1. Trang chủ
  2. » Đề thi

Ôn tập THPT 2019 Phương Trình Mặt Phẳng có sử dụng PTĐT

17 107 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 1,33 MB

Nội dung

Đề cương ôn tập THPT Quốc gia môn Toán năm 2019 là tài liệu vô cùng hữu ích, sẽ giúp các em tự hệ thống kiến thức, kiểm tra trình độ bản thân, giúp các bạn, đặc biệt các bạn đang ôn thi khối A. Mời các bạn cùng tham khảo.

Câu 1: [2H3-4-2] (Sở GD Cần Thơ-Đề 324-2018) Trong không gian Oxyz , mặt phẳng  P  qua điểm A 1; 1;3 , song song với hai đường thẳng d : d : x  y  z 1 ,   2 x  y 1 z 1 phương trình   1 A x  y  z  15  B x  y  z  15  C x  y  z  10  D x  y  z  10  Lời giải Chọn D  ud  1; 4; 2   Ta   ud ; ud     2; 3; 5 u  1;  1;1    d  Mặt phẳng  P  qua A 1; 1;3 nhận ud ; ud     2; 3; 5 VTPT   P  :  x  1   y  1   z  3   x  y  z  10  (CHUN LAM SƠN THANH HĨA LẦN 3-2018) Trong khơng gian với hệ trục tọa độ Oxyz, mặt phẳng sau chứa trục Ox ? Câu 2: [2H3-4-2] A y  z  B x  y  C x  y  z  D x  2z  Lời giải Chọn A Ta Ox nhận i 1; 0;  làm vectơ phương Gọi n  0; 2; 1 vectơ pháp tuyến mặt phẳng   : y  z  n.i  suy mặt phẳng  α  chứa Ox  O   α  Câu 3: [2H3-4-2](THPT ĐẶNG THÚC HỨA-NGHỆ AN-LẦN 2-2018) Trong không gian Oxyz , mặt phẳng  P  qua hai điểm A 1; 2;  , B  2; 3; 1 song song với trục Oz phương trình A x  y   B x  y   C x  z   x  y 3  Lời giải Chọn A  P  // Oz   P  : ax  by  d  a  2b  d  a  2b  d  A, B   P     2a  3b  d  a  b  Chọn b  1 ta suy a  , d  D Vậy  P  : x  y   Cách Thay tọa độ điểm A , B vào phương án cho Chỉ phương án A thỏa mãn Câu 4: [2H3-4-2](THPT NGUYỄN THỊ MINH KHAI-SĨC TRĂNG-2018) Trong khơng gian với hệ toạ độ Oxyz , cho hai điểm A  0;1;1 B 1;3;2  Viết phương trình mặt phẳng  P  qua A vuông góc với đường thẳng AB B x  y  z   A x  y  z   C x  y  3z   D y  z 2  Lời giải Chọn B Ta : AB  1; 2;1 Mặt phẳng  P  qua A vng góc với đường thẳng AB nên nhận vectơ AB  1; 2;1 làm vectơ pháp tuyến Phương trình tổng quát mặt phẳng  P  :  x  0   y  1   z  1   x  y  z   Câu 5: [2H3-4-2] (THPT Quốc Oai - Hà Nội - HKII - 2016 - 2017 - BTN) Trong không gian với hệ tọa độ Oxyz , cho hai điểm A  2; 4;1 , B  1;1;3 mặt phẳng  P  : x  y  z   Viết phương trình mặt phẳng  Q  vng góc với mặt phẳng  P  qua hai điểm A , B A  Q  : y  3z  12  B  Q  : y  3z  11  C  Q  : y  3z   D  Q  : x  3z  11  Lời giải Chọn B * Ta AB   3; 3;  ; vectơ pháp tuyến mặt phẳng  P  nP  1; 3;  * Mặt phẳng Q  vec tơ Q  pháp tuyến nQ  nP , AB    0; 8; 12  4  0;2;3 * Vậy phương trình mặt phẳng  x     y     z  1  hay y  z  11  qua điểm A : Câu 6: [2H3-4-2] (Lớp Tốn - Đồn Trí Dũng -2017 - 2018) Viết phương trình mặt phẳng  P chứa đường thẳng d : Q : 2x  y  z  A x  y   x  2y  z  x 1 y z 1   vng góc với mặt phẳng B x  y  z  C x  y   D Lời giải Chọn C n P   u d Ta   nQ  ; u d    4; 8;0  Nên chọn n P  1; 2;0    n P   nQ  Vì mặt phẳng  P  qua điểm M 1;0; 1 nên phương trình mặt phẳng  P  x  y 1  Câu 7: [2H3-4-2] (Đề thi lần 6- Đồn Trí Dũng - 2017 - 2018)Viết phương trình mặt phẳng  P chứa đường thẳng d : Q  : 2x  y  z  A x  y   x  2y  z  x 1 y z 1   vng góc với mặt phẳng B x  y  z  C x  y   D Lời giải Chọn C n P   ud  Ta  nQ , ud    4; 8;0  , nên chọn n P  1; 2;0    n  n   P  Q  Vì mặt phẳng  P  qua điểm M 1;0; 1 nên phương trình mặt phẳng  P  x  y 1   chọn C Câu 8: [2H3-4-2] (THPT CHUYÊN BẾN TRE )Với m   1;0    0;1 , mặt phẳng  Pm  : 3mx   m2 y  4mz  20  cắt mặt phẳng  Oxz  theo giao tuyến đường thẳng  m Hỏi m thay đổi giao tuyến  m kết sau đây? A Cắt nhau B Song song C Chéo D Trùng Lời giải Chọn B  Pm  véctơ pháp tuyến  Oxz   n  3m;5  m ; 4m  véctơ pháp tuyến j   0;1;0   Pm  cắt  Oxz  m   hay m   1;0    0;1 1  m  Suy véctơ phương giao tuyến  m 1 0 1 0 u  ; ;    4m;0; 3m  phương với   m2 4m 4m 3m 3m  m2    véctơ u   4;0; 3 , m   1;0    0;1 Vì véctơ u không phụ thuộc vào m nên giao tuyến  m song song với Câu 9: [2H3-4-2] (THPT CHUYÊN BẾN TRE) Trong không gian với hệ trục tọa độ Oxyz , x y z 1 x 1 y  z     Viết phương trình d  : 2 1 2 mặt phẳng  Q  chứa hai đường thẳng d d  cho hai đường thẳng d : A Không tồn  Q  B  Q  : y  z   C  Q  : x  y   D  Q  : 2 y  z   Lời giải Chọn B Ta có: Hai VTCP hai đường thẳng phương nên hai đường thẳng đồng phẳng M  0;0; 1  d , M  1; 2;0   d   MM   1; 2;1 Véctơ phương đường thẳng d u  1; 2; 1 Véctơ pháp tuyến mặt phẳng  Q  : n   MM ; u    0;2; 4  Phương trình mặt phẳng  Q  : y  z   Câu 10: [2H3-4-2] ( THPT Lạc Hồng-Tp HCM )Trong không gian với hệ tọa độ vng góc  x   3t  Oxyz , cho đường thẳng d :  y   4t , t   z  6  7t  điểm A 1;2;3 Phương trình mặt phẳng qua A vng góc với đường thẳng d là: A x  y  z –  B x  y  3z – 20  C 3x – y  z – 16  D x – y  z –  Lời giải: Chọn C Từ phương trình  P  :2 x  y  z   ta VTPT n   2;3; 4  (THPT Nguyễn Hữu Quang) Trong không gian với hệ toạ độ Oxyz , x y z 3   cho đường thẳng  d  : điểm B(1;0; 2) Viết phương trình mặt 1 3 phẳng  P  qua B vng góc đường thẳng  d  Câu 11: [2H3-4-2] A x  y  z   B x  y  z   C x  y  z   D x  y  z   Lời giải Chọn A  d VTCP u  2; 1; 3  P  qua B(1;0; 2) vng góc đường thẳng  d  nên VTPT  u  2; 1; 3 Vậy phương trình  P  là:  x  1  1 y     z     x  y  3z   Câu 12: [2H3-4-2] (CHUYÊN THÁI BÌNH L3) Trong khơng gian với hệ trục Oxyz , viết phương trình mặt phẳng  P  qua điểm A 1; 2;  vng góc với đường thẳng d: x 1 y z 1   1 A x  y –  B x  y – z   C –2 x – y  z –  D –2 x – y  z   Lời giải Chọn D Cách 1: Vì phương trình mặt phẳng d:  P vng góc với đường thẳng x 1 y z 1   nên véc tơ pháp tuyến mặt phẳng  P  là: n  2; 1; 1 1 Phương trình mặt phẳng ( P) : 2( x  1)  ( y  2)  ( z  0)   2x  y  z   Cách 2: Quan sát nhanh phương án ta loại trừ phương án A khơng véctơ pháp tuyến, ba phương án lại mặt phẳng đáp án D qua điểm A 1; 2;  Câu 13: [2H3-4-2] (THPT HAI BÀ TRƯNG) Trong không gian Oxyz , mặt phẳng  P  qua điểm A 1;1;1 vng góc với đường thẳng OA phương trình là: A  P  : x  y  z  B  P  : x  y  z  C  P  : x  y  z   D  P  : x  y  z   Lời giải Chọn C Mặt phẳng  P  qua điểm A 1;1;1 véc tơ pháp tuyến OA  1;1;1 Nên:  P  : x  y  z   Câu 14: [2H3-4-2] (THPT SỐ AN NHƠN) Trong không gian với hệ tọa độ Oxyz , mặt phẳng  P chứa trục Ox chứa tâm I mặt cầu ( S ) : ( x  2)  ( y  2)  ( z  2)  phương trình A y  z  B y  z  C x  y  D x  z  Lời giải Chọn A Mặt phẳng  P  chứa Ox phương trình mặt phẳng  P  dạng By  Cz  , mặt phẳng  P  chứa tâm I  2; 2;  mặt cầu 2B  2C  , chọn B   C  Phương trình mặt phẳng  P  y  z  Câu 15: [2H3-4-2] (THPT CHUYÊN LÊ Q ĐƠN) Trong khơng gian với hệ tọa độ Oxyz , viết phương trình mặt phẳng  P  qua điểm M  3; 4;7  chứa trục Oz A  P  : 3x  z  B  P  : x  y   P  : y  3z  Lời giải Chọn B C  P  : 3x  y  D Ta OM   3; 4;7  , vecto phương trục Oz k   0;0;1 Mặt phẳng  P  qua M  3; 4;7  vectơ pháp tuyến n  k , OM    4;3;0  Phương trình mặt phẳng  P  : x  y  Câu 16: [2H3-4-2] (CHUYÊN THÁI BÌNH L3) Trong khơng gian với hệ trục Oxyz , mặt x 1 y z 1   vng góc với mặt phẳng  Q  : x  y  z  phương trình phẳng  P  chứa đường thẳng d : A x  y   B x  y  z  C x  y   D x  2y  z  Lời giải Chọn A Lấy M 1;0; 1  d  M   P  VTCP đường thẳng d u   2;1;3 ; VTPT mặt phẳng  Q  n   2;1; 1 VTPT mặt phẳng  P  u, n   4;8;0  4 1; 2;0 Phương trình mặt phẳng  P  : x  y   Câu 17: [2H3-4-2] (THPT CHUN BIÊN HỊA) Viết phương trình mặt phẳng  P  chứa đường thẳng d : x 1 y z 1   vng góc với mặt phẳng  Q  : x  y  z  A x  y   B x  y  z  C x  y   D x  2y  z  Lời giải Chọn C n P   u d Ta   nQ  ; u d    4; 8;0  Nên chọn n P  1; 2;0    n  n   P  Q  Vì mặt phẳng  P  qua điểm M 1;0; 1 nên phương trình mặt phẳng  P  x  y 1  Câu 18: [2H3-4-2] (SGD Hải Phòng - HKII - 2016 - 2017) Trong không gian với hệ tọa độ Oxyz , viết phương trình mặt phẳng  P  chứa trục Oz điểm M 1; 2;1 A  P  : y  z  B  P  : x  y  C  P  : x  z  D  P : x  y  Lời giải Chọn B Trục Oz vectơ phương k   0;0;1 OM  1; 2;1 Vì mặt phẳng  P  chứa trục Oz điểm M 1; 2;1 nên mặt phẳng  P  vectơ pháp tuyến n   k ; OM    2;1;0  Vậy phương trình mặt phẳng  P  qua qua O  0;0;0  dạng: 2 x  y   x  y Câu 19: [2H3-4-2] (SGD Bà Rịa - Vũng Tàu - Lần - 2017 - 2018)Trong không gian Oxyz x2 y6 z2 , cho hai đường thẳng chéo d1 :   2 x  y 1 z  d2 :   Phương trình mặt phẳng  P  chứa d1  P  song song 2 với đường thẳng d A  P  : x  y  8z  16  B  P  : x  y  8z  16  C  P  : x  y  z  12  D  P  : x  y   Lời giải Chọn A A  2;6; 2  Đường thẳng d1 qua Đường thẳng d2 véc tơ phương véc tơ phương u2  1;3; 2  u1   2; 2;1 Gọi n véc tơ pháp tuyến mặt phẳng  P  Do mặt phẳng  P  chứa d1  P  song song với đường thẳng d nên n  u1 , u2   1;5;8 Vậy phương trình mặt phẳng  P  qua n  1;5;8  x  y  z  16  A  2;6; 2  véc tơ pháp tuyến Câu 20: [2H3-4-2] (THPT Chuyên Võ Nguyên Giáp - QB - Lần - 2017 - 2018 - BTN) x  y  z 1   1 Mặt phẳng  P  qua điểm M  2;0; 1 vuông góc với d phương trình Trong khơng gian với hệ tọa độ Oxyz , cho đường thẳng d : A  P  : x  y  z  B  P  : 2x  z  C  P  : x  y  z   D  P  : x  y  z  Lời giải Chọn D  P vng góc với d nên  P  nhận u  1; 1;  vtpt Vậy  P  : 1 x    y   z  1   x  y  z  Câu 21: [2H3-4-2] (THPT Ninh Giang - Hải Dương - HKII - 2017 - 2018 - BTN) Trong không gian Oxyz , cho mặt cầu  S  : x  y  z  x  y  z   mặt phẳng  P  : x  y  z  14  Viết phương trình mặt phẳng  Q  phẳng  P  đồng thời  Q  tiếp xúc với mặt cầu  S  A  Q  : x  y  z  14  B  Q  : x  y  z   C  Q  : x  y  z  14  ,  Q  : x  y  z   D  Q  : x  y  z  14  ,  Q  : x  y  z   song song với mặt Lời giải Chọn B  S  tâm I  1;  2;  1 , R  12  22  12    Q  //  P    Q  : x  y  z  m  , m  14 Q  tiếp xúc với mặt cầu  S  nên: m    5 m    Vậy 22  22  12  m  14 Q  : 2x  y  z   d  I , Q   5 m Câu 22: [2H3-4-2] (THPT Chuyên Thoại Ngọc Hầu - An Giang - Lần - 2017 - 2018 BTN) Trong không gian với hệ tọa độ Oxyz , cho ba điểm M  3;0;0  , N  0; 2;0  P  0;0;  Mặt phẳng  MNP  phương trình x y z    1 2 x y z    2 A B x y z    2 C x y z    2 D Lời giải Chọn D Mặt phẳng  MNP  phương trình x y z    2 Câu 23: [2H3-4-2] (Chuyên Lương Thế Vinh – Đồng Nai – 2017 - 2018 - BTN) Trong không gian Oxyz , cho ba điểm A  2;1;1 , B  3;0; 1 , C  2;0;3 Mặt phẳng   qua hai điểm A, B song song với đường thẳng OC phương trình là: A x  y  z   B x  y  z  11  C x  y  z  11  D x  y  z   Lời giải Chọn B Ta AB  1; 1; 2  , OC   2;0;3  n P   AB, OC    3; 7;2   P  : 3  x     y 1   z 1  Hay  P  : 3x  y  z  11  Câu 24: [2H3-4-2] (SGD Bình Dương - HK - 2017 - 2018 - BTN) Trong không gian với hệ trục tọa độ Oxyz , phương trình mặt phẳng chứa hai đường thẳng x 1 y 1 z  x y 1 z  d:    d  :  2 A x  y  z   B x  y  z   C x  y  z   D x  y  z  11  Lời giải Chọn D Gọi  P  mặt phẳng cần tìm Vectơ pháp tuyến mặt phẳng cần tìm n P  ud , ud     6; 8;1 Chọn điểm A  1;1;3  d  A   P    P  :  x  1   y  1  1 z  3   x  y  z  11  (SGD Cần Thơ - HKII - 2017 - 2018) Trong không gian Oxyz , cho Câu 25: [2H3-4-2] mặt phẳng  P : 2x  y  z   mặt  S  : x  y  z  x  y  z  11  Mặt phẳng song song với  P   S  theo đường tròn chu vi 6 cầu cắt phương trình A  P  : x  y  z  19  B  P  : x  y  z  17  C  P  : x  y  z  17  D  P  : x  y  z   Lời giải Chọn B Mặt cầu  S  tâm I 1;  2;3 , bán kính R  ; bán kính đường tròn giao tuyến r  Mặt phẳng  Q  song song với mặt phẳng  P  : x  y  z   phương trình x  y  z  m   m  7  Ta d  I ; Q   R2  r  2 43 m  25   m   12  m  17   m  7 Do m  7 nên m  17 Vậy phương trình mặt phẳng  Q  : x  y  z  17  Câu 26: [2H3-4-2] (SGD Cần Thơ - HKII - 2017 - 2018) Trong không gian Oxyz , cho  P  : x  y  z   điểm A 1;2;3 , B  1;1;  2 , C  3;3;2  Gọi M  x0 ; y0 ; z0  điểm thuộc  P  cho MA  MB  MC Tính mặt phẳng x0  y0  z0 A C B D Lời giải Chọn D M   P    MA  MB  MA  MC   x0  y0  z0  9  14    x0  y0  z0    x0  9    4 x0  y0  10 z0     y0  14 4 x  y  z   z  0   (SGD Cần Thơ - HKII - 2017 - 2018) Trong không gian Oxyz , mặt x 1 y  z  x 1 y z      phẳng chứa hai đường thẳng cắt 2 1 3 phương trình A 2 x  y  z  36  B x  y  z  Câu 27: [2H3-4-2] C x  y  z   D x  y  z   Lời giải Chọn C Đường thẳng d1 : x 1 y  z    qua điểm M 1; 2;  , VTCP 2 u1   2;1;3 Đường thẳng d : x 1 y z    VTCP u2  1; 1;3 1 Mặt phẳng  P  chứa hai đường thẳng cắt d1 , d   P  qua điểm M 1; 2;  , VTPT n  u1 , u2    6;9;1 Phương trình mặt phẳng  P  :  P  :  x  1   y     z     x  y  z   Câu 28: [2H3-4-2] (Chuyên Quang Trung - BP - Lần - 2017 - 2018) Trong không gian với hệ tọa độ Oxyz cho mặt phẳng  P  : x  y  z    Q  : x  y  z   Viết phương trình mặt phẳng   qua qua điểm M 1; 2;3 vng góc với giao tuyến hai mặt phẳng  P   Q  A x  z   2 x  y  z   B x  y  z  C x  y   D Lời giải Chọn A  P vectơ pháp tuyến n1  1;1;1 ,  Q  vectơ pháp tuyến n2  1; 2;1 Đặt u  n1 , n2    3;0; 3   qua điểm M 1; 2;3 nhận u   3;0; 3 vectơ pháp tuyến    : 3x  3z    x  z   Câu 29: [2H3-4-2] (THPT Vũng Tàu - BRVT - HKII - 2017 - 2018 - BTN) Trong không gian với hệ tọa độ Oxyz , cho điểm D  2;1; 1 đường thẳng x 1 y  z    Mặt phẳng   qua điểm D vuông góc d phương 1 trình A x  y  z   B x  y  z   d: C x  y  z   D x  y  z   Lời giải Chọn D Mặt phẳng   vng góc d nên Vtpt mp   là: n   2; 1;3 Vậy phương trình mp   : x  y  z   Câu 30: [2H3-4-2](THPT VĨNH VIỄN - TP.HCM - HKII - 2017) Cho hai đường thẳng chéo d1 : x2  x   2t    d :  y  Mặt phẳng song song cách 1 z  t  y 1 z d1 d phương trình A x  y  z  12  B x  y  z  12  C x  y  z  12  D x  y  z  12  Lời giải Chọn B d1 VTCP u1  1; 1;2  d VTCP u2   2;0;1 Gọi   mặt phẳng cần tìm, VTPT n  u1, u2    1; 5; 2     : x  y  z  m  Lấy điểm M1  2;1;0   d1 , M  2;3;0   d Vì   cách d1 d nên d  d1 ,     d  d ,     d  M1 ,     d  M ,     m7 30  m  17 30  m  12 Vậy,   : x  y  z  12  (THPT Lục Ngạn-Bắc Giang-2018) Trong không gian với hệ tọa độ Oxyz , cho hai điểm A  2; 4;1 ; B  1;1;3 mặt phẳng  P  : x  y  z   Câu 31: [2H3-4-2] Phương trình mặt phẳng   qua hai điểm A, B vng góc với mặt phẳng  P  là: A y  z  11  y  3z   B y  z   C y  z   D Lời giải Chọn A AB 3; 3; , nP AB, nP Khi 1; 3; 0;8;12 VTPT là: n 0; 2;3 qua A 2;4;1 là: y z y z 11 Câu 32: [2H3-4-2] (THPT Hồng Hóa - Thanh Hóa - Lần - 2018) Trong không gian Oxyz , cho hai điểm A  1; 2; 3 , B  6;10; 3 Hỏi mặt phẳng  P  Phương trình cho khoảng cách từ điểm A đến mặt phẳng  P  15 khoảng cách từ điểm B đến mặt phẳng  P  ? A C B D Lời giải Chọn A AB  5; 12;0   AB  13  15   Mặt phẳng  P  cần tìm vng góc với đường thẳng AB cách A khoảng 15 , cách B khoảng Vậy mặt phẳng  P  thỏa mãn đề Câu 33: [2H3-4-2] (THPT Hồng Hóa - Thanh Hóa - Lần - 2018 - BTN) Trong không gian Oxyz , cho hai điểm A  1; 2; 3 , B  6;10; 3 Hỏi mặt phẳng  P cho khoảng cách từ điểm A đến mặt phẳng  P  15 khoảng cách từ điểm B đến mặt phẳng  P  ? A C B Lời giải Chọn A AB  5; 12;0   AB  13  15  D  Mặt phẳng  P  cần tìm vng góc với đường thẳng AB cách A khoảng 15 , cách B khoảng Vậy mặt phẳng  P  thỏa mãn đề Câu 34: [2H3-4-2] (THPT Chuyên Hà Tĩnh - Lần - 2018 - BTN) Trong không gian Oxyz , mặt phẳng chứa trục Oz vng góc với mặt phẳng   : x  y  z   phương trình A x  y  x  y 1  B x  y  C x  y  D Lời giải Chọn A Mặt phẳng   : x  y  z   vec tơ pháp tuyến n  1;  1;  Trên trục Oz vec tơ đơn vị k   0;0;1 Mặt phẳng chứa trục Oz vng góc với mặt phẳng   mặt phẳng qua O nhận n ; k    1;  1;0  làm vec tơ pháp tuyến Do phương trình x  y   x  y  Câu 35: [2H3-4-2] (THPT Kinh Môn - Hải Dương - Lần - 2018 - BTN) Trong không gian Oxyz , cho mặt cầu  S  : x  y  z  x  y  z   mặt phẳng   : x  y  z -11  Viết phương trình mặt phẳng  P  , biết  P  giá vectơ v  1;6;  , vng góc với   tiếp xúc với  S  song song với x  2y  z   A   x  y  z  21  3x  y  z   B  3x  y  z   4 x  y  z   C  4 x  y  z  27  2 x  y  z   D  2 x  y  z  21  Lời giải Chọn D Mặt cầu  S  tâm I 1; 3;  bán kính R  Vì mặt phẳng (P) song song với giá vectơ v  1;6;  , vng góc với   nên vec tơ pháp tuyến n  n  , v    2; 1;    Mặt phẳng  P  : x  y  z  D  Vì  P  tiếp xúc với mặt cầu  S  nên ta có: d  I ;  P   R   D  21   D   12   D  22   1  22 2.1   2.2  D 2 x  y  z   Vậy phương trình mặt phẳng   là:  2 x  y  z  21  Câu 36: [2H3-4-2] (THPT Chuyên Tiền Giang - Lần - 2017 - 2018 - BTN) Viết phương trình tổng quát mặt phẳng   qua ba điểm A , B , C hình chiếu điểm M  2;3; 5  xuống trục Ox , Oy , Oz A 15 x  10 y  z  30  B 15 x  10 y  z  30  C 15 x  10 y  z  30  D 15 x  10 y  z  30  Lời giải Chọn A Ta A hình chiếu M  2;3; 5  trục Ox nên A  2;0;0  B hình chiếu M  2;3; 5  trục Oy nên B  0;3;0  C hình chiếu M  2;3; 5  trục Oz nên C  0;0; 5  Phương trình mặt phẳng   qua ba điểm A , B , C x y z     15 x  10 y  z  30  5 Câu 37: [2H3-4-2] (THPT Can Lộc - Hà Tĩnh - Lần - 2017 - 2018 - BTN) Trong không gian với hệ trục Oxyz , cho A 1;0; 3 , B  3;2;1 Mặt phẳng trung trực đoạn AB phương trình là: A x  y  z   B x  y  z   C x  y  z   D 2x  y  z 1  Lời giải Chọn A Trung điểm đoạn AB I  2;1; 1 Mặt phẳng trung trực đoạn AB chứa I vectơ pháp tuyến AB   2; 2;  phương trình  x     y  1   z  1   x  y  z   ... Lời giải Chọn A Mặt phẳng  P  chứa Ox phương trình mặt phẳng  P  có dạng By  Cz  , mặt phẳng  P  chứa tâm I  2; 2;  mặt cầu 2B  2C  , chọn B   C  Phương trình mặt phẳng  P  y... VTPT mặt phẳng  Q  n   2;1; 1 VTPT mặt phẳng  P  u, n   4;8;0  4 1; 2;0 Phương trình mặt phẳng  P  : x  y   Câu 17: [2H3-4-2] (THPT CHUN BIÊN HỊA) Viết phương trình mặt. .. nhanh phương án ta loại trừ phương án A khơng véctơ pháp tuyến, ba phương án lại có mặt phẳng đáp án D qua điểm A 1; 2;  Câu 13: [2H3-4-2] (THPT HAI BÀ TRƯNG) Trong không gian Oxyz , mặt phẳng

Ngày đăng: 16/03/2019, 19:11

TỪ KHÓA LIÊN QUAN

w