Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
649 KB
Nội dung
Trường THPT Gò Công Đông – Năm học 2008 - 2009 Chuyên đề: HỆPHƯƠNGTRÌNH ĐẠI SỐ NHỮNG NỘI DUNG CƠ BẢN I. Hệphươngtrình đối xứng loại 1: Phần 1- Định nghĩa chung: Dựa vào lý thuyết đa thức đối xứng. − Phươngtrình n ẩn x 1 , x 2 , ., x n gọi là đối xứng với n ẩn nếu thay x i bởi x j ; x j bởi x i thì phươngtrình không thay đổi. − Khi đó phươngtrình luôn được biểu diễn dưới dạng: x 1 + x 2 + . + x n x 1 x 2 + x 1 x 3 + . + x 1 x n + x 2 x 1 + x 2 x 3 + . + x n-1 x n . x 1 x 2 . x n − Hệphươngtrình đối xứng loại một là hệ mà trong đó gồm các phươngtrình đối xứng. − Để giải được hệphươngtrình đối xứng loại 1 ta phải dùng định lý Viét. * Nếu đa thức F(x) = a 0 x n + a 1 x n − 1 + . a n , a 0 ≠ 0, a i ∈ P có nhgiệm trên P là c 1 , ., c n thì: 1 1 2 0 2 1 2 1 3 1 2 1 2 3 -1 0 1 1 0 . . . . . ( 1) . n n n n n n n a c c c a a c c c c c c c c c c c c a a c c c a + + + = − + + + + + + + = = − (Định lý Viét tổng quát) Phần 2 – Hệphươngtrình đối xứng loại 1 hai ẩn: A. LÝ THUUYẾT 1. Định lý Viét cho phươngtrình bậc 2: Nếu phươngtrình bậc hai ax 2 + bx + c = 0 có hai nghiệm x 1 , x 2 thì: 1 2 1 2 . b S x x a c P x x a = + = − = = Ngược lại, nếu 2 số x 1 , x 2 có 1 2 1 2 . x x S x x P + = = thì x 1 , x 2 là nghệm của phươngtrình X 2 − SX + P = 0. 2. Định nghĩa: ( , ) 0 ( , ) 0 f x y g x y = = , trong đó ( , ) ( , ) ( , ) ( , ) f x y f y x g x y g y x = = 3.Cách giải: Bước 1: Đặt điều kiện (nếu có). Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và 2 4S P≥ . Bước 3: Thay x, y bởi S, P vào hệphương trình. Giải hệ tìm S, P rồi dùng Viét đảo tìm x, y. Chú ý: + Cần nhớ: x 2 + y 2 = S 2 – 2P, x 3 + y 3 = S 3 – 3SP. + Đôi khi ta phải đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv. + Có những hệphươngtrình trở thành đối xứng loại 1 sau khi đặt ẩn phụ. 4. Bài tập: Loại 1: Giải hệphươngtrình Ví dụ 1. Giải hệphươngtrình 2 2 3 3 30 35 x y xy x y + = + = . Trần Duy Thái – Chuyên đề: Hệphươngtrình Đại số 1 Trường THPT Gò Công Đông – Năm học 2008 - 2009 GIẢI Đặt S , Px y xy= + = , điều kiện 2 4S P≥ . Hệphươngtrình trở thành: 2 2 30 P SP 30 S 90 S(S 3P) 35 S S 35 S ì ï ï = ï ì = ï ï ï ï Û í í æ ö ï ï - = ÷ ç ï ï î - = ÷ ç ï ÷ ç ÷ ï è ø ï î S 5 x y 5 x 2 x 3 P 6 xy 6 y 3 y 2 ì ì ì ì = + = = = ï ï ï ï ï ï ï ï Û Û Û Ú í í í í ï ï ï ï = = = = ï ï ï ï î î î î . Ví dụ 2. Giải hệphươngtrình 3 3 ( ) 2 2 xy x y x y − = − − = . GIẢI Đặt , , t y S x t P xt= − = + = , điều kiện 2 4S P≥ Hệphươngtrình trở thành: 3 3 3 xt(x t) 2 SP 2 x t 2 S 3SP 2 ì ì + = =ï ï ï ï Û í í ï ï + = - = ï ï î î S 2 x 1 x 1 P 1 t 1 y 1 ì ì ì = = = ï ï ï ï ï ï Û Û Û í í í ï ï ï = = = - ï ï ï î î î . Ví dụ 3. Giải hệphươngtrình 2 2 2 2 1 1 4 1 1 4 x y x y x y x y + + + = + + + = . GIẢI Điều kiện 0, 0x y≠ ≠ . Hệphươngtrình tương đương với: 2 2 1 1 x y 4 x y 1 1 x y 8 x y ì æ ö æ ö ï ÷ ÷ ç ç ï + + + = ÷ ÷ ç ç ï ÷ ÷ ç ç÷ ÷ ï è ø è ø ï í ï æ ö æ ö ï ÷ ÷ ç ç + + + = ÷ ÷ ï ç ç ÷ ÷ ï ç ç ÷ ÷ è ø è ø ï î Đặt 2 1 1 1 1 S x y ,P x y ,S 4P x y x y æ ö æ ö æ öæ ö ÷ ÷ ÷ ÷ ç ç ç ç = + + + = + + ³ ÷ ÷ ÷ ÷ ç ç ç ç ÷ ÷ ÷ ÷ ç ç ç ç ÷ ÷ ÷ ÷ è ø è ø è øè ø ta có: 2 1 1 x y 4 S 4 S 4 x y P 4 1 1 S 2P 8 x y 4 x y ì æ ö æ ö ï ÷ ÷ ç ç ï + + + = ÷ ÷ ç ç ï ì ì ÷ ÷ =ï = ï ç ç ÷ ÷ ï è ø è ø ï ï ï Û Û í í í æ öæ ö ï ï ï = - = ÷ ÷ ç ç ï ï ï îî + + = ÷ ÷ ç ç ï ÷ ÷ ç ç÷ ÷ ï è øè ø ï î 1 x 2 x 1 x 1 y 1 y 2 y ì ï ï + = ï ì = ï ï ï ï Û Û í í ï ï = ï ï î + = ï ï ï î . Ví dụ 4. Giải hệphươngtrình 2 2 2 8 2 (1) 4 (2) x y xy x y + + = + = . GIẢI Điều kiện , 0x y ≥ . Đặt 0t xy= ≥ , ta có: 2 xy t= và (2) x y 16 2tÞ + = - . Thế vào (1), ta được: 2 t 32t 128 8 t t 4- + = - Û = Suy ra: xy 16 x 4 x y 8 y 4 ì ì = = ï ï ï ï Û í í ï ï + = = ï ï î î . Loại 2: Điều kiện tham số đểhệ đối xứng loại (kiểu) 1 có nghiệm Phương pháp giải chung: + Bước 1: Đặt điều kiện (nếu có). + Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và 2 4S P≥ (*). Trần Duy Thái – Chuyên đề: Hệ phươngtrình Đại số 2 Trường THPT Gò Công Đông – Năm học 2008 - 2009 + Bước 3: Thay x, y bởi S, P vào hệphương trình. Giải hệ tìm S, P theo m rồi từ điều kiện (*) tìm m. Chú ý: Khi ta đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv thì nhớ tìm chính xác điều kiện của u, v. Ví dụ 1 (trích đề thi ĐH khối D – 2004). Tìm điều kiện m đểhệphươngtrình sau có nghiệm thực: 1 1 3 x y x x y y m + = + = − . GIẢI Điều kiện , 0x y ≥ ta có: 3 3 x y 1 x y 1 x x y y 1 3m ( x) ( y) 1 3m ì ì ï ï + = + = ï ï ï ï Û í í ï ï + = - + = - ï ï ï ï î î Đặt S x y 0, P xy 0= + ³ = ³ , 2 S 4P.³ Hệphươngtrình trở thành: 3 S 1 S 1 P m S 3SP 1 3m ì ì =ï = ï ï ï Û í í ï ï = - = - ï ï îî . Từ điều kiện 2 S 0,P 0,S 4P³ ³ ³ ta có 1 0 m 4 £ £ . Ví dụ 2. Tìm điều kiện m đểhệphươngtrình 2 2 3 9 x y xy m x y xy m + + = + = − có nghiệm thực. GIẢI 2 2 x y xy m (x y) xy m xy(x y) 3m 9 x y xy 3m 9 ì ì + + =ï + + = ï ï ï Û í í ï ï + = - + = - ï ï îî . Đặt S = x + y, P = xy, 2 S 4P.³ Hệphươngtrình trở thành: S P m SP 3m 9 ì + = ï ï í ï = - ï î . Suy ra S và P là nghiệm của phươngtrình 2 t mt 3m 9 0- + - = S 3 S m 3 P m 3 P 3 ì ì = = - ï ï ï ï Þ Ú í í ï ï = - = ï ï î î . Từ điều kiện ta suy ra hệ có nghiệm 2 2 3 4(m 3) 21 m m 3 2 3 (m 3) 12 4 é ³ - ê Û Û £ Ú ³ + ê - ³ ê ë . Ví dụ 3. Tìm điều kiện m đểhệphươngtrình 4 1 4 3 x y x y m − + − = + = có nghiệm. GIẢI Đặt u x 4 0, v y 1 0= - ³ = - ³ hệ trở thành: 2 2 u v 4 u v 4 21 3m u v 3m 5 uv 2 ì + =ï ì ï + =ï ï ï Û í í - ï ï + = - = ï ï î ï î . Suy ra u, v là nghiệm (không âm) của 2 21 3m t 4t 0 2 - - + = (*). Hệ có nghiệm Û (*) có 2 nghiệm không âm. / 3m 13 0 0 13 2 S 0 m 7 21 3m 3 0 P 0 2 ì ì - ï ï D ³ ï ï ³ ï ï ï ï ï Û ³ Û Û £ £ í í ï ï - ï ï ³ ³ ï ï ï ï î ï î . Trần Duy Thái – Chuyên đề: Hệphươngtrình Đại số 3 Trường THPT Gò Công Đông – Năm học 2008 - 2009 Ví dụ 4. Tìm điều kiện m đểhệphươngtrình 2 2 4 4 10 ( 4)( 4) x y x y xy x y m + + + = + + = có nghiệm thực. GIẢI 2 2 2 2 2 2 (x 4x) (y 4y) 10 x y 4x 4y 10 xy(x 4)(y 4) m (x 4x)(y 4y) m ì ì ïï + + + = + + + = ï ï Û í í ï ï + + = + + = ï ï î î . Đặt 2 2 u (x 2) 0, v (y 2) 0= + ³ = + ³ . Hệphươngtrình trở thành: u v 10 S 10 uv 4(u v) m 16 P m 24 ì ì + = = ï ï ï ï Û í í ï ï - + = - = + ï ï î î (S = u + v, P = uv). Điều kiện 2 S 4P S 0 24 m 1 P 0 ì ï ³ ï ï ï ³ Û - £ £ í ï ï ³ ï ï î . Loại 3: Một số bài toán giải bằng cách đưa về hệphương trình. Ví dụ. Giải phương trình: 3 3 3 1 2 x x+ − = . GIẢI Đặt: 3 3 x u 1 x v = − = . Vậy ta có hệ: 3 3 3 u v 2 u v 1 + = + = ⇔ 2 3 u v 2 (u v) (u v) 3uv 1 + = + + − = ⇔ 3 u+v = 2 19 u.v = 36 u, v là hai nghiệm của phương trình: 2 3 19 X - X + = 0 2 36 ⇒ 9+ 5 u = 12 9 - 5 u = 12 ⇒ 3 3 9 + 5 x = 12 9 - 5 x = 12 ÷ ÷ ÷ ÷ Vậy phươngtrình có hai nghiệm: {x} = 3 3 9 5 9 5 ; 12 12 + − ÷ ÷ ÷ ÷ . B. BÀI TẬP I. Giải các hệphươngtrình sau: 1) 3 3 5 5 2 2 1x y x y x y + = + = + 2) 2 2 4 2 2 4 5 13 x y x x y y + = − + = 3) 30 35 x y y x x x y y + = + = 4) 2 2 4 2 8 2 x y x y xy + = + + = 5) 2 2 18 ( 1)( 1) 72 x x y y xy x y + + + = + + = 6) 2 2 2 2 1 ( )(1 ) 5 1 ( )(1 ) 49 x y xy x y x y + + = + + = 7) 2 2 2 2 1 1 4 1 1 4 x y x y x y x y + + + = + + + = 8) 7 1 78 y x y x x y x xy y xy + = + + = 9) ( ) ( ) 2 2 3 3 4 280 x y x y x y + = + + = Trần Duy Thái – Chuyên đề: Hệphươngtrình Đại số 4 Trng THPT Gũ Cụng ụng Nm hc 2008 - 2009 10) 6 6 3 3 1 3 3 x y x x y y + = = 11) 4 4 6 6 1 1 x y x y + = + = II. Gi h phng trỡnh cú tham s: 1. Gii v bin lun: a) 2 2 2 4x y x y m + = + = b) 4 4 4 x y m x y m + = + = c) 1 2 5 2 2 2 x y x y x y m x y + + = + = 2. Tỡm giỏ tr ca m: a) ( ) 5 4 4 1 x y xy x y xy m + = + = cú nghim. b) 2 2 2 1 x y xy m x y xy m + + = + + = + cú nghim duy nht. c) ( ) ( ) 2 2 2 4 2 1 x y x y m + = + = + cú ỳng hai nghim. 3. 2 2 x xy y m x y m + + = + = (1II) a. Gii h phng trỡnh khi m = 5. b. Tỡm cỏc giỏ tr ca m h phng trỡnh ó cho cú nghim. 4. 2 2 3 8 x xy y m x y xy m + + = + = (7I) a Gii h phng trỡnh khi m = 7/2. b. Tỡm cỏc giỏ tr ca m h phng trỡnh ó cho cú nghim. 5. 2 2 1x xy y m x y xy m + + = + + = (40II) a. Gii h phng trỡnh khi m=2. b. Tỡm cỏc giỏ tr ca m h phng trỡnh ó cho cú nghim (x;y) vi x >0, y >0. III. Gii phng trỡnh bng cỏch a v h phng trỡnh: 1. Gii phng trỡnh: 4 4 1 18 3x x + = . 2. Tỡm m mi phng trỡnh sau cú nghim: a. 1 1x x m + + = b. m x m x m + + = c. 3 3 1 1x x m + + = Phn 3 H phng trỡnh i xng loi 1 ba n: (c thờm) a. Định nghĩa: Là hệ ba ẩn với các phơng trình trong hệ là đối xứng. b. Định lý Vi-et cho ph ơng trình bậc 3: Cho 3 số x, y, z có: x + y + z = xy + yz + zx = xyz = Thì x, y, z ;à nghiệm của phơng trình X 3 - X 2 + X - = 0. (*) Thậy vậy: (X - x)(X - y)(X - z) = 0 [ X 2 - (x + y)X + xy ](X - z) = 0 X 3 - X 2 z - X 2 (x + y) + (x + y)zX + xyX - xyz = 0 X 3 - X 2 + X - = 0. Trn Duy Thỏi Chuyờn : H phng trỡnh i s 5 Trng THPT Gũ Cụng ụng Nm hc 2008 - 2009 (*) có nghiệm là x, y, z phơng trình X 3 - X 2 + X - = 0 có 3 nghiệm là x, y, z. c.Cách giải: + Do các phơng trình trong hệ là đối xứng nên ta luôn viết đợc dới dạng , , Khi đó ta đặt x + y + z = xy + yz + zx = xyz = Ta đợc hệ của , , . + Giải phơng trình X 3 - X 2 + X - = 0 (1) tìm đợc nghiệm (x, y, z) của hệ. Chú ý: (1) có nghiệm duy nhất hệ vô nghiệm. (1) có 1 nghiệm kép duy nhất hệ có nghiệm. (1) có 2 nghiệm : 1 nghiệm kép, 1 nghiệm đơn hệ có 3 nghiệm. (1) có 3 ngiệm hệ có 6 nghiệm. d. Bài tập: VD1: Giải hệ: 2 2 2 3 3 3 x + y + z = 2 x + y + z = 6 x + y + z = 8 Giải: áp dụng hằng đẳng thức ta có: x 2 + y 2 + z 2 = (x + y + z) 2 - 2(xy + yz + zx). x 3 + y 3 + z 3 = (x + y + z) 3 - 3(x + y + z)(xy + yz + zx) + 3xyz. Vậy 6 = 2 2 - 2(xy + yz + zx) xy + yz + zx = -1. 8 = 2 3 - 3.2.(-1) + 3xyz xyz = -2. x, y, z là nghiệm của phơng trình:t 3 - 2t 2 - t + 2 = 0 t = 1 t = - 1 t = 2 Vậy hệ có 6 cặp nghiệm (1;-1;2); (-1;1;2); (1;2;-1); (-1;2;1); (2;1;-1); (2;-1;1). VD2: Giải hệ x + y + z = 9 (1) xy + yz + zx = 27 (2) 1 1 1 + + = 1 (3) x y z Giải: ĐK: x, y, z 0. Từ (3) xy + yz + zx = 1 xyz Do (2) xyz = 27 Vậy hệ x + y + z = 9 xy + yz + zx = 27 xyz = 27 Do đó (x; y; z) là nghiệm của phơng trình: X 3 - 9X 2 + 27X - 27 = 0 (X - 3) 3 = 0 X = 3. Vậy hệ có nghiệm là (3; 3; 3). Trn Duy Thỏi Chuyờn : H phng trỡnh i s 6 Trng THPT Gũ Cụng ụng Nm hc 2008 - 2009 VD3: Giải hệ 2 2 2 2 3 3 3 3 x + y + z = a x + y + z = a x + y + z = a Giải: x 2 + y 2 + z 2 = (x + y + z) 2 - 2(xy + yz + zx) xy + yz + zx = 0. x 3 + y 3 + z 3 = (x + y + z) 3 - 3(x + y + z)(xy + yz + zx) + 3xyz xyz = 0. Vậy có: x + y + z = 0 xy + yz + zx = 0 0xyz = (x; y; z) là nghiệm của phơng trình: X 3 - aX 2 = 0 X = 0 X = a Vậy hệ có nghiệm là {(a; 0; 0); (0; a; 0); (0; 0; a)} e.Chú ý: Có nhiều vấn đề cần lu ý khi giải hệ loại này + Với cách giải theo định lý Vi-et từ hệ ta phải đa ra đợc x + y + z; xy + yz + zx; xyz có thể nó là hệ quả của hệ nên khi tìm đợc nghiệm nên thử lại. + Vì là hệ đối xứng giữa các ẩn nên trong nghiệm có ít nhất 2 cặp nghiệm có cùng x, cùng y hoặc cùng z nên có thể giải hệ theo phơng trình cộng, thế. VD: x + y + z = 9 (1) xy + yz + zx = 27 (2) 1 1 1 + + = 1 (3) x y z Giải: Rõ ràng x = 0, y = 0, z = 0 không là nghiệm của hệ Với x 0, y 0, z 0, nhân hai vế của (3) với xyz ta có xy + yz + zx = xyz (4). Từ (2) và (4) xyz = 27 (5) Từ (2) x 2 (y + z) + xyz = 27x (6) Từ (1), (5), (6) ta có: x 2 (9 - x) + 27 - 27x = 0 x 3 - 9x 2 + 27x - 27 = 0 (x - 3) 3 = 0 x = 3 Thay x = 3 vào (1), (5) ta có: y + z =6 yz = 9 y = z = 3. Vậy hệ có nghiệm là x = y = z = 3. II. H phng trỡnh i xng loi 2: 1. H phng trỡnh i xng loi 2 hai n: A. nh gha: ( ) ( ) ( , ) 0 1 ( , ) 0 2 f x y f y x = = Cỏch gii: Ly (1) (2) hoc (2) (1) ta c: (xy)g(x,y)=0. Khi ú xy=0 hoc g(x,y)=0. + Trng hp 1: xy=0 kt hp vi phng trỡnh (1) hoc (2) suy ra c nghim. + Trng hp 2: g(x,y)=0 kt hp vi phng trỡnh (1) + (2) suy ra nghim (trong trng hp ny h phng trỡnh mi tr v h i xng loi 1) v thụng thng vụ nghim. B. Cỏc vớ d: Vớ d 1: Gii h phng trỡnh ( ) ( ) 3 3 3 8 1 3 8 2 x x y y y x = + = + (I) Trn Duy Thỏi Chuyờn : H phng trỡnh i s 7 Trường THPT Gò Công Đông – Năm học 2008 - 2009 GIẢI Lấy (1) − (2) ta được: 2 2 (x - y)(x + xy + y + 5) = 0 Trường hợp 1: (I) 3 x = 3x + 8y x = y ⇔ 3 x = 0 x - 11x = 0 x = ± 11 x = y x = y ⇔ ⇔ . Trường hợp 2: (I) ( ) 2 2 3 3 x +xy+y +5=0 x +y =11 x+y ⇔ (hệ này vô nghiệm) Vậy hệphươngtrình đã cho có tập nghiệm: { } { } (x, y) = (0,0); ( 11, 11); (- 11,- 11) Ví dụ 2: Giải hệphươngtrình 4 4 1 1 1 1 x y y x + − = + − = GIẢI Đặt: 4 4 x - 1 = u 0; y - 1 = v 0≥ ≥ Hệphươngtrình trở thành 4 4 4 4 u + 1 + v = 1 u + v = 0 v + 1 + u = 1 v + u = 0 ⇔ u = 0 v = 0 ⇔ (Do u, v ≥ 0) x = 1 y = 1 ⇒ . Vậy hệ có nghiệm (1,1) Ví dụ 2: Cho hệphươngtrình 2 2 x y y m y x x m = − + = − + (I) a. Tìm m đểhệphươngtrình có nghiệm. b. Tìm m đểhệphươngtrình có nghiệm duy nhất. Giải (I) 2 2 2 2 2 2 2 2 x = ± y x - y = y - y - x + x x = y - y + m x = y - y + m x = y x = y x = y - y + m x - 2x + m = 0 x = - y x = - y x = y - y + m y + m = 0 ⇔ ⇔ ⇔ ⇔ a) Hệphươngtrình có nghiệm ⇔ ' x ' y Δ 0 1 - m 0 m 1 m 0 - m 0 m 0 Δ 0 ≥ ≥ ≤ ⇔ ⇔ ⇔ ≤ ≥ ≤ ≥ b) Hệphươngtrình có nghiệm duy nhất ⇔ ' x ' y ' x ' y Δ = 0 Δ < 0 Δ < 0 Δ = 0 ⇔ 1 - m = 0 - m < 0 1 - m < 0 - m = 0 ⇔ m = 1. Vậy m = 1. Ví dụ 3: Giải phương trình: 3 3 1 2 2 1x x+ = − . GIẢI Đặt 3 2x - 1 = t ⇒ 2x - 1 = t 3 . Trần Duy Thái – Chuyên đề: Hệphươngtrình Đại số 8 Trng THPT Gũ Cụng ụng Nm hc 2008 - 2009 Ta cú h 3 3 x + 1 = 2t t + 1 = 2x 3 2 2 x + 1 = 2t (x - t)(x + xt + t + 1) = 0 3 x - 2x + 1 = 0 x = t 2 (x - 1)(x + x - 1) = 0 x = t x = 1 - 1 5 x = 2 Vy phng trỡnh cú 3 nghim: 1; - 1 5 2 . C. Bi tp: 1.Gii cỏc h phng trỡnh sau: a. 1 3 2 1 3 2 x y x y x y + = + = b. 2 2 3 2 3 2 x y x y x y + = + = c. 3 3 1 2 1 2 x y y x + = + = d. 9 9 9 9 x y y x + + = + + = e. 2 2 2 2 x y y x + = + = g. 5 2 7 5 2 7 x y y x + + = + + = 2. Cho h phng trỡnh 2 2 ( ) 2 ( ) 2 x x y m y x y m + = + = . a. Gii h vi m = 0. b. Tỡm m h cú nghim duy nht. 3. Tỡm m h: 3 2 2 3 2 2 7 7 x y x mx y x y my = + = + cú nghim duy nht. 4. Gii cỏc phng trỡnh: a. 2 5 5x x+ + = . b. 3 3 3 3 2 2x x + = . 2. Hệ ph ơng trình đối xứng loại 2, 3 ẩn: (Đọc thêm) A. Dùng chủ yếu là phơng pháp biến đổi tơng đơng bằng phép cộng và thế. Ngoài ra sử dụng sự đặc biệt trong hệ bằng cách đánh giá nghiệm, hàm số để giải. B. Ví dụ: Giải hệ 2 2 2 x + 2yz = x (1) y + 2zx = y (2) z + 2xy = z (3) Giả bằng cách cộng (1), (2), (3) và lấy (1) trừ đi (2) ta có hệ đã cho tơng đơng với hệ 2 2 x + 2yz = x (x + y + z) = x + y + z (x - y)(x + y - 2z - 1) = 0 Hệ này đơng tơng với 4 hệ sau: 2 2 x + 2yz = x x + 2yz = x x + y + z = 0 (I) x + y + z = 0 (II) x =y x + y - 2z - 1 = 0 Trn Duy Thỏi Chuyờn : H phng trỡnh i s 9 Trng THPT Gũ Cụng ụng Nm hc 2008 - 2009 2 2 x + 2yz = x x + 2yz = x x + y + z = 1 (III) x + y + z = 1 (IV) x =y x + y - 2z - 1 = 0 Giải (I): (I) 2 x + 2yz = x 2y + z = 0 x = y 2 x + 2yz = x z = - 2x x = y 2 2 x - 4x = x z = - 2x x = y -1 x = 0 x = 3 z = - 2x x = y Vậy (I) có 2 nghiệm (0;0;0); ( -1 -1 2 ; ; 3 3 3 ) Làm tơng tự (II) có nghiệm ( 2 -1 -1 ; ; 3 3 3 );( -1 2 -1 ; ; 3 3 3 ) Hệ (III) có nghiệm (0;0;1); ( 1 1 1 ; ; 3 3 3 ) Hệ (IV) có nghiệm (0;1;0); (1;0;0). Vậy hệ đã cho có 8 nghiệm kể trên. VD2: Giải hệ phơng trình: 2 2 2 2 2 2 x + y + z = 1 x + y + z = 1 x + y + z = 1 Giải: Hệ 2 2 x + y + z = 1 (y - z)(y + z - 1) = 0 (x - z)(x + z - 1) = 0 2 2 2 2 2 2 2 2 x + y + z = 1 x + y + z = 1 y=z (I) y = z (II) x=z x + z - 1 = 0 x + y + z = 1 x + y + z = 1 z + y - 1 = 0 (III) z + y - x = z 1 = 0 (IV) x + z - 1 = 0 Giải các hệ bằng phơng pháp thế đợc 5 nghiệm (-1;-1;-1); (0;0;1); (0;1;0); (0;0;1); 1 1 1 ; ; 2 2 2 ữ . VD4: Giải hệ: 2 2 2 1 1 1 x y y z z x = + = + = + Giải: Xét hai trờng hợp sau: TH1: Trong 3 số ít nhất có 2 nghiệm số bằng nhau: Trn Duy Thỏi Chuyờn : H phng trỡnh i s 10 . - 2009 + Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P theo m rồi từ điều kiện (*) tìm m. Chú ý: Khi ta đặt ẩn phụ u = u(x), v = v(x). a)} e.Chú ý: Có nhiều vấn đề cần lu ý khi giải hệ loại này + Với cách giải theo định lý Vi-et từ hệ ta phải đa ra đợc x + y + z; xy + yz + zx; xyz có thể