đại số lớp 10 Chương I : MỆNH ĐỀ – TẬP HP §1: Mệnh đề và mệnh đề chứa biến A: TÓM TẮT LÝ THUYẾT 1.Đònh nghóa : Mệnh đề là một câu khẳng đònh Đúng hoặc Sai . Một mệnh đề không thể vừa đúng hoặc vừa sai 2.Mệnh đề phủ đònh: Cho mệnh đề P.Mệnh đề “Không phải P ” gọi là mệnh đề phủ đònh của P Ký hiệu là P . Nếu P đúng thì P sai, nếu P sai thì P đúng Ví dụ: P: “ 3 > 5 ” thì P : “ 3 ≤ 5 ” 3. Mệnh đề kéo theo và mệnh đề đảo : Cho 2 mệnh đề P và Q. Mệnh đề “nếu P thì Q” gọi là mệnh đề kéo theo Ký hiệu là P ⇒ Q. Mệnh đề P ⇒ Q chỉ sai khi P đúng Q sai Cho mệnh đề P ⇒ Q. Khi đó mệnh đề Q ⇒ P gọi là mệnh đề đảo của P ⇒ Q 4. Mệnh đề tương đương Cho 2 mệnh đề P và Q. Mệnh đề “P nếu và chỉ nếu Q” gọi là mệnh đề tương đương , ký hiệu P ⇔ Q.Mệnh đề P ⇔ Q đúng khi cả P và Q cùng đúng 5. Phủ đònh của mệnh đề “ ∀x∈ X, P(x) ” là mệnh đề “∃x∈X, P(x) ” Phủ đònh của mệnh đề “ ∃x∈ X, P(x) ” là mệnh đề “∀x∈X, P(x) ” Ví dụ: Cho x là số nguyên dương ;P(x) : “ x chia hết cho 6” ; Q(x): “ x chia hết cho 3” Ta có : • P(10) là mệnh đề sai ; Q(6) là mệnh đề đúng • ( )P x : “ x không chia hết cho 6” • Mệnh đề kéo theo P(x)⇒ Q(x) là mệmh đề đúng. • “∃x∈ N * , P(x)” đúng có phủ đònh là “∀x∈ N * , P(x) ” có tính sai B: BÀI TẬP B.1: BÀI TẬP TRẮC NGHIỆM : Câu 1: Cho A = “∀x∈R : x 2 +1 > 0” thì phủ đònh của A là: a) A = “ ∀x∈R : x 2 +1 ≤ 0” b) A = “∃ x∈R: x 2 +1≠ 0” c) A = “∃ x∈R: x 2 +1 < 0” d) A = “ ∃ x∈R: x 2 +1 ≤ 0” Câu 2:Xác đònh mệnh đề đúng: a) ∃x∈R: x 2 ≤ 0 b) ∃x∈R : x 2 + x + 3 = 0 c) ∀x ∈R: x 2 >x d) ∀x∈ Z : x > - x Trang 1 GV: Nguy ễn Văn Huy ( 0909 64 65 97 ) Đại số lớp 10 Câu 3:Phát biểu nào sau đây là đúng: a) x ≥ y ⇒ x 2 ≥ y 2 b) (x +y) 2 ≥ x 2 + y 2 c) x + y >0 thì x > 0 hoặc y > 0 d) x + y >0 thì x.y > 0 Câu 4:Xác đònh mệnh đề đúng: a) ∀x ∈R,∃y∈R: x.y>0 b) ∀x∈ N : x ≥ - x c) ∃x∈N, ∀y∈ N: x chia hết cho y d) ∃x∈N : x 2 +4 x + 3 = 0 Câu 5: Cho các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng : a) Nếu tứ giác ABCD là hình thoi thì AC ⊥ BD b) Nếu 2 tam giác vuông bằng nhau thì 2 cạnh huyền bằng nhau c) Nếu 2 dây cung của 1 đường tròn bằng nhau thì 2 cung chắn bằng nhau d) Nêu số nguyên chia hết cho 6 thì chia hết cho 3 Câu 6: Cho các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng : a)Nếu tứ giác ABCD là hình thang cân thì 2 góc đối bù nhau b)Nếu a = b thì a.c = b.c c)Nếu a > b thì a 2 > b 2 d)Nếu số nguyên chia hết cho 6 thì chia hết cho 3 và 2 Câu 7: Xác đònh mệnh đề sai : a) ∃x∈Q: 4x 2 – 1 = 0 b) ∃x∈R : x > x 2 c) ∀n∈ N: n 2 + 1 không chia hết cho 3 d) ∀n∈ N : n 2 > n Câu 8: Cho các mệnh đề sau, mệnh đề nào sai : a)Một tam giác vuông khi và chỉ khi nó có 1 góc bằng tổng 2 góc kia b) Một tam giác đều khi và chỉ khi nó có 2 trung tuyến bằng nhau và 1 góc = 60 0 c) hai tam gíac bằng nhau khi và chỉ khi chúng đồng dang và có 1 cạnh bằng nhau d) Một tứ giác là hình chữ nhật khi và chỉ khi chúng có 3 góc vuông Câu 9: Cho các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng : d) Nếu tứ giác ABCD là hình thang cân thì 2 góc đối bù nhau e) Nếu a = b thì a.c = b.c c)Nếu a > b thì a 2 > b 2 d)Nếu số nguyên chia hết cho 10 thì chia hết cho 5 và 2 Câu 10: Mệnh đề nào sau đây có mệnh đề phủ đònh đúng : a) ∃x∈ Q: x 2 = 2 b) ∃x∈R : x 2 - 3x + 1 = 0 c) ∀n ∈N : 2n ≥ n d) ∀x∈ R : x < x + 1 B2: BÀI TẬP TỰ LUẬN : Bài 1: Các câu sau dây, câu nào là mệnh đề, và mệnh đề đó đúng hay sai : a) Ở đây là nơi nào ? b) Phương trình x 2 + x – 1 = 0 vô nghiệm c) x + 3 = 5 d) 16 không là số nguyên tố Trang 2 GV: Nguy ễn Văn Huy ( 0909 64 65 97 ) Đại số lớp 10 Bài 2: Nêu mệnh đề phủ đònh của các mệnh đề sau : a) “Phương trình x 2 –x – 4 = 0 vô nghiệm ” b) “ 6 là số nguyên tố ” c) “∀n∈N ; n 2 – 1 là số lẻ ” Bài 3: Xác đònh tính đúng sai của mệnh đề A , B và tìm phủ đònh của nó : A = “ ∀x∈ R : x 3 > x 2 ” B = “ ∃ x∈ N , : x chia hết cho x +1” Bài 4: Phát biểu mệnh đề P ⇒ Q và xét tính đúng sai của nó và phát biểu mệnh đề đảo : a) P: “ ABCD là hình chữ nhật ” và Q:“ AC và BD cắt nhau tại trung điểm mỗi đường” b) P: “ 3 > 5” và Q : “7 > 10” c) P: “Tam giác ABC là tam giác vuông cân tại A” và Q :“ Góc B = 45 0 ” Bài 5: Phát biểu mệnh đề P ⇔ Q bằng 2 cách và và xét tính đúng sai của nó a) P : “ABCD là hình bình hành ” và Q : “AC và BD cắt nhau tại trung điểm mỗi đường” b) P : “9 là số nguyên tố ” và Q: “ 9 2 + 1 là số nguyên tố ” Bài 6:Cho các mệnh đề sau a) P: “ Hình thoi ABCD có 2 đường chéo AC vuông góc với BD” b) Q: “ Tam giác cân có 1 góc = 60 0 là tam giác đều” c) R : “13 chia hết cho 2 nên 13 chia hết cho 10 ” - Xét tính đúng sai của các mệnh đề và phát biểu mệnh đề đảo : - Biểu diễn các mệnh đề trên dưới dạng A ⇒ B Bài 7: Cho mệnh đề chứa biến P(x) : “ x > x 2 ” , xét tính đúng sai của các mệnh đề sau: a) P(1) b) P( 1 3 ) c) ∀x∈N ; P(x) d) ∃x∈ N ; P(x) Bài 8: Phát biểu mệnh đề A ⇒ B và A ⇔ B của các cặp mệnh đề sau và xét tính đúng sai a) A : “Tứ giác T là hình bình hành ” B: “Hai cạnh đối diện bằng nhau” b) A: “Tứ giác ABCD là hình vuông ” B: “ tứ giác có 3 góc vuông” c) A: “ x > y ” B: “ x 2 > y 2 ” ( Với x y là số thực ) d) A: “Điểm M cách đều 2 cạnh của góc xOy ” B: “Điểm M nằm trên đường phân giác góc xOy” Bài 9: Hãy xem xét các mệnh đề sau đúng hay sai và lập phủ đònh của nó : Trang 3 GV: Nguy ễn Văn Huy ( 0909 64 65 97 ) Đại số lớp 10 a) ∀x∈N : x 2 ≥ 2x b) ∃x∈ N : x 2 + x không chia hết cho 2 c) ∀x∈Z : x 2 –x – 1 = 0 Bài 10 : Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng a) A : “Một số tự nhiên tận cùng là 6 thì số đó chia hết cho 2” b) B: “ Tam giác cân có 1 góc = 60 0 là tam giác đều ” c) C: “ Nếu tích 3 số là số dương thì cả 3 số đó đều là số dương ” d) D : “Hình thoi có 1 góc vuông thì là hình vuông” Bài 11:Phát biểu thành lời các mệnh đề ∀x: P(x) và ∃x : P(x) và xét tính đúng sai của chúng : a) P(x) : “x 2 < 0” b)P(x) :“ 1 x > x + 1” c) P(x) : “ 2 x 4 x 2 − − = x+ 2” x) P(x): “x 2 -3x + 2 > 0” §2: ÁP DỤNG MỆNH ĐỀ VÀO PHÉP SUY LUẬN TOÁN HỌC A: TÓM TẮT LÝ THUYẾT 1:Trong toán học đònh lý là 1 mệnh đề đúng Nhiều đònh lý được phát biểu dưới dạng “∀x∈X , P(x) ⇒ Q(x)” 2: Chứng minh phản chứng đinh lý “∀x∈X , P(x) ⇒ Q(x)” gồm 2 bước sau: - Giả sử tồn tại x 0 thỏa P(x 0 )đúng và Q(x 0 ) sai - Dùng suy luận và các kiến thức toán học để đi đến mâu thuẫn 3: Cho đònh lý “∀x∈X , P(x) ⇒ Q(x)” . Khi đó P(x) là điều kiện đủ để có Q(x) Q(x) là điều kiện cần để có P(x) 4: Cho đònh lý “∀x∈X , P(x) ⇒ Q(x)” (1) Nếu mệnh đề đảo “∀x∈X , Q(x) ⇒ P(x)” đúng được gọi là dònh lý đảo của (1) Lúc đó (1) được gọi là đònh lý thuận và khi đó có thể gộp lại “∀x∈X , P(x) ⇔ Q(x)” Gọi là P(x) là điều kiện cần và đủ để có Q(x) B: BÀI TẬP : Bài 1: Phát biểu các mệnh đề sau với thuật ngữ “Điều kiện cần”, “Điều kiện đủ ” a) Nếu 2 tam giác bằng nhau thì chúng có cùng diện tích b) Số nguyên dương chia hết cho 6 thì chia hết cho 3 c) Mộthình thang có 2 đường chéo bằng nhau là hình thang cân Bài 2: Dùng phương pháp chứng minh phản chứng để chứng minh : a) Với n là số nguyên dương, nếu n 2 chia hết cho 3 thì n chia hết cho 3 b) Chứng minh rằng 2 là số vô tỷ Trang 4 GV: Nguy ễn Văn Huy ( 0909 64 65 97 ) Đại số lớp 10 c) Với n là số nguyên dương , nếu n 2 là số lẻ thì n là số lẻ Bài 3: Phát biểu các đònh lý sau đây bằng cách sử dụng khái niệm “Điều kiện đủ ” a)Nếu trong mặt phẳng, hai đường thẳng cùng vuông góc với đường thẳng thứ 3 thì hai đường thẳng đó song song với nhau b)Nếu 2 tam giác bằng nhau thì chúng có diện tích bằng nhau c)Nếu số nguyên dương a tận cùng bằng 5 thì chia hết cho 5 d)Nếu tứ giác là hình thoi thì 2 đường chéo vuông góc với nhau Bài 4: Phát biểu các đònh lý sau đây bằng cách sử dụng khái niệm“Điều kiện cần ” a)Nếu trong mặt phẳng, hai đường thẳng cùng song song với đường thẳng thứ 3 thì hai đường thẳng đó song song với nhau b)Nếu 2 tam giác bằng nhau thì chúng có các góc tương ứng bằng nhau c)số nguyên dương a chia hết cho 24 thì chia hết cho 4 và 6 d)Nếu tứ giác ABCD là hình vuông thì 4 cạnh bằng nhau Bài 5: Chứng minh bằng phương pháp phản chứng a) Nếu a≠b≠c thì a 2 +b 2 + c 2 > ab + bc + ca b) Nếu a.b chia hết cho 7 thì a hoặc b chia hết cho 7 c) Nếu x 2 + y 2 = 0 thì x = 0 và y = 0 Bài 6 :Cho các đinh lý sau, đònh lý nào có đònh lý đảo, hãy phát biểu : a) “Nếu 1 số tự nhiên chia hết cho 3 và 4 thì chia hết cho 12” b) “Một tam giác vuông thì có trung tuyến tương ứng bằng nửa cạnh huyền ” c) “Hai tam giác đồng dạng và có 1 cạnh bằng nhau thì hai tam giác đó bằng nhau” d) “Nếu 1 số tự nhiên n không chia hết cho 3 thì n 2 chia 3 dư 1” Trang 5 GV: Nguy ễn Văn Huy ( 0909 64 65 97 ) Đại số lớp 10 §3: Tập hợp và các phép toán trên tập hợp A. TÓM TẮT LÝ THUYẾT : 1. Tập hợp là khái niệm của toán học . Có 2 cách trình bày tập hợp Liệtkê các phần tử : VD : A = {a; 1; 3; 4; b} hoặc N = { 0 ; 1; 2; . . . . ; n ; . . . . } Chỉ rõ tính chất đặc trưng của các phần tử trong tập hợp ; dạng A = {{x/ P(x)} VD : A = {x∈ N/ x lẻ và x < 6} ⇒ A = {1 ; 3; 5} *. Tập con : A⊂ B ⇔(x, x∈A ⇒ x∈B) Cho A ≠ ∅ có ít nhất 2 tập con là ∅ và A 2. các phép toán trên tập hợp : Phép giao Phép hợp Hiệu của 2 tập hợp A∩B = {x /x∈A và x∈B} A∪B = {x /x∈A hoặc x∈B} A\ B = {x /x∈A và x∉B} Chú ý: Nếu A ⊂ E thì C E A = A\ B = {x /x∈E và x∉A} 3. các tập con của tập hợp số thực Tên gọi, ký hiệu Tập hợp Hình biểu diễn Đoạn [a ; b] {x∈R/ a ≤ x ≤ b} Khoảng (a ; b ) Khoảng (-∞ ; a) Khoảng(a ; + ∞) {x∈R/ a < x < b} {x∈R/ x < a} {x∈R/ a< x } Nửa khoảng [a ; b) Nửa khoảng (a ; b] Nửa khoảng (-∞ ; a] Nửa khoảng [a ; ∞ ) {∈R/ a ≤ x < b} {x∈R/ a < x ≤ b} {x∈R/ x ≤ a} {x∈R/ a ≤ x } B: BÀI TẬP : B1.BÀI TRẮC NGHIỆM Câu 1: Cho tập hợp A ={a;{b;c};d}, phát biểu nào là sai: a) a∈A b) {a ; d} ⊂ A c) {b; c} ⊂ A d) {d} ⊂ A Trang 6 /////// [ ] ///////////// //////////// [ ] //////// )///////////////////// ////////////( ) ///////// ///////////////////( ////////////[ ) ///////// ////////////( ] ///////// ]///////////////////// ///////////////////[ GV: Nguy ễn Văn Huy ( 0909 64 65 97 ) Đại số lớp 10 Câu 2: Cho tập hợp A = {x∈ N / (x 3 – 9x)(2x 2 – 5x + 2 )= 0 }, A được viết theo kiểu liệt kê là : a) A = {0, 2, 3, -3} b) A = {0 , 2 , 3 } c) A = {0, 2 1 , 2 , 3 , -3} d) A = { 2 , 3} Câu 3: Cho A = {x∈ N / (x 4 – 5x 2 + 4)(3x 2 – 10x + 3 )= 0 }, A được viết theo kiểu liệt kê là : a) A = {1, 4, 3} b) A = {1 , 2 , 3 } c) A = {1,-1, 2 , -2 , 3 1 } d) A = { -1,1,2 , -2, 3} Câu 4: Cho tập A = {x∈ N / 3x 2 – 10x + 3 = 0 hoặc x 3 - 8x 2 + 15x = 0}, A được viết theo kiểu liệt kê là : a) A = { 3} b) A = {0 , 3 } c) A = {0, 3 1 , 5 , 3 } d) A = { 5, 3} Câu 5:Cho A là tập hợp . xác đònh câu đúng sau đây ( Không cần giải thích ) a) {∅}⊂ A b) ∅∈ A c) A ∩ ∅ = A d) A∪ ∅ = A Câu 6: Tìm mệnh đề đúng trong các mệnh đề sau: a) R + ∩ R - = {0} b) R \ R - = [ 0 , + ∞ ) c) R * + ∪ R * - = R d) R \ R + = R – Câu 7: Cho tập hợp sô’ sau A = ( - 1, 5] ; B = ( 2, 7) . tập hợp A\B nào sau đây là đúng: a) ( -1, 2] b) (2 , 5] c) ( - 1 , 7) d) ( - 1 , 2) Câu 8: Cho A = {a; b; c ; d ; e}. Số tập con của A có 3 phần tử là: a)10 b)12 c) 32 d) 8 Câu 9: Tập hợp nào là tập hợp rỗng: a) {x∈ Z / x<1} b) {x∈ Q / x 2 – 4x +2 = 0} c) {x∈ Z / 6x 2 – 7x +1 = 0} d) {x∈ R / x 2 – 4x +3 = 0} Câu 10: Trong các tập hợp sau, tập nào có đúng 1 tập con a) ∅ b){x} c) {∅} d) {∅; 1} Câu 11: Cho X= {n∈ N/ n là bội số của 4 và 6} Y= {n∈ N/ n là bội số của 12} Các mệnh đề sau, mệnh đề nào sai : a) X⊂Y b) Y ⊂ X c) X = Y d) ∃ n: n∈X và n∉ Y Câu 12 : Cho H = tập hợp các hình bình hành V = tập hợp các hình vuông N = tập hợp các hình chữ nhật T = tập hợp các hình thoi Tìm mệnh đề sai a) V⊂ T b)V⊂ N c)H⊂ T d)N⊂ H Câu 13 : Cho A ≠∅ . Tìm câu đúng Trang 7 GV: Nguy ễn Văn Huy ( 0909 64 65 97 ) Đại số lớp 10 a) A\ ∅ =∅ b) ∅\A = A c) ∅ \ ∅ = A d) A\ A =∅ B2.BÀI TỰ LUẬN Bài 1: Cho tập hợp A = {x∈ N / x 2 – 10 x +21 = 0 hay x 3 – x = 0} Hãy liệt kê tất cả các tập con của A chỉ chứa đúng 2 phần tử Bài 2: Cho A = {x ∈R/ x 2 +x – 12 = 0 và 2x 2 – 7x + 3 = 0} B = {x ∈R / 3x 2 -13x +12 =0 hay x 2 – 3x = 0 } Xác đònh các tập hợp sau A ∩ B ; A \ B ; B \ A ; A∪B Bài 3: Cho A = {x∈N / x < 7} và B = {1 ; 2 ;3 ; 6; 7; 8} a) Xác đònh AUB ; A∩B ; A\B ; B\ A b) CMR : (AUB)\ (A∩B) = (A\B)U(B\ A) Bài 4: Cho A = {2 ; 5} ; B = {5 ; x} C = {x; y; 5} Tìm các giá trò của cặp số (x ; y) để tập hợp A = B = C Bài 5: Xác đònh các tập hợp sau bẳng cách nêu tính chất đặc trưng A = {0 ; 1; 2; 3; 4} B = {0 ; 4; 8; 12;16} C = {-3 ; 9; -27; 81} D = {9 ; 36; 81; 144} E = Đường trung trực đoạn thẳng AB F = Đường tròn tâm I cố đònh có bán kính = 5 cm Bài 6: Biểu diễn hình ảnh tập hợp A ; B ; C bằng biểu đồ Ven A = {0 ; 1; 2; 3} B = {0 ; 2; 4; 6} C = {0 ; 3; 4; 5} Bài 7 : Hãy liệt kê tập A, B: A= {(x;x 2 ) / x ∈ {-1 ; 0 ; 1}} B= {(x ; y) / x 2 + y 2 ≤ 2 và x ,y ∈Z} Bài 8: Cho A = {x ∈R/ x ≤ 4} ; B = {x ∈R / -5 < x -1 ≤ 8 } Viết các tập hợp sau dưới dạng khoảng – đoạn – nửa khoảng A ∩ B ; A \ B ; B \ A ; R \ ( A∪B) Bài 9: Cho A = {x ∈R/ x 2 ≤ 4} ; B = {x ∈R / -2 ≤ x +1 < 3 } Viết các tập hợp sau dưới dạng khoảng – đoạn – nửa khoảng A ∩ B ; A \ B ; B \ A ; R \ ( A∪B) Bài 10: Gọi N(A) là số phần tử của tập A . Cho N(A) = 25; N(B)=29, N(AUB)= 41. Tính N(A∩B) ; N(A\B); N(B\A) Bài 11: a) Xác đònh các tập hợp X sao cho {a ; b}⊂ X ⊂ {a ; b ;c ;d ; e} b)Cho A = (1 ; 2} ; B = {1 ; 2 ; 3; 4; 5} Trang 8 GV: Nguy ễn Văn Huy ( 0909 64 65 97 ) Đại số lớp 10 Xác đònh các tập hợp X sao cho A ∪ X = B c) Tìm A; B bietá A∩ B = {0;1;2;3;4}; A\B = {-3 ; -2} ; B\A = {6 ; 9;10} Bài 12: Cho A = {x∈R/ x ≤ -3 hoặc x >6 } B={x∈R / x 2 – 25 ≤ 0} a) Tìm các khoảng , doạn, nửa khoảng sau : A\B ; B\ A ; R \ ( A∪B); R \ (A∩B) ; R \(A\B) b)Cho C={x∈R / x ≤ a} ; D={x∈R / x ≥ b }. Xác đònh a và b biết rằng C∩B và D∩B là các đoạn có chiều dài lần lượt là 7 và 9. Tìm C∩D Bài 13: Cho A = {x ∈R/ x 2 ≤ 4} ; B = {x ∈R / -3 ≤ x < 2 } Viết các tập hợp sau dưới dạng khoảng – đoạn – nửa khoảng A ∩ B ; A \ B ; B \ A ; R \ ( A∪B) Bài 14: Viết phần bù trong R của các tập hợp sau : A= {x∈R / – 2 ≤ x < 1 0} B= {x∈R / x> 2} C = {x∈R / -4 < x + 2 ≤ 5} Bài 15: Cho Tv = tập hợp tất cả các tam giác vuông T = tập hợp tất cả các tam giác Tc = tập hợp tất cả các tam giác cân Tđ = tập hợp tất cả các tam giác đều Tvc= tập hợp tất cả các tam giác vuông cân Xác đònh tất cả các quan hệ bao hàm giữa các tập hợp trên Bài 16: Xác đònh các tập hợp sau bằng cách liệt kê A= { x∈Q / (2x + 1)(x 2 + x - 1)(2x 2 -3x + 1) =0} B= { x∈Z / 6x 2 -5x + 1 =0} C= { x∈N / (2x + x 2 )(x 2 + x - 2)(x 2 -x - 12) =0} D= { x∈N / x 2 > 2 và x < 4} E= { x∈Z / x ≤ 2 và x > -2} Bài 17:Cho A = {x ∈Z / x 2 < 4} B = { x∈Z / (5x - 3x 2 )(x 2 -2 x - 3) = 0} a) Liệt kê A ; B b) CMR (A ∪B) \ (A ∩B) = (A \ B) ∪ (B \ A) Bài 18: Cho E = { x∈N / 1 ≤ x < 7} A= { x∈N / (x 2 -9)(x 2 – 5x – 6) = 0 } B = { x∈N / x là số nguyên tố ≤ 5} a) Chứng minh rằng A⊂ E và B ⊂ E b) Tìm C E A ; C E B ; C E (A∩B) c) Chứng minh rằng : E \ (A ∩B)= (E \A) ∪ ( E \B) E \ ( A∪B) = ( E \A) ∩ ( E \ B) Trang 9 GV: Nguy ễn Văn Huy ( 0909 64 65 97 ) Đại số lớp 10 Bài 19 : a) Cho A ⊂ C và B⊂ D , chứng minh rằng (A∪B)⊂ (C∪D) b) CMR : A \(B∩ C) = (A\B)∪(A\C) c) CMR : A \(B∪ C) = (A\B)∩(A\C) Chương II: HÀM SỐ §1: Đại cương về hàm số A:TÓM TẮT LÝ THUYẾT 1: Cho D ⊂ R. hàm số f xác đònh trên D là 1 quy tắc ứng với mỗi x∈D là 1 và chỉ 1 số Khi đó f(x) gọi là giá trò hàm số, x gọi là biến số , D gọi là tập xác đònh 2: Sự biến thiên hàm số Cho f(x) xác đònh trên K f đồng biến ( tăng) trên K ⇔∀x 1 ;x 2 ∈K ; x 1 < x 2 ⇒ f(x 1 ) < f(x 2 ) f nghòch biến ( giảm) trên K ⇔∀x 1 ;x 2 ∈K ; x 1 < x 2 ⇒ f(x 1 ) > f(x 2 ) 3: Hàm số chẵn, hàm số lẻ : f gọi là chẵn trên D nếu ∀x∈D ⇒ -x ∈D và f(-x) = f(x), đồ thò nhận Oy làm trục đối xứng f gọi là lẻ trên D nếu ∀x∈D ⇒ -x ∈D và f(-x) = - f(x), đồ thò nhận O làm tâm đối xứng 4: Tònh tiến đồ thò song song với trục tọa độ Cho (G) là đồ thò của y = f(x) và p;q > 0; ta có Tònh tiến (G) lên trên q đơn vò thì được đồ thò y = f(x) + q Tònh tiến (G) xuống dưới q đơn vò thì được đồ thò y = f(x) – q Tònh tiến (G) sang trái p đơn vò thì được đồ thò y = f(x+ p) Tònh tiến (G) sang phải p đơn vò thì được đồ thò y = f(x – p) B. VÍ DỤ :Tìm miền xác đònh và xét tính tăng , giảm của hàm số 2 ( ) 1 3 y f x x x = = + − − GIẢI. { } \ 3D R= . Xét tỉ số 2 1 1 2 2 1 2 1 ( ) ( ) 2 1 , , ( 3).( 3) f x f x y x x D x x x x x − ∆ = = + ∀ ∈ ∆ − − − Ta có :Với ( ) 1 1 2 2 3 0 , ;3 0 3 0 x y x x x x − < ∆ ∈ −∞ ⇒ ⇒ > − < ∆ Với ( ) 1 1 2 2 3 0 , 3; 0 3 0 x y x x x x − > ∆ ∈ +∞ ⇒ ⇒ > − > ∆ Vậy hàm số đã cho đồng biến trong ( ) ( ) ;3 3;−∞ ∪ +∞ . Trang 10