Tính chất: - Hình thoi có tất cả các tính chất của hình bình hành – Hai đường chéo vuông góc với nhau – Hai đường chéo là các đường phân giác của các góc của hình thoi.. Dấu hiệu nhận b
Trang 1Tổng hợp kiến thức hình học 8 Page 1
Tổng hợp kiến thức hình học 8
I TỨ GIÁC
TỨ GIÁC
1- Hình thang 1 Định nghĩa : Hình thang là tứ giác có hai cạnh đối song
song
2 Tính chất :
- Nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau, hai cạnh đáy bằng nhau
- Nếu một hình thang có hai cạnh đáy bằng nhau thì hai cạnh bên song song và bằng nhau
2- Hình thang vuông Định nghĩa : Hình thang vuông là hình thang có một góc
vuông
3- Hình thang cân 1 Định nghĩa : Hình thang cân là hình thang có hai góc kề
một đáy bằng nhau
2 Tính chất :
- Trong hình thang cân, hai cạnh bên bằng nhau
- Trong hình thang cân, hai đường chéo bằng nhau
3 Dấu hiệu nhận biết :
- Hình thang có hai góc kề một đáy bằng nhau là hình thang cân
- Hình thang có hai đường chéo bằng nhau là hình thang cân
4- Hình bình hành 1 Định nghĩa:Hình bình hành là tứ giác có các cạnh đối
song song
2 Tính chất:
- Các cạnh đối bằng nhau
- Các góc đối bằng nhau
- Hai đường chéo cắt nhau tại trung điểm của mỗi đường
C D
C
D
D
C
C D
3 Dấu hiệu nhận biết:
- Tứ giác có các cạnh đối song song là hình bình hành
- Tứ giác có các cạnh đối bằng nhau là hình bình hành
- Tứ giác có hai cạnh đối song song và bằng nhau là
hình bình hành
- Tứ giác có các góc đối bằng nhau là hình bình hành
- Tứ giác có hai đường chéo cắt nhau tại trung điểm của
mỗi đường là hình bình hành
5- Hình chữ nhật
Áp dụng vào tam giác
1 Định nghĩa: Hình chữ nhật là tứ giác có bốn góc vuông
2 Tính chất:
- Hình chữ nhật có tất cả các tính chất của hình bình hành, của hình thang cân
- Hai đường chéo của hình chữ nhật bằng nhau và cắt nhau tại trung điểm của mỗi đường
3 Dấu hiệu nhận biết:
- Tứ giác có ba góc vuông là hình chữ nhật
- Hình thang cân có một góc vuông là hình chữ nhật
- Hình bình hành có một góc vuông là hình chữ nhật
- Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật
- Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
- Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng một nửa cạnh ấy thì tam giác đó là tam giác vuông
C A
D
B
M A
C B
Trang 26 – Hình thoi 1 Định nghĩa: Hình thoi là tứ giác có bốn cạnh bằng nhau
2 Tính chất:
- Hình thoi có tất cả các tính chất của hình bình hành – Hai đường chéo vuông góc với nhau
– Hai đường chéo là các đường phân giác của các góc của
hình thoi
3 Dấu hiệu nhận biết:
– Tứ giác có bốn cạnh bằng nhau là hình thoi – Hình bình hành có hai cạnh kề bằng nhau là hình thoi – Hình bình hành có hai đường chéo vuông góc với nhau
là hình thoi – Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi
7 – Hình vuông 1 Định nghĩa: Hình vuông là tứ giác có bốn góc vuông và
có bốn cạnh bằng nhau
2 Tính chất: Hình vuông có tất cả các tính chất của
hình chữ nhật và hình thoi
3 Dấu hiệu nhận biết:
– Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông – Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông
– Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông
– Hình thoi có một góc vuông là hình vuông – Hình thoi có hai đường chéo bằng nhau là hình vuông
Nhận biết: Một tứ giác vừa là hình chữ nhật, vừa là hình
thoi thì tứ giác đó là hình vuông
* ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG
1 Đường trung bình của tam giác
Định nghĩa: Đường trung bình của tam giác là đoạn thẳng
nối trung điểm hai cạnh của tam giác
Định lí 1: Đường thẳng đi qua trung điểm một cạnh của
tam giác song song với cạnh thứ hai thì đi qua trung điểm
cuả cạnh thứ ba
Định lí 2: Đường trung bình của tam giác thì song song với cạnh thứ ba và bẳng nửa cạnh ấy
O
D
B
E A
D
2 Đường trung bình của hình thang
Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của
hình thang
Định lí 3: Đường thẳng đi qua trung điểm một cạnh bên
của hình thang và song song với hai đáy thì đi qua trung điểm cuả cạnh bên thứ hai
Định lí 4: Đường trung bình của hình thang thì song song
với hai đáy và bẳng nửa tổng hai đáy
II ĐA GIÁC ĐỀU DIỆN TÍCH ĐA GIÁC
1 ĐA GIÁC ĐA GIÁC ĐỀU
+ Khái niệm về đa giác
Định nghĩa: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng
chứa bất kì cạnh nào của đa giác đó
+ Đa giác đều
Định nghĩa: Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau
+ Tổng các góc của một đa giác
Định lí: Tổng các góc trong một đa giác n cạnh bằng 0
2 180
Lục giác đều Ngũ giác đều
Tứ giác đều Tam giác đều
A
B
Trang 3Tổng hợp kiến thức hình học 8 Page 5
2 DIỆN TÍCH
* Diện tích tam giác
Định lí: Diện tích tam giác bằng nửa tích một cạnh với chiều cao ứng với cạnh đó
* Đặc biệt : Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông 1
2
S a b
* Diện tích tứ giác
1 Hình chữ nhật: Diện tích
hình chữ nhật bằng tích hai
kích thước của nó
S a b
a: là độ dài chiều rộng
b: là độ dài chiều dài
2 Hình vuông: Diện tích
hình vuông bằng bình
phương cạnh của nó:
2
S a
a: độ dài 1 cạnh hình vuông
a
h
b
a
a
b
C A
D
B
a
B
D A
C
3 Hình thang : Diện tích hình thang bằng nửa tích của tổng hai đáy với chiều
cao
1 ( )
2
S ab h
a: Độ dài đáy lớn
b: Độ dài đáy nhỏ
h: Độ dài đường cao
4 Hình bình hành : Diện tích hình bình hành bằng tích của một cạnh với chiều cao tương ứng của
nó
Sa h
h: Độ dài chiều cao
a: Độ dài cạnh tương ứng
5 Hình thoi: Diện tích của hình thoi bằng nửa tích hai đường chéo
1
c 2
;
c d là độ dài hai đường chéo của hình thoi
6 Tứ giác có hai đường chéo vuông góc: Diện tích của hình tứ giác có hai đường chéo vuông góc bằng nửa tích hai đường chéo :
1 2 1 2
S d d
1.2
d d: là độ dài hai đường chéo
III TAM GIÁC ĐỒNG DẠNG
1 ĐỊNH LÍ TA-LÉT TRONG TAM GIÁC 1.1 Tỉ số của hai đoạn thẳng
Định nghĩa: Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo
1.2 Đoạn thẳng tỉ lệ
Định nghĩa: Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng A’B’ và C’D’ nếu có tỉ lệ thức:
hay
h
a
b
h
a D
C
c
d O D
B
d1 d2 B
D
C A
D ' '
Trang 41.3 Định lí Ta-lét trong tam giác: Nếu một đường thẳng song
song với một cạnh của tam giác và cắt hai cạnh còn lại thì
nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ
lệ
GT ABC B C, ' '/ /BC B 'AB C, 'AC
2 ĐỊNH LÍ ĐẢO VÀ HỆ QUẢ CỦA ĐỊNH LÍ TA-LÉT
2.1 Định lí Ta-lét đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai
cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn
lại của tam giác
KL B C' '/ /BC
2.2 Hệ quả định lí Ta-lét
Nếu một đươngg thẳng cắt hai cạnh (hoặc cắt phần kéo dài của hai cạnh ) của một tam giác và
song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ
với ba cạnh của tam giác đã cho
GT ABC B C, ' '/ /BC B 'AB C, 'AC
KL AB' AC' B C' '
AB AC BC
A
a
C' B'
C B
C B
A
A
C' B'
A
3 TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC 3.1 Định lí : Trong tam giác đường phân giác của một góc chia cạnh đối diện thành hai đoạn
thẳng tỉ lệ với hai cạnh kề hai đoạn ấy AD là phân giác của
3.2 Chú ý : Định lí vẫn đúng với tia phân giác của góc ngoài của tam giác AE là tia phân giác
của góc BAx ABAC suy ra
ACEB
4 KHÁI NIỆM HAI TAM GIÁC ĐỒNG DẠNG
4 1 Tam giác đồng dạng
a) Định nghĩa : Tam giác A B C gọi là đồng dạng với tam giác ABC nếu:
; ; ;A B B C C A
Tam giác A B C đồng dạng với tam giác ABC được kí hiệu là A B C ∽ABC
(viết theo thứ tự cặp đỉnh tương ứng)
Tỉ số các cạnh tương ứng A B B C C A k
gọi là tỉ số đồng dạng
b) Tính chất Tính chất 1 Mỗi tam giác đồng dạng với chính nó
D A
E
A
x
Trang 5Tổng hợp kiến thức hình học 8 Page 9
Tính chất 2 Nếu A B C ∽ABC thì ABC ∽A B C
Tính chất 3 Nếu A B C ∽A B C và A B C ∽ABC thì A B C ∽ABC
4 2 Định lí: Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại
thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho
Chú ý: Định lí cũng đúng cho trường hợp đường thẳng a cắt phần kéo dài hai cạnh của tam
giác và song song với cạnh còn lại
4.3 Các trường hợp đồng dạng của tam giác
Trường hợp đồng dạng thứ nhất : Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác
kia thì hai tam giác đó đồng dạng
Định lý : ABC và A B C
A B A C B C ABC∽A B C (c.c.c)
Trường hợp đồng dạng thứ hai: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác
kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đó đồng dạng
Định lý : ABC và A B C' ' '
Có
A B A C và
'
AA ABC∽A'B'C'
Trường hợp đồng dạng thứ ba: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác
kia thì hai tam giác đó đồng dạng với nhau
Định lí: ABC và A ' B' C '
Có A A', B B' ABCA ' B ' C ' (g.g)
A
C' B'
A'
A
C' B'
A'
A
C' B'
A'
4.4 CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG + Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông
Hai tam giác vuông đồng dạng với nhau nếu:
a) Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia
b) Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia
+ Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng
Định lí 1: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh
huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng
+ Tỉ số hai đường cao, tỉ số diện tích của hai tam giác đồng dạng
Định lí 2: Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng
Định lí 3: Tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng
5 HÌNH LĂNG TRỤ ĐỨNG HÌNH CHÓP ĐỀU
5.1 Hình hộp chữ nhật
+ Hình hộp chữ nhật có 6 mặt là các hình chữ
nhật (h.20a) + Hình lập phương là hình hộp chữ nhật có 6 mặt là những hình vuông
* Thể tích của hình hộp chữ nhật
+ Nếu các kích thước của hình hộp chữ nhật là a b c (cùng đơn vị đo) thì thể tích của , , hình hộp chữ nhật đó là : Va b c
Thể tích của hình lập phương cạnh a là : Va3
B'
B
A
A'
Trang 65.2 Mặt phẳng và đường thẳng
+ Nếu đường thẳng d có hai điểm , A B thuộc
mặt phẳng ABCD thì mọi điểm của
đường thẳng d đều thuộc mặt phẳng
ABCD
+ Hai đường thẳng phân biệt ,a b trong không
gian có các vị trí :
Cắt nhau nếu có một điểm chung
Song song nếu cùng nằm trong một mặt
phẳng và không có điểm chung
Không cùng nằm trong một mặt phẳng
+ Hai đường thẳng phân biệt cùng song song với
một đường thẳng thứ ba thì song song với
nhau
+ Khi đường thẳng AB không nằm trong mặt phẳng A B C D mà AB song song với một
đường thẳng thuộc mặt phẳng đó, thì AB song song với mặt phẳng A B C D và kí
hiệu : AB mp A B C D∥
+ Khi đường thẳng A A vuông góc với hai đường thẳng cắt nhau AD và AB của mặt phẳng
ABCD ta nói A A vuông góc với mặt phẳng ABCD tại A và kí hiệu :
A A mp ABCD
+ Nếu một đường thẳng vuông góc với một mặt phẳng tại điểm A thì nó vuông góc với mọi
đường thẳng đi qua A và nằm trong mặt phẳng đó
+ Khi một trong hai mặt phẳng chứa một đường thẳng vuông góc với mặt phẳng còn lại thì ta
nói hai mặt phẳng đó vuông góc với nhau, chẳng hạn mp A ADD mp ABCD
5.3 Hình lăng trụ đứng
Trong hình hình lăng trụ đứng
A B C D A B C D, , , , ', ', ', ' là các đỉnh
Các mặt ABB A BCC B' ', ' ', là những hình chữ
nhật, gọi là các mặt bên
Các đoạn AA ',BB CC DD', ', ' song song với
nhau và bằng nhau, gọi là các cạnh bên
Hai mặt ABCD A B C D, ' ' ' ' là hai đáy
b)
C'
B' A'
D'
B D
A
C
Hình lăng trụ có hai đáy là tứ giác nên gọi là lăng trụ đứng tứ giác Kí hiệu: ABCD A B C D ' ' ' ' Hình hộp chữ nhật, hình lập phương là những hình lăng trụ đứng
Hình lăng trụ đứng có đáy là hình bình hành được gọi là hình hộp đứng
* Diện tích xung quanh của hình lăng trụ đứng Diện tích xung quanh của hình lăng trụ đứng bằng chu vi đáy nhân với chiều cao
2
xq
S p h ( p là nửa chu vi đáy, h là chiều cao)
Diện tích toàn phần của lăng trụ đứng bằng tổng của diện tích xung quanh và diện tích hai đáy
* Thể tích của hình lăng trụ đứng
Thể tích hình lăng trụ đứng bằng diện tích đáy nhân với chiều cao
Công thức tính thể tích hình lăng trụ đứng: VS h ( S là diện tích đáy, h là chiều cao )
5.4 Hình chóp đều và hình chóp cụt đều + Hình chóp
Hình chóp là hình có mặt đáy là một đa giác, các mặt bên là những tam giác có chung một đỉnh Đỉnh chung này gọi là đỉnh của hình chóp
Đường thẳng đi qua đỉnh và vuông góc với mặt phẳng đáy gọi là đường cao của hình chóp
Hình bên là hình chóp S.ABCD có đỉnh là S, đáy là tứ giác ABCD,
ta gọi là hình chóp tứ giác
+ Hình chóp đều
Hình chóp đều là hình chóp có mặt đáy là một đa giác đều, các mặt bên là những tam giác cân bằng nhau có chung đỉnh (S là đỉnh của hình chóp)
+ Hình chóp cụt đều
Cắt hình chóp đều bằng một mặt phẳng song song với đáy (xem h.31) Phần hình chóp nằm giữa mặt phẳng đó và mặt phẳng đáy của hình chóp gọi là hình chóp cụt đều
Mỗi mặt bên của hình chóp cụt đều là một hình thang cân
S
A
D Mặt bên
Mặt đáy Chiều cao
Trang 7Tổng hợp kiến thức hình học 8 Page 13
+ Diện tích xung quanh của hình chóp đều
Công thức tính diện tích xung quanh
Diện tích xung quanh của hình chóp đều bằng tích của nửa chu vi đáy với trung đoạn
xq
S p d (p là nửa chu vi đáy, d là trung đoạn của hình chóp đều)
Diện tích toàn phần của hình chóp bằng tổng của diện tích xung quanh và diện tích đáy
+ Thể tích của hình chóp đều
Công thức tính thể tích: 1
3
V S h (S là diện tích đáy, h là chiều cao)