Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 35 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
35
Dung lượng
3,47 MB
Nội dung
Header Page of 128 TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP Bài Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) Các đường cao AD, BE, CF cắt H cắt đường tròn (O) M,N,P Chứng minh rằng: Tứ giác CEHD, nội tiếp Bốn điểm B,C,E,F nằm đường tròn AE.AC = AH.AD; AD.BC = BE.AC H M đối xứng qua BC Xác định tâm đường tròn nội tiếp tam giác DEF Lời giải: Xét tứ giác CEHD ta có: CEH = 900 (Vì BE đường cao) CDH = 900 (Vì AD đường cao) => CEH + CDH = 1800 Mà CEH CDH hai góc đối tứ giác CEHD Do CEHD tứ giác nội tiếp Theo giả thiết: BE đường cao => BE AC => BEC = 900 CF đường cao => CF AB => BFC = 900 Như E F nhìn BC góc 900 => E F nằm đường tròn đường kính BC Vậy bốn điểm B,C,E,F nằm đường tròn Xét hai tam giác AEH ADC ta có: AEH = ADC = 900 ; A góc chung AE AH => AEH ADC => => AE.AC = AH.AD AD AC * Xét hai tam giác BEC ADC ta có: BEC = ADC = 900 ; C góc chung BE BC => BEC ADC => => AD.BC = BE.AC AD AC Ta có C1 = A1 (vì phụ với góc ABC) C2 = A1 (vì hai góc nội tiếp chắn cung BM) => C1 = C2 => CB tia phân giác góc HCM; lại có CB HM => CHM cân C => CB đương trung trực HM H M đối xứng qua BC Theo chứng minh bốn điểm B,C,E,F nằm đường tròn => C1 = E1 (vì hai góc nội tiếp chắn cung BF) Cũng theo chứng minh CEHD tứ giác nội tiếp C1 = E2 (vì hai góc nội tiếp chắn cung HD) E1 = E2 => EB tia phân giác góc FED Chứng minh tương tự ta có FC tia phân giác góc DFE mà BE CF cắt H H tâm đường tròn nội tiếp tam giác DEF Bài Cho tam giác cân ABC (AB = AC), đường cao AD, BE, cắt H Gọi O tâm đường tròn ngoại tiếp tam giác AHE Chứng minh tứ giác CEHD nội tiếp Bốn điểm A, E, D, B nằm đường tròn Chứng minh ED = BC Chứng minh DE tiếp tuyến đường tròn (O) Tính độ dài DE biết DH = Cm, AH = Cm Lời giải: Xét tứ giác CEHD ta có: CEH = 900 (Vì BE đường cao) Footer Page of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Header Page=290 of0128 CDH (Vì AD đường cao) => CEH + CDH = 1800 Mà CEH CDH hai góc đối tứ giác CEHD Do CEHD tứ giác nội tiếp Theo giả thiết: BE đường cao => BE AC => BEA = 900 AD đường cao => AD BC => BDA = 900 Như E D nhìn AB góc 900 => E D nằm đường tròn đường kính AB Vậy bốn điểm A, E, D, B nằm đường tròn Theo giả thiết tam giác ABC cân A có AD đường cao nên đường trung tuyến => D trung điểm BC Theo ta có BEC = 900 Vậy tam giác BEC vng E có ED trung tuyến => DE = BC Vì O tâm đường tròn ngoại tiếp tam giác AHE nên O trung điểm AH => OA = OE => tam giác AOE cân O => E1 = A1 (1) Theo DE = BC => tam giác DBE cân D => E3 = B1 (2) Mà B1 = A1 ( phụ với góc ACB) => E1 = E3 => E1 + E2 = E2 + E3 Mà E1 + E2 = BEA = 900 => E2 + E3 = 900 = OED => DE OE E Vậy DE tiếp tuyến đường tròn (O) E Theo giả thiết AH = Cm => OH = OE = cm.; DH = Cm => OD = cm Áp dụng định lí Pitago cho tam giác OED vng E ta có ED2 = OD2 – OE2 ED2 = 52 – 32 ED = 4cm Bài 3: Cho nửa đường tròn đường kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt tiếp tuyến Ax , By C D Các đường thẳng AD BC cắt N 1.Chứng minh AC + BD = CD Lời giải: COD 2.Chứng minh = 90 AB 3.Chứng minh AC BD = 4.Chứng minh OC // BM 5.Chứng minh AB tiếp tuyến đường tròn đường kính CD 5.Chứng minh MN AB 6.Xác định vị trí M để chu vi tứ giác ACDB đạt giá trị nhỏ 1.Theo tính chất hai tiếp tuyến cắt ta có: CA = CM; DB = DM => AC + BD = CM + DM Mà CM + DM = CD => AC + BD = CD 2.Theo tính chất hai tiếp tuyến cắt ta có: OC tia phân giác góc AOM; OD tia phân giác góc BOM, mà AOM BOM hai góc kề bù => COD = 900 3.Theo COD = 900 nên tam giác COD vng O có OM CD ( OM tiếp tuyến ) Áp dụng hệ thức cạnh đường cao tam giác vng ta có OM2 = CM DM, AB Mà OM = R; CA = CM; DB = DM => AC BD =R2 => AC BD = 4 Theo COD = 900 nên OC OD (1) Theo tính chất hai tiếp tuyến cắt ta có: DB = DM; lại có OM = OB =R => OD trung trực BM => BM OD (2) Từ (1) Và (2) => OC // BM ( Vì vng góc với OD) 5.Gọi I trung điểm CD ta có I tâm đường tròn ngoại tiếp tam giác COD đường kính CD có IO bán kính Theo tính chất tiếp tuyến ta có AC AB; BD AB => AC // BD => tứ giác ACDB hình thang Lại có I trung điểm CD; O trung điểm AB => IO đường trung bình hình thang ACDB IO // AC , mà AC AB => IO AB O => AB tiếp tuyến O đường tròn đường kính CD Footer Page of 128 Header Page of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP CN AC CN CM , mà CA = CM; DB = DM nên suy BN BD BN DM => MN // BD mà BD AB => MN AB ( HD): Ta có chu vi tứ giác ACDB = AB + AC + CD + BD mà AC + BD = CD nên suy chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ CD nhỏ , mà CD nhỏ CD khoảng cách giữ Ax By tức CD vng góc với Ax By Khi CD // AB => M phải trung điểm cung AB Bài Cho tam giác cân ABC (AB = AC), I tâm đường tròn nội tiếp, K tâm đường tròn bàng tiếp góc A , O trung điểm IK Chứng minh B, C, I, K nằm đường tròn Chứng minh AC tiếp tuyến đường tròn (O) Tính bán kính đường tròn (O) Biết AB = AC = 20 Cm, BC = 24 Cm Lời giải: (HD) Vì I tâm đường tròn nội tiếp, K tâm đường tròn bàng tiếp góc A nên BI BK hai tia phân giác hai góc kề bù đỉnh B Do BI BK hayIBK = 900 Tương tự ta có ICK = 900 B C nằm đường tròn đường kính IK B, C, I, K nằm đường tròn Ta có C1 = C2 (1) ( CI phân giác góc ACH C2 + I1 = 900 (2) ( IHC = 900 ) hoctoancapba.com Theo AC // BD => I1 = ICO (3) ( tam giác OIC cân O) Từ (1), (2) , (3) => C1 + ICO = 900 hay AC OC Vậy AC tiếp tuyến đường tròn (O) Từ giả thiết AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm AH2 = AC2 – HC2 => AH = 20 12 = 16 ( cm) CH 12 2 CH = AH.OH => OH = = (cm) AH 16 OC = OH HC 12 225 = 15 (cm) Bài 5: Cho đường tròn (O; R), từ điểm A (O) kẻ tiếp tuyến d với (O) Trên đường thẳng d lấy điểm M ( M khác A) kẻ cát tuyến MNP gọi K trung điểm NP, kẻ tiếp tuyến MB (B tiếp điểm) Kẻ AC MB, BD MA, gọi H giao điểm AC BD, I giao điểm OM AB Chứng minh tứ giác AMBO nội tiếp Chứng minh năm điểm O, K, A, M, B nằm đường tròn Chứng minh OI.OM = R2; OI IM = IA2 Chứng minh OAHB hình thoi Chứng minh ba điểm O, H, M thẳng hàng Tìm quỹ tích điểm H M di chuyển đường thẳng d Lời giải: (HS tự làm) Vì K trung điểm NP nên OK NP ( quan hệ đường kính Và dây cung) => OKM = 900 Theo tính chất tiếp tuyến ta có OAM = 900; OBM = 900 K, A, B nhìn OM góc 900 nên nằm đường tròn đường kính OM Vậy năm điểm O, K, A, M, B nằm đường tròn Ta có MA = MB ( t/c hai tiếp tuyến cắt nhau); OA = OB = R => OM trung trực AB => OM AB I Footer Page of 128 Header Page of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Theo tính chất tiếp tuyến ta có OAM = 900 nên tam giác OAM vng A có AI đường cao Áp dụng hệ thức cạnh đường cao => OI.OM = OA2 hay OI.OM = R2; OI IM = IA2 Ta có OB MB (tính chất tiếp tuyến) ; AC MB (gt) => OB // AC hay OB // AH OA MA (tính chất tiếp tuyến) ; BD MA (gt) => OA // BD hay OA // BH => Tứ giác OAHB hình bình hành; lại có OA = OB (=R) => OAHB hình thoi Theo OAHB hình thoi => OH AB; theo OM AB => O, H, M thẳng hàng( Vì qua O có đường thẳng vng góc với AB) (HD) Theo OAHB hình thoi => AH = AO = R Vậy M di động d H di động cách A cố định khoảng R Do quỹ tích điểm H M di chuyển đường thẳng d nửa đường tròn tâm A bán kính AH = R Bài hoctoancapba.com Cho tam giác ABC vuông A, đường cao AH Vẽ đường tròn tâm A bán kính AH Gọi HD đường kính đường tròn (A; AH) Tiếp tuyến đường tròn D cắt CA E 1.Chứng minh tam giác BEC cân 2.Gọi I hình chiếu A BE, Chứng minh AI = AH 3.Chứng minh BE tiếp tuyến đường tròn (A; AH) 4.Chứng minh BE = BH + DE Lời giải: (HD) AHC = ADE (g.c.g) => ED = HC (1) AE = AC (2) Vì AB CE (gt), AB vừa đường cao vừa đường trung tuyến BEC => BEC tam giác cân => B1 = B2 Hai tam giác vng ABI ABH có cạnh huyền AB chung, B1 = B2 => AHB = AIB => AI = AH AI = AH BE AI I => BE tiếp tuyến (A; AH) I DE = IE BI = BH => BE = BI+IE = BH + ED Bài Cho đường tròn (O; R) đường kính AB Kẻ tiếp tuyến Ax lấy tiếp tuyến điểm P cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) M Từ (1) (2) => é ABM = é Chứng minh tứ giác APMO nội tiếp đường tròn AOP (3) Chứng minh BM // OP Đường thẳng vng góc với AB O cắt tia BM N Chứng minh tứ giác OBNP hình bình hành Biết AN cắt OP K, PM cắt ON I; PN OM kéo dài cắt J Chứng minh I, J, K thẳng hàng Lời giải: (HS tự làm) 2.Ta có é ABM nội tiếp chắn cung AM; é AOM góc tâm AOM chắn cung AM => é ABM = (1) OP tia phân giác é AOM AOM ( t/c hai tiếp tuyến cắt ) => é AOP = (2) Mà ABM AOP hai góc đồng vị nên suy BM // OP (4) 3.Xét hai tam giác AOP OBN ta có : PAO=900 (vì PA tiếp tuyến ); NOB = 900 (gt NOAB) => PAO = NOB = 900; OA = OB = R; AOP = OBN (theo (3)) => AOP = OBN => OP = BN (5) Từ (4) (5) => OBNP hình bình hành ( có hai cạnh đối song song nhau) Tứ giác OBNP hình bình hành => PN // OB hay PJ // AB, mà ON AB => ON PJ Ta có PM OJ ( PM tiếp tuyến ), mà ON PM cắt I nên I trực tâm tam giác POJ (6) Dễ thấy tứ giác AONP hình chữ nhật có PAO = AON = ONP = 900 => K trung điểm PO (t/c đường chéo hình chữ nhật) (6) Footer Page of 128 Header Page of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP AONP hình chữ nhật => éAPO = é NOP ( so le) (7) Theo t/c hai tiếp tuyến cắt Ta có PO tia phân giác APM => APO = MPO (8) Từ (7) (8) => IPO cân I có IK trung tuyến đông thời đường cao => IK PO (9) Từ (6) (9) => I, J, K thẳng hàng Bài Cho nửa đường tròn tâm O đường kính AB điểm M nửa đường tròn (M khác A,B) Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax Tia BM cắt Ax I; tia phân giác góc IAM cắt nửa đường tròn E; cắt tia BM F tia BE cắt Ax H, cắt AM K 1) Chứng minh rằng: EFMK tứ giác nội tiếp 2) Chứng minh rằng: AI2 = IM IB 3) Chứng minh BAF tam giác cân 4) Chứng minh : Tứ giác AKFH hình thoi 5) Xác định vị trí M để tứ giác AKFI nội tiếp đường tròn Lời giải: Ta có : AMB = 900 (nội tiếp chắn nửa đường tròn) => KMF = 900 (vì hai góc kề bù) AEB = 900 (nội tiếp chắn nửa đường tròn) => KEF = 900 (vì hai góc kề bù) => KMF + KEF = 1800 Mà KMF KEF hai góc đối tứ giác EFMK EFMK tứ giác nội tiếp Ta có IAB = 900 (vì AI tiếp tuyến) => AIB vng A có AM IB ( theo trên) Áp dụng hệ thức cạnh đường cao => AI2 = IM IB Theo giả thiết AE tia phân giác góc IAM => IAE = MAE => AE = ME (lí ……) => ABE =MBE ( hai góc nội tiếp chắn hai cung nhau) => BE tia phân giác góc ABF (1) Theo ta có éAEB = 900 => BE AF hay BE đường cao tam giác ABF (2) Từ (1) (2) => BAF tam giác cân B BAF tam giác cân B có BE đường cao nên đồng thời đương trung tuyến => E trung điểm AF (3) Từ BE AF => AF HK (4), theo AE tia phân giác góc IAM hay AE tia phân giác éHAK (5) Từ (4) (5) => HAK tam giác cân A có AE đường cao nên đồng thời đương trung tuyến => E trung điểm HK (6) Từ (3) , (4) (6) => AKFH hình thoi ( có hai đường chéo vng góc với trung điểm đường) (HD) Theo AKFH hình thoi => HA // FK hay IA // FK => tứ giác AKFI hình thang Để tứ giác AKFI nội tiếp đường tròn AKFI phải hình thang cân AKFI hình thang cân M trung điểm cung AB Thật vậy: M trung điểm cung AB => ABM = MAI = 450 (t/c góc nội tiếp ) (7) Tam giác ABI vng A có ABI = 450 => éAIB = 450 (8) Từ (7) (8) => IAK = AIF = 450 => AKFI hình thang cân (hình thang có hai góc đáy nhau) Vậy M trung điểm cung AB tứ giác AKFI nội tiếp đường tròn Bài Cho nửa đường tròn (O; R) đường kính AB Kẻ tiếp tuyến Bx lấy hai điểm C D thuộc nửa đường tròn Các tia AC AD cắt Bx E, F (F B E) Chứng minh AC AE không đổi Chứng minh ABD = DFB Chứng minh CEFD tứ giác nội tiếp Footer Page of 128 Header Page of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Lời giải: 1.C thuộc nửa đường tròn nên ACB = 900 (nội tiếp chắn nửa đường tròn) => BC AE ABE = 900 (Bx tiếp tuyến) => tam giác ABE vuông B có BC đường cao => AC AE = AB2 (hệ thức cạnh đường cao), mà AB đường kính nên AB = 2R khơng đổi AC AE khơng đổi 2. ADB có ADB = 900 (nội tiếp chắn nửa đường tròn) => ABD + BAD = 900 (vì tổng ba góc tam giác 1800) (1) ABF có ABF = 900 ( BF tiếp tuyến ) => AFB + BAF = 900 (vì tổng ba góc tam giác 1800) (2) Từ (1) (2) => ABD = DFB ( phụ với BAD) 3.Tứ giác ACDB nội tiếp (O) => ABD + ACD = 1800 ECD + ACD = 1800 (Vì hai góc kề bù) => ECD = ABD ( bù với ACD) Theo ABD = DFB => ECD = DFB Mà EFD + DFB = 1800 (Vì hai góc kề bù) nên suy ECD + EFD = 1800, mặt khác ECD EFD hai góc đối tứ giác CDFE tứ giác CEFD tứ giác nội tiếp Bài 10 Cho đường tròn tâm O đường kính AB điểm M nửa đường tròn cho AM < MB Gọi M’ điểm đối xứng M qua AB S giao điểm hai tia BM, M’A Gọi P chân đường vuông góc từ S đến AB 1.Gọi S’ giao điểm MA SP Chứng minh ∆ PS’M cân 2.Chứng minh PM tiếp tuyến đường tròn Lời giải: Ta có SP AB (gt) => SPA = 900 ; AMB = 900 ( nội tiếp chắn nửa đường tròn ) => AMS = 900 Như P M nhìn AS góc 900 nên nằm đường tròn đường kính AS Vậy bốn điểm A, M, S, P nằm đường tròn Vì M’đối xứng M qua AB mà M nằm đường tròn nên M’ nằm đường tròn => hai cung AM AM’ có số đo => AMM’ = AM’M ( Hai góc nội tiếp chắn hai cung nhau) (1) Cũng M’đối xứng M qua AB nên MM’ AB H => MM’// SS’ ( vuông góc với AB) => AMM’ = AS’S; AM’M = ASS’ (vì so le trong) (2) => Từ (1) (2) => AS’S = ASS’ Theo bốn điểm A, M, S, P nằm đ/ tròn => ASP=AMP (nội tiếp chắn AP ) => AS’P = AMP => tam giác PMS’ cân P Tam giác SPB vuông P; tam giác SMS’ vuông M => B1 = S’1 (cùng phụ với S) (3) Tam giác PMS’ cân P => S’1 = M1 (4) Tam giác OBM cân O ( có OM = OB =R) => B1 = M3 (5) Từ (3), (4) (5) => M1 = M3 => M1 + M2 = M3 + M2 mà M3 + M2 = AMB = 900 nên suy M1 + M2 = PMO = 900 => PM OM M => PM tiếp tuyến đường tròn M Bài 11 Cho tam giác ABC (AB = AC) Cạnh AB, BC, CA tiếp xúc với đường tròn (O) điểm D, E, F BF cắt (O) I , DI cắt BC M Chứng minh : Tam giác DEF có ba góc nhọn BD BM DF // BC Tứ giác BDFC nội tiếp CB CF Footer Page of 128 Header Page of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Lời giải: (HD) Theo t/c hai tiếp tuyến cắt ta có AD = AF => tam giác ADF cân A => ADF = AFD < 900 => sđ cung DF < 1800 => DEF < 900 ( góc DEF nội tiếp chắn cung DE) Chứng minh tương tự ta có DFE < 900; EDF < 900 Như tam giác DEF có ba góc nhọn AD AF Ta có AB = AC (gt); AD = AF (theo trên) => => DF // BC AB AC DF // BC => BDFC hình thang lại có B = C (vì tam giác ABC cân) => BDFC hình thang cân BDFC nội tiếp đường tròn Xét hai tam giác BDM CBF Ta có DBM = BCF ( hai góc đáy tam giác cân) BDM = BFD (nội tiếp chắn cung DI); CBF = BFD (vì so le) => BDM = CBF BD BM => BDM CBF => CB CF Bài 12 Cho đường tròn (O) bán kính R có hai đường kính AB CD vng góc với Trên đoạn thẳng AB lấy điểm M (M khác O) CM cắt (O) N Đường thẳng vuông góc với AB M cắt tiếp tuyến N đường tròn P Chứng minh : Tứ giác OMNP nội tiếp Tứ giác CMPO hình bình hành CM CN khơng phụ thuộc vào vị trí điểm M Khi M di chuyển đoạn thẳng AB P chạy đoạn thẳng cố định Lời giải: Ta có OMP = 900 ( PM AB ); ONP = 900 (vì NP tiếp tuyến ) Như M N nhìn OP góc 900 => M N nằm đường tròn đường kính OP => Tứ giác OMNP nội tiếp Tứ giác OMNP nội tiếp => OPM = ONM (nội tiếp chắn cung OM) Tam giác ONC cân O có ON = OC = R => ONC = OCN => OPM = OCM Xét hai tam giác OMC MOP ta có MOC = OMP = 900; OPM = OCM => CMO = POM lại có MO cạnh chung => OMC = MOP => OC = MP (1) Theo giả thiết Ta có CD AB; PM AB => CO//PM (2) Từ (1) (2) => Tứ giác CMPO hình bình hành Xét hai tam giác OMC NDC ta có MOC = 900 ( gt CD AB); DNC = 900 (nội tiếp chắn nửa đường tròn ) => MOC =DNC = 900 lại có C góc chung => OMC NDC CM CO => => CM CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN CD CN =2R2 khơng đổi hay tích CM CN khơng phụ thuộc vào vị trí điểm M ( HD) Dễ thấy OMC = DPO (c.g.c) => ODP = 900 => P chạy đường thẳng cố định vng góc với CD D Vì M chạy đoạn thẳng AB nên P chạy doạn thẳng A’ B’ song song AB Bài 13 Cho tam giác ABC vuông A (AB > AC), đường cao AH Trên nửa mặt phẳng bờ BC chứa điển A , Vẽ nửa đường tròn đường kính BH cắt AB E, Nửa đường tròn đường kính HC cắt AC F Chứng minh AFHE hình chữ nhật Footer Page of 128 Header Page of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP BEFC tứ giác nội tiếp AE AB = AF AC Chứng minh EF tiếp tuyến chung hai nửa đường tròn Lời giải: Ta có : éBEH = 900 ( nội tiếp chắn nửc đường tròn ) => éAEH = 900 (vì hai góc kề bù) (1) éCFH = 900 ( nội tiếp chắn nửc đường tròn ) => éAFH = 900 (vì hai góc kề bù).(2) éEAF = 900 ( Vì tam giác ABC vng A) (3) Từ (1), (2), (3) => tứ giác AFHE hình chữ nhật ( có ba góc vng) Tứ giác AFHE hình chữ nhật nên nội tiếp đường tròn =>éF1=éH1 (nội tiếp chắn cung AE) Theo giả thiết AH BC nên AH tiếp tuyến chung hai nửa đường tròn (O1) (O2) => éB1 = éH1 (hai góc nội tiếp chắn cung HE) => éB1= éF1 => éEBC+éEFC = éAFE + éEFC mà éAFE + éEFC = 1800 (vì hai góc kề bù) => éEBC+éEFC = 1800 mặt khác éEBC éEFC hai góc đối tứ giác BEFC BEFC tứ giác nội tiếp Xét hai tam giác AEF ACB ta có éA = 900 góc chung; éAFE = éABC ( theo Chứng minh trên) AE AF => AEF ACB => => AE AB = AF AC AC AB * HD cách 2: Tam giác AHB vng H có HE AB => AH2 = AE.AB (*) Tam giác AHC vuông H có HF AC => AH2 = AF.AC (**) Từ (*) (**) => AE AB = AF AC Tứ giác AFHE hình chữ nhật => IE = EH => IEH cân I => éE1 = éH1 O1EH cân O1 (vì có O1E vàO1H bán kính) => éE2 = éH2 => éE1 + éE2 = éH1 + éH2 mà éH1 + éH2 = éAHB = 900 => éE1 + éE2 = éO1EF = 900 => O1E EF Chứng minh tương tự ta có O2F EF Vậy EF tiếp tuyến chung hai nửa đường tròn Bài 14 Cho điểm C thuộc đoạn thẳng AB cho AC = 10 Cm, CB = 40 Cm Vẽ phía AB nửa đường tròn có đường kính theo thứ tự AB, AC, CB có tâm theo thứ tự O, I, K Đường vng góc với AB C cắt nửa đường tròn (O) E Gọi M N theo thứ tự giao điểm EA, EB với nửa đường tròn (I), (K) 1.Chứng minh EC = MN 2.Ch/minh MN tiếp tuyến chung nửa đ/tròn (I), (K) 3.Tính MN 4.Tính diện tích hình giới hạn ba nửa đường tròn Lời giải: Ta có: éBNC= 900( nội tiếp chắn nửa đường tròn tâm K) => éENC = 900 (vì hai góc kề bù) (1) éAMC = 900 ( nội tiếp chắn nửc đường tròn tâm I) => éEMC = 900 (vì hai góc kề bù).(2) éAEB = 900 (nội tiếp chắn nửa đường tròn tâm O) hay éMEN = 900 (3) Từ (1), (2), (3) => tứ giác CMEN hình chữ nhật => EC = MN (tính chất đường chéo hình chữ nhật ) Theo giả thiết EC AB C nên EC tiếp tuyến chung hai nửa đường tròn (I) (K) => éB1 = éC1 (hai góc nội tiếp chắn cung CN) Tứ giác CMEN hình chữ nhật nên => éC1= éN3 => éB1 = éN3.(4) Lại có KB = KN (cùng bán kính) => tam giác KBN cân K => éB1 = éN1 (5) Từ (4) (5) => éN1 = éN3 mà éN1 + éN2 = CNB = 900 => éN3 + éN2 = MNK = 900 hay MN KN N => MN tiếp tuyến (K) N Chứng minh tương tự ta có MN tiếp tuyến (I) M, Vậy MN tiếp tuyến chung nửa đường tròn (I), (K) Footer Page of 128 Header Page of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Ta có éAEB = 90 (nội tiếp chắn nửc đường tròn tâm O) => AEB vng A có EC AB (gt) => EC2 = AC BC EC2 = 10.40 = 400 => EC = 20 cm Theo EC = MN => MN = 20 cm Theo giả thiết AC = 10 Cm, CB = 40 Cm => AB = 50cm => OA = 25 cm Ta có S(o) = OA2 = 252 = 625 ; S(I) = IA2 = 52 = 25 ; S(k) = KB2 = 202 = 400 Ta có diện tích phần hình giới hạn ba nửa đường tròn S = ( S(o) - S(I) - S(k)) 1 S = ( 625 - 25 - 400 ) = 200 = 100 314 (cm2) 2 Bài 15 Cho tam giác ABC vuông A Trên cạnh AC lấy điểm M, dựng đường tròn (O) có đường kính MC đường thẳng BM cắt đường tròn (O) D đường thẳng AD cắt đường tròn (O) S Chứng minh ABCD tứ giác nội tiếp Chứng minh CA tia phân giác góc SCB Gọi E giao điểm BC với đường tròn (O) Chứng minh đường thẳng BA, EM, CD đồng quy Chứng minh DM tia phân giác góc ADE Chứng minh điểm M tâm đường tròn nội tiếp tam giác ADE Lời giải: Ta có éCAB = 900 ( tam giác ABC vng A); éMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) => CDB = 900 D A nhìn BC góc 900 nên A D nằm đường tròn đường kính BC => ABCD tứ giác nội tiếp ABCD tứ giác nội tiếp => D1= C3( nội tiếp chắn cung AB) EM => C2 = C3 (hai góc nội tiếp đường tròn (O) chắn hai cung nhau) D1= C3 => SM => CA tia phân giác góc SCB Xét CMB Ta có BACM; CD BM; ME BC BA, EM, CD ba đường cao tam giác CMB nên BA, EM, CD đồng quy EM => D1= D2 => DM tia phân giác góc ADE.(1) Theo Ta có SM Ta có MEC = 900 (nội tiếp chắn nửa đường tròn (O)) => MEB = 900 Tứ giác AMEB có MAB = 900 ; MEB = 900 => MAB + MEB = 1800 mà hai góc đối nên tứ giác AMEB nội tiếp đường tròn => A2 = B2 Tứ giác ABCD tứ giác nội tiếp => A1= B2( nội tiếp chắn cung CD) => A1= A2 => AM tia phân giác góc DAE (2) Từ (1) (2) Ta có M tâm đường tròn nội tiếp tam giác ADE TH2 (Hình b) Câu : ABC = CME (cùng phụ ACB); ABC = CDS (cùng bù ADC) => CME = CDS Footer Page of 128 Header Page 10 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP CS SM EM => SCM = ECM => CA tia phân giác góc SCB => CE Bài 16 Cho tam giác ABC vuông A.và điểm D nằm A B Đường tròn đường kính BD cắt BC E Các đường thẳng CD, AE cắt đường tròn F, G Chứng minh : Tam giác ABC đồng dạng với tam giác EBD Tứ giác ADEC AFBC nội tiếp AC // FG Các đường thẳng AC, DE, FB đồng quy Lời giải: Xét hai tam giác ABC EDB Ta có BAC = 900 ( tam giác ABC vng A); DEB = 900 ( góc nội tiếp chắn nửa đường tròn ) => DEB = BAC = 900 ; lại có ABC góc chung => DEB CAB Theo DEB = 900 => DEC = 900 (vì hai góc kề bù); BAC = 900 ( ABC vng A) hay DAC = 900 => DEC + DAC = 1800 mà hai góc đối nên ADEC tứ giác nội tiếp * BAC = 900 ( tam giác ABC vuông A); DFB = 900 ( góc nội tiếp chắn nửa đường tròn ) hay BFC = 900 F A nhìn BC góc 900 nên A F nằm đường tròn đường kính BC => AFBC tứ giác nội tiếp Theo ADEC tứ giác nội tiếp => E1 = C1 lại có E1 = F1 => F1 = C1 mà hai góc so le nên suy AC // FG (HD) Dễ thấy CA, DE, BF ba đường cao tam giác DBC nên CA, DE, BF đồng quy S Bài 17 Cho tam giác ABC có đường cao AH Trên cạnh BC lấy điểm M ( M khơng trùng B C, H ) ; từ M kẻ MP, MQ vng góc với cạnh AB AC 1.Chứng minh APMQ tứ giác nội tiếp xác định tâm O đường tròn ngoại tiếp tứ giác Chứng minh MP + MQ = AH 3.Chứng minh OH PQ Lời giải: Ta có MP AB (gt) => APM = 900; MQ AC (gt) => AQM = 900 P Q nhìn BC góc 900 nên P Q nằm đường tròn đường kính AM => APMQ tứ giác nội tiếp * Vì AM đường kính đường tròn ngoại tiếp tứ giác APMQ tâm O đường tròn ngoại tiếp tứ giác APMQ trung điểm AM Tam giác ABC có AH đường cao => SABC = BC.AH Tam giác ABM có MP đường cao => SABM = AB.MP Tam giác ACM có MQ đường cao => SACM = AC.MQ 1 Ta có SABM + SACM = SABC => AB.MP + AC.MQ = BC.AH => AB.MP + AC.MQ = BC.AH 2 Mà AB = BC = CA (vì tam giác ABC đều) => MP + MQ = AH Footer Page 10 of 128 10 Header Page 21 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP AMB = 90 (nội tiếp chắn nửa đường tròn ); MN AB I => AMB vng M có MI đường cao => MI2 = AI.BI ( hệ thức cạnh đường cao tam giác vuông) Áp dụng định lí Pitago tam giác AIM vng I ta có AI2 = AM2 – MI2 => AI2 = AE.AC - AI.BI Theo AMN = ACM => AM tiếp tuyến đường tròn ngoại tiếp ECM; Nối MB ta có AMB = 900 , tâm O1 đường tròn ngoại tiếp ECM phải nằm BM Ta thấy NO1 nhỏ NO1 khoảng cách từ N đến BM => NO1 BM Gọi O1 chân đường vng góc kẻ từ N đến BM ta O1 tâm đường tròn ngoại tiếp ECM có bán kính O1M Do để khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME nhỏ C phải giao điểm đường tròn tâm O1 bán kính O1M với đường tròn (O) O1 hình chiếu vng góc N BM Bài 36 Cho tam giác nhọn ABC , Kẻ đường cao AD, BE, CF Gọi H trực tâm tam giác Gọi M, N, P, Q hình chiếu vng góc D lên AB, BE, CF, AC Chứng minh : Các tứ giác DMFP, DNEQ hình chữ nhật Các tứ giác BMND; DNHP; DPQC nội tiếp Hai tam giác HNP HCB đồng dạng Bốn điểm M, N, P, Q thẳng hàng Lời giải: & (HS tự làm) Theo chứng minh DNHP nội tiếp => N2 = D4 (nội tiếp chắn cung HP); HDC có HDC = 900 (do AH đường cao) HDP có HPD = 900 (do DP HC) => C1= D4 (cùng phụ với DHC)=>C1=N2 (1) chứng minh tương tự ta có B1=P1 (2) Từ (1) (2) => HNP HCB Theo chứng minh DNMB nội tiếp => N1 = D1 (nội tiếp chắn cung BM).(3) DM // CF ( vng góc với AB) => C1= D1 ( hai góc đồng vị).(4) Theo chứng minh C1 = N2 (5) Từ (3), (4), (5) => N1 = N2 mà B, N, H thẳng hàng => M, N, P thẳng hàng (6) Chứng minh tương tự ta cung có N, P, Q thẳng hàng (7) Từ (6), (7) => Bốn điểm M, N, P, Q thẳng hàng Bài 37 Cho hai đường tròn (O) (O’) tiếp xúc ngồi A Kẻ tiếp tuyến chung BC, B (O), C (O’) Tiếp tuyến chung A cắt tiếp tuyến chung BC I Chứng minh tứ giác OBIA, AICO’ nội tiếp Chứng minh BAC = 900 Tính số đo góc OIO’ Tính độ dài BC biết OA = 9cm, O’A = 4cm Lời giải: ( HS tự làm) Theo tính chất hai tiếp tuyến cắt ta có IB = IA , IA = IC ABC có AI = BC =>ABC vng A hay BAC =900 Theo tính chất hai tiếp tuyến cắt ta có IO tia phân giác BIA; I0’là tia phân giác CIA mà hai góc BIA CIA hai góc kề bù => I0 I0’=> 0I0’= 900 Theo ta có 0I0’ vng I có IA đường cao (do AI tiếp tuyến chung nên AI OO’) => IA2 = A0.A0’ = = 36 => IA = => BC = IA = = 12(cm) Footer Page 21 of 128 21 Header Page 22 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Bài 38 Cho hai đường tròn (O) ; (O’) tiếp xúc A, BC tiếp tuyến chung ngoài, B(O), C (O’) Tiếp tuyến chung A cắ tiếp tuyến chung BC M Gọi E giao điểm OM AB, F giao điểm O’M AC Chứng minh : Chứng minh tứ giác OBMA, AMCO’ nội tiếp Tứ giác AEMF hình chữ nhật ME.MO = MF.MO’ OO’ tiếp tuyến đường tròn đường kính BC BC tiếp tuyến đường tròn đường kính OO’ Lời giải: ( HS tự làm) Theo tính chất hai tiếp tuyến cắt ta có MA = MB =>MAB cân M Lại có ME tia phân giác => ME AB (1) Chứng minh tương tự ta có MF AC (2) Theo tính chất hai tiếp tuyến cắt ta có MO MO’ tia phân giác hai góc kề bù BMA CMA => MO MO’ (3) Từ (1), (2) (3) suy tứ giác MEAF hình chữ nhật Theo giả thiết AM tiếp tuyến chung hai đường tròn => MA OO’=> MAO vng A có AE MO ( theo ME AB) MA2 = ME MO (4) Tương tự ta có tam giác vng MAO’ có AFMO’ MA2 = MF.MO’ (5) Từ (4) (5) ME.MO = MF MO’ Đường tròn đường kính BC có tâm M theo MB = MC = MA, đường tròn qua Avà co MA bán kính Theo OO’ MA A OO’ tiếp tuyến A đường tròn đường kính BC (HD) Gọi I trung điểm OO’ ta có IM đường trung bình hình thang BCO’O => IMBC M (*) Ta cung chứng minh OMO’ vuông nên M thuộc đường tròn đường kính OO’ => IM bán kính đường tròn đường kính OO’ (**) Từ (*) (**) => BC tiếp tuyến đường tròn đường kính OO’ Bài 39 Cho đường tròn (O) đường kính BC, dấy AD vng góc với BC H Gọi E, F theo thứ tự chân đường vuông góc kẻ từ H đến AB, AC Gọi ( I ), (K) theo thứ tự đường tròn ngoại tiếp tam giác HBE, HCF Hãy xác định vị trí tương đối đường tròn (I) (O); (K) (O); (I) (K) Tứ giác AEHF hình gì? Vì sao? Chứng minh AE AB = AF AC Chứng minh EF tiếp tuyến chung hai đường tròn (I) (K) Xác định vị trí H để EF có độ dài lớn Lời giải: 1.(HD) OI = OB – IB => (I) tiếp xúc (O) OK = OC – KC => (K) tiếp xúc (O) IK = IH + KH => (I) tiếp xúc (K) Ta có : éBEH = 900 ( nội tiếp chắn nửa đường tròn ) => éAEH = 900 (vì hai góc kề bù) (1) éCFH = 900 ( nội tiếp chắn nửa đường tròn ) => éAFH = 900 (vì hai góc kề bù).(2) éBAC = 900 ( nội tiếp chắn nửa đường tròn hay éEAF = 900 (3) Từ (1), (2), (3) => tứ giác AFHE hình chữ nhật ( có ba góc vng) Theo giả thiết ADBC H nên AHB vng H có HE AB ( éBEH = 900 ) => AH2 = AE.AB (*) Tam giác AHC vng H có HF AC (theo éCFH = 900 ) => AH2 = AF.AC (**) Từ (*) (**) => AE AB = AF AC ( = AH2) Footer Page 22 of 128 22 Header Page 23 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Theo chứng minh tứ giác AFHE hình chữ nhật, gọi G giao điểm hai đường chéo AH EF ta có GF = GH (tính chất đường chéo hình chữ nhật) => GFH cân G => éF1 = éH1 KFH cân K (vì có KF KH bán kính) => éF2 = éH2 => éF1 + éF2 = éH1 + éH2 mà éH1 + éH2 = éAHC = 900 => éF1 + éF2 = éKFE = 900 => KF EF Chứng minh tương tự ta có IE EF Vậy EF tiếp tuyến chung hai đường tròn (I) (K) e) Theo chứng minh tứ giác AFHE hình chữ nhật => EF = AH OA (OA bán kính đường tròn (O) có độ dài khơng đổi) nên EF = OA AH = OA H trùng với O Vậy H trùng với O túc dây AD vng góc với BC O EF có độ dài lớn Bài 40 Cho nửa đường tròn đường kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Trên Ax lấy điểm M kẻ tiếp tuyến MP cắt By N 1.Chứng minh tam giác MON đồng dạng với tam giác APB 2.Chứng minh AM BN = R2 S R 3.Tính tỉ số MON AM = S APB 4.Tính thể tích hình nửa hình tròn APB quay quanh cạnh AB sinh Lời giải: Theo tính chất hai tiếp tuyến cắt ta có: OM tia phân giác góc AOP ; ON tia phân giác góc BOP, mà AOP BOP hai góc kề bù => MON = 900 hay tam giác MON vuông O APB = 900((nội tiếp chắn nửa đường tròn) hay tam giác APB vng P Theo tính chất tiếp tuyến ta có NB OB => OBN = 900; NP OP => OPN = 900 =>OBN+OPN =1800 mà OBN OPN hai góc đối => tứ giác OBNP nội tiếp =>OBP = PNO Xét hai tam giác vng APB MON có APB = MON = 900; OBP = PNO => APB MON Theo MON vuông O có OP MN ( OP tiếp tuyến ) Áp dụng hệ thức cạnh đường cao tam giác vng ta có OP2 = PM PM Mà OP = R; AM = PM; BN = NP (tính chất hai tiếp tuyến cắt ) => AM BN = R2 R R R Theo OP2 = PM PM hay PM PM = R2 mà PM = AM = => PM = => PN = R2: = 2R 2 R 5R MN 5R => MN = MP + NP = + 2R = Theo APB MON => = : 2R = = k (k tỉ số 2 AB đồng dạng).Vì tỉ số diện tich hai tam giác đồng dạng bình phương tỉ số đồng dạng nên ta có: S MON S MON 25 = k => = S APB S APB 16 Bài 41 Cho tam giác ABC , O trung điển BC Trên cạnh AB, AC lấy điểm D, E cho DOE = 600 1)Chứng minh tích BD CE khơng đổi DBO có DOB = 600 => 2)Chứng minh hai tam giác BOD; OED đồng dạng Từ suy BDO + BOD = 1200 (3) tia DO tia phân giác góc BDE Từ (2) (3) => BDO = 3)Vẽ đường tròn tâm O tiếp xúc với AB Chứng minh COE (4) đường tròn ln tiếp xúc với DE Từ (2) (4) => BOD Lời giải: BD BO CEO => => Tam giác ABC => ABC = ACB = 600 (1); CO CE 0 DOE = 60 (gt) =>DOB + EOC = 120 (2) BD.CE = BO.CO mà OB = Footer Page 23 of 128 23 Header Page 24 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP OC = R không đổi => BD.CE = R2 không đổi BD OD BD OD BD BO mà CO = BO => (5) CO OE BO OE OD OE Lại có DBO = DOE = 600 (6) Từ (5) (6) => DBO DOE => BDO = ODE => DO tia phân giác BDE Theo DO tia phân giác BDE => O cách DB DE => O tâm đường tròn tiếp xúc với DB DE Vậy đường tròn tâm O tiếp xúc với AB tiếp xúc với DE Theo BOD CEO => Bài 42 Cho tam giác ABC cân A có cạnh đáy nhỏ cạnh bên, nội tiếp đường tròn (O) Tiếp tuyến B C cắt AC, AB D E Chứng minh : BD2 = AD.CD Tứ giác BCDE nội tiếp BC song song với DE Lời giải: Xét hai tam giác BCD ABD ta có CBD = BAD ( Vì góc nội tiếp góc tiếp tuyến với dây chắn BD CD cung), lại có D chung => BCD ABD => => BD2 AD BD = AD.CD Theo giả thiết tam giác ABC cân A => ABC = ACB => EBC = DCB mà CBD = BCD (góc tiếp tuyến với dây chắn cung) => EBD = DCE => B C nhìn DE góc B C nằm cung tròn dựng DE => Tứ giác BCDE nội tiếp Tứ giác BCDE nội tiếp => BCE = BDE ( nội tiếp chắn cung BE) mà BCE = CBD (theo ) => CBD = BDE mà hai góc so le nên suy BC // DE Bài 43 Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn Vẽ điểm N đối xứng với A qua M, BN cắt (O) C Gọi E giao điểm AC BM Chứng minh tứ giác MNCE nội tiếp 3.Theo giả thiết A N đối xứng qua M nên M Chứng minh NE AB Gọi F điểm đối xứng với E qua M Chứng minh FA tiếp tuyến (O) trung điểm AN; F E xứng qua M nên M Chứng minh FN tiếp tuyến đường tròn (B; BA) trung điểm EF => Lời giải: (HS tự làm) AENF hình bình hành (HD) Dễ thấy E trực tâm tam giác NAB => NE AB => FA // NE mà NE AB Footer Page 24 of 128 24 Header Page 25 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP => FA AB A => FA tiếp tuyến (O) A Theo tứ giác AENF hình bình hành => FN // AE hay FN // AC mà AC BN => FN BN N N F _ / M _ C / E A O H B BAN có BM đường cao đồng thời đường trung tuyến ( M trung điểm AN) nên BAN cân B => BA = BN => BN bán kính đường tròn (B; BA) => FN tiếp tuyến N (B; BA) Bài 44 AB AC hai tiếp tuyến đường tròn tâm O bán kính R ( B, C tiếp điểm ) Vẽ CH vng góc AB H, cắt (O) E cắt OA D B Chứng minh CO = CD H Chứng minh tứ giác OBCD hình thoi Gọi M trung điểm CE, Bm cắt OH I Chứng minh I I E trung điểm OH O D A Tiếp tuyến E với (O) cắt AC K Chứng minh ba điểm O, M, M K thẳng hàng K Lời giải: C Theo giả thiết AB AC hai tiếp tuyến đường tròn tâm O => OA tia phân giác BOC => BOA = COA (1) OB AB ( AB tiếp tuyến ); CH AB (gt) => OB // CH => BOA = CDO (2) Từ (1) (2) => COD cân C => CO = CD.(3) theo ta có CO = CD mà CO = BO (= R) => CD = BO (4) lại có OB // CH hay OB // CD (5) Từ (4) (5) => BOCD hình bình hành (6) Từ (6) (3) => BOCD hình thoi M trung điểm CE => OM CE ( quan hệ đường kính dây cung) => OMH = 900 theo ta có OBH =900; BHM =900 => tứ giác OBHM hình chữ nhật => I trung điểm OH M trung điểm CE; KE KC hai tiếp tuyến => O, M, K thẳng hàng Bài 45 Cho tam giác cân ABC ( AB = AC) nội tiếp đường tròn (O) Gọi D trung điểm AC; tiếp tuyến đường tròn (O) A cắt tia BD E Tia CE cắt (O) F 1.Chứng minh BC // AE 2.Chứng minh ABCE hình bình hành 3.Gọi I trung điểm CF G giao điểm BC OI So sánh BAC BGO Lời giải: (HS tự làm) 2).Xét hai tam giác ADE CDB ta có EAD = BCD (vì so le ) AD = CD (gt); ADE = CDB (đối đỉnh) => ADE = CDB => AE = CB (1) Theo AE // CB (2) Từ (1) (2) => AECB hình bình hành 3) I trung điểm CF => OI CF (quan hệ đường kính dây cung) Theo AECB hình bình hành => AB // EC => OI AB K, => BKG vng K Ta cung có BHA vuông H => BGK = BAH ( cung phụ với ABH) mà BAH = BAC (do ABC cân nên AH phân giác) => BAC = 2BGO Bài 46: Cho đường tròn (O) điểm P ngồi đường tròn Kẻ hai tiếp tuyến PA, PB (A; B tiếp điểm) Từ A vẽ tia song song với PB cắt (O) C (C A) Đoạn PC cắt đường tròn điểm thứ hai D Tia AD cắt PB E Footer Page 25 of 128 25 Header Page 26 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP a Chứng minh ∆EAB ~ ∆EBD b Chứng minh AE trung tuyến ∆PAB B HD: a) ∆EAB ~ ∆EBD (g.g) vì: BEA chung E EAB = EBD (góc nội tiếp góc tạo tia tiếp tuyến…) O P EB ED EB = EA.ED (1) D C EA EB = PCA (s.l.t) ; EAP = PCA (góc nội tiếp góc tạo tia tiếp tuyến…) * EPD A = EAP ; PEA chung ∆EPD ~ ∆EAP (g.g) EPD EP ED EP2 = EA.ED (2)Từ & EB2 = EP2 EB = EP AE trung tuyến ∆ PAB EA EP Bài 47: Cho ∆ABC vuông A Lấy cạnh AC điểm D Dựng CE vuông góc BD a Chứng minh ∆ABD ~ ∆ECD b Chứng minh tứ giác ABCE tứ giác nội tiếp c Chứng minh FD vng góc BC, F giao điểm BA CE = 600; BC = 2a; AD = a Tính AC; đường cao AH ∆ABC bán kính đường tròn d Cho ABC ngoại tiếp tứ giác ADEF C HD: a) ∆ABD ~ ∆ECD (g.g) b) tứ giác ABCE tứ giác nội tiếp (Quĩ tích cung chứa góc 900) E K c) Chứng minh D trực tâm ∆ CBF D 2a d) AC = BC.sin ABC = 2a.sin60 = 2a =a H a 60 = 2a.cos600 = 2a = a AB = BC.cos ABC A B F = a.sin600 = a ; ∆ FKB vng K , có ABC = 600 BFK = 300 AH = AB.sin ABC AD = FD.sin300 AD = FD.sin BFK a = FD.0,5 FD = a : 0,5 = 2a = 900; BC > BA) nội tiếp đường tròn đưòng kính AC Kẻ dây cung Bài 48: Cho ∆ABC vuông ( ABC BD vng góc AC H giao điểm AC BD Trên HC lấy điểm E cho E đối xứng với A qua H Đường tròn đường kính EC cắt BC I (I C) B CI CE a Chứng minh CB CA I b Chứng minh D; E; I thẳng hàng c Chứng minh HI tiếp tuyến đường tròn đường kính EC HD; a) AB // EI (cùng BC) H A C CI CE O E O’ (đ/lí Ta-lét) CB CA b) chứng minh ABED hình thoi DE // AB mà EI //AB D, E, I nằm đường thẳng qua E // AB D, E, I thẳng hàng D c) EIO' = IEO' ( ∆ EO’I cân ; O’I = O’E = R(O’)) = HED (đ/đ) ; ∆BID vuông ; IH trung tuyến ∆HID cân HIE = HDI IEO' Footer Page 26 of 128 26 Header Page 27 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP + HED = 900 đpcm Mà HDI Bài 49: Cho đường tròn (O; R) đường thẳng (d) cố định không cắt (O; R) Hạ OH (d) (H d) M điểm thay đổi (d) (M H) Từ M kẻ tiếp tuyến MP MQ (P, Q tiếp điểm) với (O; R) Dây cung PQ cắt OH I; cắt OM K a Chứng minh điểm O, Q, H, M, P nằm đường tròn b Chứng minh IH.IO = IQ.IP P = 600 Tính tỉ số diện tích tam giác: ∆MPQvà ∆OPQ c Giả sử PMQ HD: a) điểm O, Q, H, M, P nằm đường tròn K O (Dựa vào quĩ tích cung chứa góc 900) M IO IQ I b) ∆ OIP ~ ∆ QIH (g.g) IH.IO = IQ.IP IP IH Q = KQ.tg600 = PQ PQ c) ∆v MKQ có : MK = KQ.tg MQK H 2 = KQ.tg300 = KQ PQ PQ ∆v OKQ có: OK = KQ.tg OQK 3 S PQ PQ : =3 MPQ = SOPQ Bài 50: Cho nửa đường tròn (O), đường kính AB=2R Trên tia đối tia AB lấy điểm E (E A) Từ E, A, B kẻ tiếp tuyến với nửa đường tròn Tiếp tuyến kẻ từ E cắt hai tiếp tuyến kẻ từ A B theo thứ tự C D a Gọi M tiếp điểm tiếp tuyến kẻ từ E tới nửa đường tròn Chứng minh tứ giác ACMO nội tiếp đường tròn DM CM b Chứng minh ∆EAC ~ ∆EBD, từ suy D DE CE c Gọi N giao điểm AD BC Chứng minh MN // BD d Chứng minh: EA2 = EC.EM – EA.AO M = α Tính theo R α đoạn AC BD e Đặt AOC C N Chứng tỏ tích AC.BD phụ thuộc giá trị R, khơng phụ thuộc vào α HD:a) ACMO nội tiếp (Dựa vào quĩ tích cung chứa góc 900) B O A E b) AC // BD (cùng EB) ∆EAC ~ ∆EBD CE AC CE CM DM CM (1)mà AC = CM ; BD = MD (T/c hai tiếp tuyến cắt nhau) (2) DE BD DE DM DE CE NC AC NC CM MN // BD c) AC // BD (cmt) ∆NAC ~ ∆NBD (3) Từ 1; 2; NB BD NB DM O1 = O2 ; O3 = O mà O1 + O2 + O3 + O = 1800 O2 + O3 = 900 ; O4 + D1 = 900 (…) d) OB R R = ; Lại có: AC = OA.tgα = R.tgα AC.DB = R.tgα D1 = O2 = O1 = α Vậy: DB = tg tg tg AC.DB = R (Đpcm) Bài 51: Cho ∆ABC có góc nhọn Gọi H giao điểm đường cao AA1; BB1; CC1 a Chứng minh tứ giác HA1BC1 nội tiếp đường tròn Xác định tâm I đường tròn Footer Page 27 of 128 27 Header Page 28 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP b Chứng minh A1A phân giác B1A1C1 c Gọi J trung điểm AC Chứng minh IJ trung trực A1C1 MH d Trên đoạn HC lấy điểm M cho MC So sánh diện tích tam giác: ∆HAC ∆HJM C1 HD: a) HA1BC1 nội tiếp (quĩ tích cung chứa góc 900) Tâm I trung điểm BH b) C/m: HA1C1 = HBC1 ; HA1B1 = HCB1 ; HBC = HCB HA C = HA B đpcm 1 1 A B1 M I J H 12 K c) IA1 = IC1= R(I) ; JA = JA1= AC/2 … ỊJ trung trực A1C1 C A1 B 1 d) S HJM = HM.JK ; SHAC = HC.AC1 2 HC.AC1 AC1 MH HC HM+MC MC mà SHAC : S HJM = 1 1 ; (JK// AC1 HM.JK MC HM HM HM JK SHAC : S HJM = Bài 52: Cho điểm C cố định đường thẳng xy Dựng nửa đường thẳng Cz vng góc với xy lấy điểm cố định A, B (A C B) M điểm di động xy Đường vng góc với AM A với BM B cắt P a Chứng minh tứ giác MABP nội tiếp tâm O đường tròn nằm đường thẳng cố định qua điểm L AB b Kẻ PI Cz Chứng minh I điểm cố định c BM AP cắt H; BP AM cắt K Chứng minh KH PM d Cho N trung điểm KH Chứng minh điểm N; L; O thẳng hàng z HD: a) MABP nội tiếp đ/tròn đ/k MP.(quĩ tích cung chứa góc 900…) P OA = OB = R(O) O thuộc đường trung trực AB qua L I trung điểm AB… B b) IP // CM ( Cz) MPIC hình thang IL = LC khơng đổi H A,B,C cố định I cố định O c) PA KM ; PK MB H trực tâm ∆ PKM N L KH PM K d) AHBK nội tiếp đ/tròn đ/k KH (quĩ tích cung chứa góc…) N tâm đ/tròn ngoại tiếp … NE = NA = R(N) A N thuộc đường trung trực AB O,L,N thẳng hàng x M y C Bài 53: Cho nửa đường tròn (O) đường kính AB K điểm cung AB Trên cung AB lấy điểm M (khác K; B) Trên tia AM lấy điểm N cho AN = BM Kẻ dây BP song song với KM Gọi Q giao điểm đường thẳng AP, BM a So sánh hai tam giác: ∆AKN ∆BKM b Chứng minh: ∆KMN vuông cân c Tứ giác ANKP hình gì? Vì sao? HD: a) ∆ AKN = ∆ BKM(c.g.c) b) HS tự c/m ∆ KMN vuông cân Footer Page 28 of 128 U 28 K Header Page 29 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP c) ∆ KMN vuông KN KM mà KM // BP KN BP P = 900 (góc nội tiếp…) AP BP APB KN // AP ( BP) PAT 450 KM // BP KMN // N PKU PKM 450 Mà PAM A 0 PKN 45 ; KNM 45 PK // AN Vậy ANPK hình bình hành M T O = B Bài 54: Cho đường tròn tâm O, bán kính R, có hai đường kính AB, CD vng góc với M điểm tuỳ ý thuộc cung nhỏ AC Nối MB, cắt CD N a Chứng minh: tia MD phân giác góc AMB b Chứng minh:∆BOM ~ ∆BNA Chứng minh: BM.BN không đổi c Chứng minh: tứ giác ONMA nội tiếp Gọi I tâm đường tròn ngoại tiếp tứ giác ONMA, I di động nào? C DMB 450 (chắn cung ¼ đ/tròn) HD: a) AMD MD tia phân giác AMB M F b) ∆ OMB cân OM = OB = R(O) N ∆ NAB cân có NO vừa đ/cao vừa đường trung tuyến I ∆ OMB ~ ∆ NAB B A E O BM BO BM.BN = BO.BA = 2R2 không đổi BA BN c) ONMA nội tiếp đ/tròn đ/k AN Gọi I tâm đ/tròn ngoại tiếp I cách A O cố định I thuộc đường trung trực OA Gọi E F trung điểm AO; AC D Vì M chạy cung nhỏ AC nên tập hợp I đoạn EF Bài 55: Cho ∆ABC cân (AB = AC) nội tiếp đường tròn (O) Gọi D trung điểm AC; tia BD cắt tiếp tuyến A với đường tròn (O) điểm E; EC cắt (O) F a Chứng minh: BC song song với tiếp tuyến đường tròn (O) A b Tứ giác ABCE hình gì? Tại sao? với BAC c Gọi I trung điểm CF G giao điểm tia BC; OI So sánh BGO A E d Cho biết DF // BC Tính cos ABC HD:a) Gọi H trung điểm BC AH BC (∆ ABC cân A) lập luận AH AE BC // AE (1) b) ∆ ADE = ∆ CDB (g.c.g) AE = BC (2) D M N F Từ ABCE hình bình hành O _ c) Theo c.m.t AB // CF GO AB I _ = 900 – ABC = BAH = BAC BGO H B C d) Tia FD cắt AB taijM, cắt (O) N.; DF // BC AH trục G đối xứng cuarBC đ/tròn (O) nên F, D thứ tự đối xứng với N, M qua AH 1 FD = MN = MD = BC = ND = BH ; ∆ NDA ~ ∆ CDF (g.g) DF.DN = DA.DC 2 Footer Page 29 of 128 29 Header Page 30 of 128 2BH2 = TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP = BH = AC2 BH = AC cos ABC 4 AB Bài 56: Cho đường tròn (O) (O’) cắt hai điểm A B Các đường thẳng AO; AO’ cắt đường tròn (O) điểm C; D cắt (O’) E; F E a Chứng minh: C; B; F thẳng hàng b Chứng minh: Tứ giác CDEF nội tiếp D c Chứng minh: A tâm đường tròn nội tiếp ∆BDE A d Tìm điều kiện để DE tiếp tuyến chung (O) (O’) = 900 = FBA (góc nội tiếp chắn nửa đ/tròn) HD: a) CBA O’ O CBA + FBA = 180 C, B, F thẳng hàng = 900 = CEF CDEF nội tiếp (quĩ tích …) b) CDF F C B c) CDEF nội tiếp ADE = ECB (cùng chắn cung EF) = ECB (cùng chắn cung AB) Xét (O) có: ADB = ADB DA tia phân giác BDE Tương tự EA tia phân giác DEB ADE Vậy A tâm đường tròn nội tiếp ∆BDE = DCA ; EO'A = EFA mà DCA = EFA (góc nội tiếp chắn d) ODEO’ nội tiếp Thực : DOA = EO'A ; mặt khác: DAO = EAO' (đ/đ) ODO' = O'EO ODEO’ nội tiếp cung DE) DOA Nếu DE tiếp xúc với (O) (O’) ODEO’ hình chữ nhật AO = AO’ = AB Đảo lại : AO = AO’ = AB kết luận DE tiếp tuyến chung (O) (O’) Kết luận : Điều kiện để DE tiếp tuyến chung (O) (O’) : AO = AO’ = AB Bài 57: Cho đường tròn (O; R) có đường kính cố định AB CD a) Chứng minh: ACBD hình vng b) Lấy điểm E di chuyển cung nhỏ BC (E B; E C) Trên tia đối tia EA lấy đoạn EM = EB ED // MB Chứng tỏ: ED tia phân giác AEB c) Suy CE đường trung trực BM M di chuyển đường tròn mà ta phải xác định tâm bán kính theo R HD: a) AB CD ; OA = OB = OC = OD = R(O) C ACBD hình vng E // M 1 = = 450 ; DEB = DOB = 450 b) AED AOD 2 = AED = DEB ED tia phân giác AEB B A O 0 AED = 45 ; EMB = 45 (∆ EMB vng cân E) = EMB (2 góc đồng vị) ED // MB AED c) ∆ EMB vuông cân E CE DE ; ED // BM CE BM CE đường trung trực BM D d) Vì CE đường trung trực BM nên CM = CB = R Vậy M chạy đường tròn (C ; R’ = R ) Footer Page 30 of 128 30 Header Page 31 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Bài 58: Cho ∆ABC đều, đường cao AH Qua A vẽ đường thẳng phía ngồi tam giác, tạo với cạnh AC góc 400 Đường thẳng cắt cạnh BC kéo dài D Đường tròn tâm O đường kính CD cắt AD E Đường thẳng vng góc với CD O cắt AD M a Chứng minh: AHCE nội tiếp Xác định tâm I đường tròn b Chứng minh: CA = CM c Đường thẳng HE cắt đường tròn tâm O K, đường thẳng HI cắt đường tròn tâm I N cắt đường thẳng DK P Chứng minh: Tứ giác NPKE nội tiếp Bài 59: BC dây cung đường tròn (O; R) (BC 2R) Điểm A di động cung lớn BC cho O nằm ∆ABC Các đường cao AD; BE; CF đồng quy H a Chứng minh:∆AEF ~ ∆ABC b Gọi A’ trung điểm BC Chứng minh: AH = 2.A’O c Gọi A1 trung điểm EF Chứng minh: R.AA1 = AA’.OA’ d Chứng minh: R.(EF + FD + DE) = 2.SABC Suy vị trí điểm A để tổng (EF + FD + DE) đạt GTLN Bài 60: Cho đường tròn tâm (O; R) có AB đường kính cố định CD đường kính thay đổi Gọi (∆) tiếp tuyến với đường tròn B AD, AC cắt (∆) Q P a Chứng minh: Tứ giác CPQD nội tiếp b Chứng minh: Trung tuyến AI ∆AQP vng góc với DC c Tìm tập hợp tâm E đường tròn ngoại tiếp ∆CPD < 900), cung tròn BC nằm bên ∆ABC tiếp xúc với AB, AC Bài 61: Cho ∆ABC cân (AB = AC; A B C Trên cung BC lấy điểm M hạ đường vuông góc MI, MH, MK xuống cạnh tương ứng BC, CA, AB Gọi Q giao điểm MB, IK a Chứng minh: Các tứ giác BIMK, CIMH nội tiếp b Chứng minh: tia đối tia MI phân giác HMK c Chứng minh: Tứ giác MPIQ nội tiếp PQ // BC Bài 62: Cho nửa đường tròn (O), đường kính AB, C trung điểm cung AB; N trung điểm BC Đường thẳng AN cắt nửa đường tròn (O) M Hạ CI AM (I AM) C a Chứng minh: Tứ giác CIOA nội tiếp đường tròn b Chứng minh: Tứ giác BMCI hình bình hành M = CAI c Chứng minh: MOI d Chứng minh: MA = 3.MB N I = 0 HD: a) COA 90 (…) ; CIA 90 (…) Tứ giác CIOA nội tiếp (quĩ tích cung chứa góc 900) O B A b) MB // CI ( BM) (1) NBM (slt) ∆ CIN = ∆ BMN (g.c.g) N1 N (đ/đ) ; NC = NB ; NCI CI = BM (2) Từ BMCI hình bình hành 900 ; CMI COA 450 ) MI = CI ; ∆ IOM = ∆ IOC OI chung ; c) ∆ CIM vng cân ( CIA mà: IOC CAI MOI CAI IC = IM (c.m.t) ; OC = OM = R(O) MOI IOC R AC d) ∆ ACN vng có : AC = R ; NC = (với R = AO) 2 Footer Page 31 of 128 31 Header Page 32 of 128 Từ : AN = MB = TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP AC2 +CN 2R + NC2 MN R2 R 10 NC2 R 10 MI ; NI = R MN = 2 NA 10 R2 R2 2R R 10 R 10 R 10 3R 10 + = AM = AN + MN = 10 10 10 AM = BM = 600 nội tiếp đường tròn (O), đường cao AH cắt đường tròn D, Bài 63: Cho ∆ABC có A đường cao BK cắt AH E BCD a Chứng minh: BKH b Tính BEC c Biết cạnh BC cố định, điểm A chuyển động cung lớn BC Hỏi tâm I đườngtròn nội tiếp ∆ABC chuyển động đường nào? Nêu cách dựng đường (chỉ nêu cách dựng) cách xác định rõ (giới hạn đường đó) d Chứng minh: ∆IOE cân I A BAH ; HD: a) ABHK nội tiếp BKH BAH ( chắn cung BD) BCD BKH BCD b) CE cắt AB F ; K 1800 = 1200 A 1800 600 1200 BEC AFEK nội tiếp FEK F E I 1800 B C 1800 120 1200 c) BIC 2 Vậy I chuyển động cung chứa góc 1200 dựng đoạn BC, cung C B nằm đường tròn tâm (O) H = sđ DS ; đ/tròn (S) có ISO = sđ IO d) Trong đ/tròn (O) có DAS D S 2 = ISO (so le trong) nên: DS = IO mà DS = IE IO đpcm = IE DAS 2 Bài 64: Cho hình vng ABCD, phía hình vng dựng cung phần tư đường tròn tâm B, bán kính AB nửa đường tròn đường kính AB Lấy điểm P cung AC, vẽ PK AD PH AB Nối PA, cắt nửa đường tròn đường kính AB I PB cắt nửa đường tròn M Chứng minh rằng: C a I trung điểm AP D b Các đường PH, BI AM đồng quy c PM = PK = AH d Tứ giác APMH hình thang cân P 900 (góc nội tiếp …) K HD: a) ∆ ABP cân B (AB = PB = R(B)) mà AIB M BI AP BI đường cao đường trung tuyến I trung điểm AP I b) HS tự c/m c) ∆ ABP cân B AM = PH ; AP chung ∆vAHP = ∆v PMA AH = PM ; AHPK hình chữ nhật AH = KP PM = PK = AH d) PMAH nằm đ/tròn đ/k AP mà PM = AH (c.m.t) B A H = AH PA // MH PM Vậy APMH hình thang cân Footer Page 32 of 128 32 Header Page 33 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Bài 65: Cho đường tròn tâm O, đường kính AB = 2R Kẻ tia tiếp tuyến Bx, M điểm thay đổi Bx; AM cắt (O) N Gọi I trung điểm AN a Chứng minh: Tứ giác BOIM nội tiếp đường tròn b Chứng minh:∆IBN ~ ∆OMB c Tìm vị trí điểm M tia Bx để diện tích tam giác AIO có GTLN OBM 900 H O HD: a) BOIM nội tiếp OIM A B b) INB OBM 90 ; NIB BOM (2 góc nội tiếp chắn cung BM) ∆ IBN ~ ∆OMB I c) SAIO = AO.IH; SAIO lớn IH lớn AO = R(O) N M Khi M chạy tia Bx I chạy nửa đường tròn đ/k AO Do SAIO lớn 450 Khi IH bán kính, ∆ AIH vuông cân, tức HAI Vây M cách B đoạn BM = AB = 2R(O) SAIO lớn Bài 66: Cho ∆ ABC đều, nội tiếp đường tròn (O; R) Gọi AI đường kính cố định D điểm di động cung nhỏ AC (D A D C) A a Tính cạnh ∆ABC theo R chứng tỏ AI tia phân giác BAC D b Trên tia DB lấy đoạn DE = DC Chứng tỏ ∆CDE DI CE c Suy E di động đường tròn mà ta phải xác định tâm giới hạn = d Tính theo R diện tích ∆ADI lúc D điểm cung nhỏ AC = HD: a) ∆ ABC đều, nội tiếp đường tròn (O; R) HS tự c/m : E O AB = AC = BC = R Trong đ/tròn (O; R) có: AB = AC Tâm O cách cạnh AB AC C B AO hay AI tia phân giác BAC = BAC = 600 (cùng chắn BC ) b) Ta có : DE = DC (gt) ∆ DEC cân ; BDC I = IDC IB = IC BDI ∆CDE I điểm BC ∆CDE có DI tia phân giác nên đường cao DI CE DI tia phân giác BDC c) ∆CDE có DI đường cao đường trung trực CE IE = IC mà I C cố định IC (cung nhỏ ) không đổi E di động đ/tròn cố định tâm I, bán kính = IC Giới hạn : I AC nhỏ đ/t (I; R = IC) chứa ∆ ABC D → C E → C ; D → A E → B E động BC Bài 67: Cho hình vng ABCD cạnh a Trên AD DC, người ta lấy điểm E F cho : a AE = DF = a So sánh ∆ABE ∆DAF Tính cạnh diện tích chúng b Chứng minh AF BE c Tính tỉ số diện tích ∆AIE ∆BIA; diện tích ∆AIE ∆BIA diện tích tứ giác IEDF IBCF = 450 Vẽ đường cao BD CE Bài 68: Cho ∆ABC có góc nhọn; A Gọi H giao điểm BD, CE a Chứng minh: Tứ giác ADHE nội tiếp đường tròn.; b Chứng minh: HD = DC DE c Tính tỷ số: d Gọi O tâm đường tròn ngoại tiếp ∆ABC Chứng minh: OA DE BC Footer Page 33 of 128 33 Header Page 34 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Bài 69: Cho hình bình hành ABCD có đỉnh D nằm đường tròn đường kính AB Hạ BN DM vng góc với đường chéo AC Chứng minh: a Tứ giác CBMD nội tiếp đường tròn + BCD ) khơng đổi b Khi điểm D di động đường tròn ( BMD c DB.DC = DN.AC Bài 70: Cho ∆ABC nội tiếp đường tròn (O) Gọi D điểm cung nhỏ BC Hai tiếp tuyến C D với đường tròn (O) cắt E Gọi P, Q giao điểm cặp đường thẳng AB CD; AD CE Chứng minh: a BC // DE b Các tứ giác CODE, APQC nội tiếp c Tứ giác BCQP hình gì? Bài 71: Cho đường tròn (O) (O’) cắt A B; tiếp tuyến A đường tròn (O) (O’) cắt đường tròn (O) (O’) theo thứ tự C D Gọi P Q trung điểm dây AC AD Chứng minh: a ∆ABD ~ ∆CBA = APB b BQD c Tứ giác APBQ nội tiếp Bài 72: Cho nửa đường tròn (O), đường kính AB Từ A B kẻ tiếp tuyến Ax By Qua điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến thứ ba, cắt tiếp tuyến Ax By E F a Chứng minh: AEMO tứ giác nội tiếp b AM cắt OE P, BM cắt OF Q Tứ giác MPOQ hình gì? Tại sao? c Kẻ MH AB (H AB) Gọi K giao điểm MH EB So sánh MK với KH d.Cho AB = 2R gọi r bán kính đường tròn nội tiếp ∆EOF Chứng minh: r R Bài 73: Từ điểm A ngồi đường tròn (O) kẻ tiếp tuyến AB, AC cát tuyến AKD cho BD//AC Nối BK cắt AC I a Nêu cách vẽ cát tuyến AKD cho BD//AC b Chứng minh: IC2 = IK.IB = 600 Chứng minh: Cát tuyến AKD qua O c Cho BAC Bài 74: Cho ∆ABC cân A, góc A nhọn Đường vng góc với AB A cắt đường thẳng BC E Kẻ EN AC Gọi M trung điểm BC Hai đ/thẳng AM EN cắt F a Tìm tứ giác nội tiếp đường tròn Giải thích sao? Xác định tâm đường tròn b Chứng minh: EB tia phân giác AEF c Chứng minh: M tâm đường tròn ngoại tiếp AFN Bài 75: Cho nửa đường tròn tâm (O), đường kính BC Điểm A thuộc nửa đường tròn Dựng hình vng ABED thuộc nửa mặt phẳng bờ AB, không chứa đỉnh C Gọi F giao điểm AE nửa đường tròn (O) K giao điểm CF ED a Chứng minh: Bốn điểm E, B, F, K nằm đường tròn b ∆BKC tam giác gì? Vì sao? c Tìm quỹ tích điểm E A di động nửa đường tròn (O) Footer Page 34 of 128 34 Header Page 35 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP AB Trên cạnh BC lấy điểm E (E khác B C) Từ B kẻ đường thẳng d vng góc với AE, gọi giao điểm d với AE, AC kéo dài I, K a Tính độ lớn góc CIK b Chứng minh: KA.KC = KB.KI; AC2 = AI.AE – AC.CK c Gọi H giao điểm đường tròn đường kính AK với cạnh AB Chứng minh: H, E, K thẳng hàng d Tìm quỹ tích điểm I E chạy BC Bài 76: Cho ∆ABC vng C, có BC = Bài 77: Cho ∆ABC vuông A Nửa đường tròn đường kính AB cắt BC D Trên cung AD lấy điểm E Nối BE kéo dài cắt AC F a Chứng minh: CDEF nội tiếp cắt EF CD M N Tia phân giác CBF b Kéo dài DE cắt AC K Tia phân giác CKD cắt DE CF P Q Tứ giác MPNQ hình gì? Tại sao? c Gọi r, r1, r2 theo thứ tự bán kính đường tròn nội tiếp tam giác ABC, ADB, ADC Chứng minh: r2 = r12 + r22 Bài 78: Cho đường tròn (O;R) Hai đường kính AB CD vng góc với E điểm cung nhỏ BC; AE cắt CO F, DE cắt AB M a Tam giác CEF EMB tam giác gì? b Chứng minh: Tứ giác FCBM nội tiếp Tìm tâm đường tròn c Chứng minh: Cấc đường thẳng OE, BF, CM đồng quy Bài 79: Cho đường tròn (O; R) Dây BC < 2R cố định A thuộc cung lớn BC (A khác B, C không trùng điểm cung) Gọi H hình chiếu A BC; E, F thứ tự hình chiếu B, C đường kính AA’ a Chứng minh: HE AC b Chứng minh: ∆HEF ~ ∆ABC c Khi A di chuyển, chứng minh: Tâm đường tròn ngoại tiếp ∆HEF cố định Bài 80: Cho ∆ ABC vuông A Kẻ đường cao AH Gọi I, K tương ứng tâm đường tròn nội tiếp ∆ ABH ∆ ACH 1) Chứng minh ∆ ABC ~ ∆ HIK 2) Đường thẳng IK cắt AB, AC M N a) Chứng minh tứ giác HCNK nội tiếp đường tròn b) Chứng minh AM = AN c) Chứng minh S’ ≤ S , S, S’ diện tích ∆ ABC ∆ AMN Footer Page 35 of 128 35 ... giác AONP hình chữ nhật có PAO = AON = ONP = 900 => K trung điểm PO (t/c đường chéo hình chữ nhật) (6) Footer Page of 128 Header Page of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP AONP hình chữ... Page 15 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Theo ta có I1 = C1; chứng minh tương tự ta có I2 = B2 mà C1 + B2 + BMC = 1800 => I1 + I2 + BMC = 1800 hay PIQ + PMQ = 1800 mà hai góc... CFM = 900 ( hai góc kề bù); CDM = 900 (t/c hình vng) Footer Page 13 of 128 13 Header Page 14 of 128 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP => CFM + CDM = 1800 mà hai góc đối nên tứ giác CDMF nội tiếp