Sở giáo dục và đào tạo Hng Yên -------------------------- Đề chính thứC . Đề thi tuyển sinh lớp 10 THPT năm học 2007 - 2008 Môn: Toán Thời gian: 120 phút (không kể giao đề) Ngày thi: 24 tháng 7 năm 2007 ---------------------------------------------- (Dành cho thí sinh có số báo danh chẵn) Phần I: Trắc nghiệm khách quan (3,5 điểm) Từ câu 1 đến câu 8, hãy chọn phơng án đúng và viết chữ cái đứng trớc phơng án đó vào bài làm. Câu 1: Số có căn bậc hai số học của nó bằng 9 là: A. - 3 B. 3 C. - 81 D. 81 Câu 2: Trong các hàm số sau, hàm số nào nghịch biến? A. y = x - 2 B. y = 3 - 2 (1 x) C. y = 2 1 x - 1 D. y = 6 3(x 1) Câu 3: Hệ phơng trình = =+ 2 1 12 y yx có nghiệm (x; y) là: A. 2 1 0 ; B. 2 1 2 ; C. 2 1 0 ; D. ( ) 01; Câu 4: Một trong các nghiệm (x; y) của phơng trình 4x - 3y = -1 là: A. (-1 ; -1) B. (-1 ; 1) C. (1 ; -1) D. (1 ; 1) Câu 5: Phơng trình đờng thẳng đi qua hai điểm A(-1; 2); B(2; 5) là: A. y = x + 3 B. y = - x + 3 C. y = 2x + 3 D. y = - x - 3 Câu 6: Để phơng trình x 2 - 3x + m - 3 = 0 có hai nghiệm trái dấu thì: A. m < 3 B . m < 4 C. m > 3 D. 3 < m < 4 Câu 7: Cho tam giác ABC vuông tại A có AB = 15, AC = 20. Gọi H là chân đờng cao ứng với cạnh huyền. Khi đó độ dài các đoạn thẳng AH; BH; CH là: A. BH = 16; CH = 9; AH = 12 B. CH = 16; BH = 9; AH = 12 C. AH = 16; BH = 9; CH = 12 D. AH = 16; CH = 9; BH = 12 Câu 8: Cho hình vẽ, có NPQ = 45 0 , PQM = 30 0 . Khi đó số đo của NKQ bằng: A. 37 0 30 B. 90 0 C. 75 0 D. 60 0 -1- Câu 9: Điền vào chỗ ( ) để đ ợc kết luận đúng. Đồ thị của hàm số y = ax 2 (a 0) là một parabol nhận trục làm trục đối xứng và nếu a > 0 thì đồ thị nằm trục hoành, O là điểm của đồ thị. Câu 10: Với mỗi ý ở cột A hãy ghép với một ý ở cột B để đợc một câu đúng (ví dụ: a) ghép với 1) ; a) ghép với 2) ; a) ghép với 3) ; a) ghép với 4). A B a) Đờng tròn nội tiếp tam giác 1) là đờng tròn đi qua ba đỉnh của tam giác. b) Đờng tròn bàng tiếp tam giác 2) là đờng tròn tiếp xúc với ba cạnh của tam giác. c) Đờng tròn ngoại tiếp tam giác 3) là đờng tròn tiếp xúc với một cạnh của tam giác và tiếp xúc với các phần kéo dài của hai cạnh kia. 4) là đờng tròn đi qua trung điểm của ba cạnh tam giác Phần II: Tự luận (6,5 điểm) Bài 1:(2,0 điểm) Cho phơng trình 2x 2 + (2m - 1)x + m 2 2 = 0 (1) a) Tìm giá trị của m để phơng trình (1) có một nghiệm bằng 2. b) Với m tìm đợc ở câu a), dùng hệ thức Vi-ét tìm nghiệm còn lại của phơng trình (1). Bài 2:(1,0 điểm) Một xe khách và một xe du lịch khởi hành đồng thời từ TP. Hồ Chí Minh đi Tiền Giang. Xe du lịch có vận tốc lớn hơn vận tốc của xe khách là 20 km/h, do đó nó đến Tiền Giang trớc xe khách 25 phút. Tính vận tốc mỗi xe, biết rằng khoảng cách giữa TP. Hồ Chí Minh và Tiền Giang là 100 km. Bài 3:(2,5 điểm) Cho hai đờng tròn tâm O và tâm O cắt nhau tại A và B. Đờng thẳng xy tiếp xúc với đờng tròn tâm O tại M, tiếp xúc với đờng tròn tâm O tại N và cắt đờng thẳng AB tại I sao cho B nằm giữa A và I. a. Chứng minh tam giác IAM và tam giác IMB đồng dạng. b. Cho M,N cố định. Chứng minh rằng khi các điểm O và O thay đổi thì đờng thẳng AB luôn đi qua một điểm cố định. c. Chứng minh: IA + IB MN. Bài 4:(1,0 điểm) Cho tam giác ABC có ba góc nhọn. Chứng minh rằng: BC 2 = AB 2 + AC 2 2AB.AC.cosA ---------------Hết--------------- Họ tên thí sinh: Số báo danh: Phòng thi số: Chữ ký của cán bộ coi thi số 1 -2- -3- . tuyển sinh lớp 10 THPT năm học 2 007 - 2 008 Môn: Toán Thời gian: 120 phút (không kể giao đề) Ngày thi: 24 tháng 7 năm 2 007 ----------------------------------------------