1. Trang chủ
  2. » Giáo án - Bài giảng

Da Ti

25 72 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 418 KB

Nội dung

thi vo THPT cỏc tnh Một số đề thi tuyển sinh THPT Đề số 1 (Đề thi của tỉnh Hải Dơng năm học 1998 1999) Câu I (2đ) Giải hệ phơng trình: 2x 3y 5 3x 4y 2 = + = Câu II (2,5đ) Cho phơng trình bậc hai: x 2 2(m + 1)x + m 2 + 3m + 2 = 0 1) Tìm các giá trị của m để phơng trình luôn có hai nghiệm phân biệt. 2) Tìm giá trị của m thoả mãn x 1 2 + x 2 2 = 12 (trong đó x 1 , x 2 là hai nghiệm của phơng trình). Câu III (4,5đ) Cho tam giác ABC vuông cân ở A, trên cạnh BC lấy điểm M. Gọi (O 1 ) là đờng tròn tâm O 1 qua M và tiếp xúc với AB tại B, gọi (O 2 ) là đờng tròn tâm O 2 qua M và tiếp xúc với AC tại C. Đờng tròn (O 1 ) và (O 2 ) cắt nhau tại D (D không trùng với A). 1) Chứng minh rằng tam giác BCD là tam giác vuông. 2) Chứng minh O 1 D là tiếp tuyến của (O 2 ). 3) BO 1 cắt CO 2 tại E. Chứng minh 5 điểm A, B, D, E, C cùng nằm trên một đờng tròn. 4) Xác định vị trí của M để O 1 O 2 ngắn nhất. Câu IV (1đ) Cho 2 số dơng a, b có tổng bằng 2. Tìm giá trị nhỏ nhất của biểu thức: 2 2 4 4 1 1 a b ữ ữ . Su tm: on Tin Trung THCS Hong Vn Th __________________________________________________________________________________________________________ -1- thi vo THPT cỏc tnh Đề số 2 (Đề thi của tỉnh Hải Dơng năm học 1999 2000) Câu I Cho hàm số f(x) = x 2 x + 3. 1) Tính các giá trị của hàm số tại x = 1 2 và x = -3 2) Tìm các giá trị của x khi f(x) = 3 và f(x) = 23. Câu II Cho hệ phơng trình : mx y 2 x my 1 = + = 1) Giải hệ phơng trình theo tham số m. 2) Gọi nghiệm của hệ phơng trình là (x, y). Tìm các giá trị của m để x + y = -1. 3) Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào m. Câu III Cho tam giác ABC vuông tại B (BC > AB). Gọi I là tâm đờng tròn nội tiếp tam giác ABC, các tiếp điểm của đờng tròn nội tiếp với cạnh AB, BC, CA lần lợt là P, Q, R. 1) Chứng minh tứ giác BPIQ là hình vuông. 2) Đờng thẳng BI cắt QR tại D. Chứng minh 5 điểm P, A, R, D, I nằm trên một đờng tròn. 3) Đờng thẳng AI và CI kéo dài cắt BC, AB lần lợt tại E và F. Chứng minh AE. CF = 2AI. CI. Đề số 3 (Đề thi của tỉnh Hải Dơng năm học 1999 2000) Câu I 1) Viết phơng trình đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4). 2) Tìm toạ độ giao điểm của đờng thẳng trên với trục tung và trục hoành. Câu II Cho phơng trình: x 2 2mx + 2m 5 = 0. 1) Chứng minh rằng phơng trình luôn có hai nghiệm phân biệt với mọi m. 2) Tìm điều kiện của m để phơng trình có hai nghiệm trái dấu. 3) Gọi hai nghiệm của phơng trình là x 1 và x 2 , tìm các giá trị của m để: x 1 2 (1 x 2 2 ) + x 2 2 (1 x 1 2 ) = -8. Câu III Cho tam giác đều ABC, trên cạnh BC lấy điểm E, qua E kẻ các đờng thẳng song song với AB và AC chúng cắt AC tại P và cắt AB tại Q. 1) Chứng minh BP = CQ. 2) Chứng minh tứ giác ACEQ là tứ giác nội tiếp. Xác định vị trí của E trên cạnh BC để đoạn PQ ngắn nhất. 3) Gọi H là một điểm nằm trong tam giác ABC sao cho HB 2 = HA 2 + HC 2 . Tính góc AHC. Su tm: on Tin Trung THCS Hong Vn Th __________________________________________________________________________________________________________ -2- thi vo THPT cỏc tnh Đề số 4 (Đề thi của tỉnh Hải Dơng năm học 2000 2001) Câu I Cho hàm số y = (m 2)x + m + 3. 1) Tìm điều kiện của m để hàm số luôn nghịch biến. 2) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. 3) Tìm m để đồ thị của hàm số trên và các đồ thị của các hàm số y = -x + 2 ; y = 2x 1 đồng quy. Câu II Giải các phơng trình : 1) x 2 + x 20 = 0 2) 1 1 1 x 3 x 1 x + = 3) 31 x x 1 = . Câu III Cho tam giác ABC vuông tại A nội tiếp đờng tròn tâm O, kẻ đờng kính AD, AH là đờng cao của tam giác (H BC). 1) Chứng minh tứ giác ABDC là hình chữ nhật. 2) Gọi M, N thứ tự là hình chiếu vuông góc của B, C trên AD. Chứng minh HM vuông góc với AC. 3) Gọi bán kính của đờng tròn nội tiếp, ngoại tiếp tam giác vuông ABC là r và R. Chứng minh : r + R AB.AC . Đề số 5 (Đề thi của tỉnh Hải Dơng năm học 2000 2001) Câu I Cho phơng trình: x 2 2(m + 1)x + 2m 15 = 0. 1) Giải phơng trình với m = 0. 2) Gọi hai nghiệm của phơng trình là x 1 và x 2 . Tìm các giá trị của m thoả mãn 5x 1 + x 2 = 4. Câu II Cho hàm số y = (m 1)x + m + 3. 1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1. 2) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1 ; -4). 3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m. 4) Tìm giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1 (đvdt). Câu III Cho tam giác ABC nội tiếp đờng tròn tâm O, đờng phân giác trong của góc A cắt cạnh BC tại D và cắt đờng tròn ngoại tiếp tại I. 1) Chứng minh OI vuông góc với BC. 2) Chứng minh BI 2 = AI.DI. 3) Gọi H là hình chiếu vuông góc của A trên cạnh BC. Chứng minh rằng : ã ã BAH CAO= . 4) Chứng minh : ã à à HAO B C= . Su tm: on Tin Trung THCS Hong Vn Th __________________________________________________________________________________________________________ -3- thi vo THPT cỏc tnh Đề số 6 (Đề thi của tỉnh Hải Dơng năm học 2001 2002) Câu I (3,5đ) Giải các phơng trình sau: 1) x 2 9 = 0 2) x 2 + x 20 = 0 3) x 2 2 3 x 6 = 0. Câu II (2,5đ) Cho hai điểm A(1 ; 1), B(2 ; -1). 1) Viết phơng trình đờng thẳng AB. 2) Tìm các giá trị của m để đờng thẳng y = (m 2 3m)x + m 2 2m + 2 song song với đờng thẳng AB đồng thời đi qua điểm C(0 ; 2). Câu III (3đ) Cho tam giác ABC nhọn, đờng cao kẻ từ đỉnh B và đỉnh C cắt nhau tại H và cắt đờng tròn ngoại tiếp tam giác ABC lần lợt tại E và F. 1) Chứng minh AE = AF. 2) Chứng minh A là tâm đờng tròn ngoại tiếp tam giác EFH. 3) Kẻ đờng kính BD, chứng minh tứ giác ADCH là hình bình hành. Câu IV (1đ) Tìm các cặp số nguyên (x, y) thoả mãn phơng trình: 3 x 7 y 3200+ = . Đề số 7 (Đề thi của tỉnh Hải Dơng năm học 2001 2002) Câu I (3,5đ) Giải các phơng trình sau : 1) 2(x 1) 3 = 5x + 4 2) 3x x 2 = 0 3) x 1 x 1 2 x x 1 + = . Câu II (2,5đ) Cho hàm số y = -2x 2 có đồ thị là (P). 1) Các điểm A(2 ; -8), B(-3 ; 18), C( 2 ; -4) có thuộc (P) không ? 2) Xác định các giá trị của m để điểm D có toạ độ (m; m 3) thuộc đồ thị (P). Câu III (3đ) Cho tam giác ABC vuông tại A, đờng cao AH. Đờng tròn đờng kính AH cắt cạnh AB tại M và cắt cạnh AC tại N. 1) Chứng minh rằng MN là đờng kính của đờng tròn đờng kính AH. 2) Chứng minh tứ giác BMNC nội tiếp. 3) Từ A kẻ đờng thẳng vuông góc với MN cắt cạnh BC tại I. Chứng minh: BI = IC. Câu IV (1đ) Chứng minh rằng 5 2 là nghiệm của phơng trình: x 2 + 6x + 7 = 2 x , từ đó phân tích đa thức x 3 + 6x 2 + 7x 2 thành nhân tử. Su tm: on Tin Trung THCS Hong Vn Th __________________________________________________________________________________________________________ -4- thi vo THPT cỏc tnh Đề số 8 (Đề thi của tỉnh Hải Dơng năm học 2002 2003) Câu I (3đ) Giải các phơng trình: 1) 4x 2 1 = 0 2) 2 2 x 3 x 1 x 4x 24 x 2 x 2 x 4 + + + = + 3) 2 4x 4x 1 2002 + = . Câu II (2,5đ) Cho hàm số y = 2 1 x 2 . 1) Vẽ đồ thị của hàm số. 2) Gọi A và B là hai điểm trên đồ thị của hàm số có hoành độ lần lợt là 1 và -2. Viết phơng trình đờng thẳng AB. 3) Đờng thẳng y = x + m 2 cắt đồ thị trên tại hai điểm phân biệt, gọi x 1 và x 2 là hoành độ hai giao điểm ấy. Tìm m để x 1 2 + x 2 2 + 20 = x 1 2 x 2 2 . Câu III (3,5đ) Cho tam giác ABC vuông tại C, O là trung điểm của AB và D là điểm bất kỳ trên cạnh AB (D không trùng với A, O, B). Gọi I và J thứ tự là tâm đờng tròn ngoại tiếp các tam giác ACD và BCD. 1) Chứng minh OI song song với BC. 2) Chứng minh 4 điểm I, J, O, D nằm trên một đờng tròn. 3) Chứng minh rằng CD là tia phân giác của góc BAC khi và chỉ khi OI = OJ. Câu IV (1đ) Tìm số nguyên lớn nhất không vợt quá ( ) 7 7 4 3+ . Su tm: on Tin Trung THCS Hong Vn Th __________________________________________________________________________________________________________ -5- thi vo THPT cỏc tnh Đề số 9 (Đề thi của tỉnh Hải Dơng năm học 2002 2003) Câu I (2,5đ) Cho hàm số y = (2m 1)x + m 3. 1) Tìm m để đồ thị của hàm số đi qua điểm (2; 5) 2) Chứng minh rằng đồ thị của hàm số luôn đi qua một điểm cố định với mọi m. Tìm điểm cố định ấy. 3) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ x = 2 1 . Câu II (3đ) Cho phơng trình : x 2 6x + 1 = 0, gọi x 1 và x 2 là hai nghiệm của phơng trình. Không giải phơng trình, hãy tính: 1) x 1 2 + x 2 2 2) 1 1 2 2 x x x x+ 3) ( ) ( ) ( ) 2 2 1 2 1 x 1 2 2 2 2 2 1 1 2 2 x x x x x x x x 1 x x 1 + + + + . Câu III (3,5đ) Cho đờng tròn tâm O và M là một điểm nằm ở bên ngoài đờng tròn. Qua M kẻ tiếp tuyến MP, MQ (P và Q là tiếp điểm) và cát tuyến MAB. 1) Gọi I là trung điểm của AB. Chứng minh bốn điểm P, Q, O, I nằm trên một đờng tròn. 2) PQ cắt AB tại E. Chứng minh: MP 2 = ME.MI. 3) Giả sử PB = b và A là trung điểm của MB. Tính PA. Câu IV (1đ) Xác định các số hữu tỉ m, n, p sao cho (x + m)(x 2 + nx + p) = x 3 10x 12. Su tm: on Tin Trung THCS Hong Vn Th __________________________________________________________________________________________________________ -6- thi vo THPT cỏc tnh Đề số 10 (Đề thi của tỉnh Hải Dơng năm học 2003 2004) Câu I (1,5đ) Tính giá trị của biểu thức: A = 4 5 2 3 8 2 18 2 + + Câu II (2đ) Cho hàm số y = f(x) = 2 1 x 2 . 1) Với giá trị nào của x hàm số trên nhận các giá trị : 0 ; -8 ; - 1 9 ; 2. 2) A và B là hai điểm trên đồ thị hàm số có hoành độ lần lợt là -2 và 1. Viết phơng trình đờng thẳng đi qua A và B. Câu III (2đ) Cho hệ phơng trình: x 2y 3 m 2x y 3(m 2) = + = + 1) Giải hệ phơng trình khi thay m = -1. 2) Gọi nghiệm của hệ phơng trình là (x, y). Tìm m để x 2 + y 2 đạt giá trị nhỏ nhấtl. Câu IV (3,5đ) Cho hình vuông ABCD, M là một điểm trên đờng chéo BD, gọi H, I và K lần lợt là hình chiếu vuông góc của M trên AB, BC và AD. 1) Chứng minh : MIC = HMK . 2) Chứng minh CM vuông góc với HK. 3) Xác định vị trí của M để diện tích của tam giác CHK đạt giá trị nhỏ nhất. Câu V (1đ) Chứng minh rằng : (m 1)(m 2)(m 3)(m 4)+ + + + là số vô tỉ với mọi số tự nhiên m. Su tm: on Tin Trung THCS Hong Vn Th __________________________________________________________________________________________________________ -7- thi vo THPT cỏc tnh Đề số 11 (Đề thi của tỉnh Hải Dơng năm học 2003 2004) Câu I (2đ) Cho hàm số y = f(x) = 2 3 x 2 . 1) Hãy tính f(2), f(-3), f(- 3 ), f( 2 3 ). 2) Các điểm A 3 1; 2 ữ , B ( ) 2; 3 , C ( ) 2; 6 , D 1 3 ; 4 2 ữ có thuộc đồ thị hàm số không ? Câu II (2,5đ) Giải các phơng trình sau : 1) 1 1 1 x 4 x 4 3 + = + 2) (2x 1)(x + 4) = (x + 1)(x 4) Câu III (1đ) Cho phơng trình: 2x 2 5x + 1 = 0. Tính 1 2 2 1 x x x x+ (với x 1 , x 2 là hai nghiệm của phơng trình). Câu IV (3,5đ) Cho hai đờng tròn (O 1 ) và (O 2 ) cắt nhau tại A và B, tiếp tuyến chung của hai đờng tròn về phía nửa mặt phẳng bờ O 1 O 2 chứa B, có tiếp điểm với (O 1 ) và (O 2 ) thứ tự là E và F. Qua A kẻ cát tuyến song song với EF cắt (O 1 ) và (O 2 ) thứ tự ở C và D. Đờng thẳng CE và đờng thẳng DF cắt nhau tại I. Chứng minh: 1) IA vuông góc với CD. 2) Tứ giác IEBF nội tiếp. 3) Đờng thẳng AB đi qua trung điểm của EF. Câu V (1đ) Tìm số nguyên m để 2 m m 23+ + là số hữu tỉ. Su tm: on Tin Trung THCS Hong Vn Th __________________________________________________________________________________________________________ -8- thi vo THPT cỏc tnh Đề số 12 (Đề thi của tỉnh Hải Dơng năm học 2004 2005) Câu I (3đ) Trong hệ trục toạ độ Oxy cho hàm số y = 3x + m (*). 1) Tìm giá trị của m để đồ thị của hàm số đi qua: a) A(-1; 3) ; b) B( 2 ; -5 2 ) ; c) C(2 ; -1). 2) Xác định m để đồ thị của hàm số (*) cắt đồ thị của hàm số y = 2x 1 tại điểm nằm trong góc vuông phần t thứ IV. Câu II (3đ) Cho phơng trình 2x 2 9x + 6 = 0, gọi hai nghiệm của phơng trình là x 1 và x 2 . 1) Không giải phơng trình tính giá trị của các biểu thức: a) x 1 + x 2 ; x 1 x 2 b) 3 3 1 2 x x+ c) 1 2 x x+ . 2) Xác định phơng trình bậc hai nhận 2 1 2 x x và 2 2 1 x x là nghiệm. Câu III (3đ) Cho 3 điểm A, B, C thẳng hàng theo thứ tự đó. Dựng đờng tròn đờng kính AB, BC. Gọi M và N thứ tự là tiếp điểm của tiếp tuyến chung với đờng tròn đờng kính AB và BC. Gọi E là giao điểm của AM với CN. 1) Chứng minh tứ giác AMNC nội tiếp. 2) Chứng minh EB là tiếp tuyến của 2 đờng tròn đờng kính AB và BC. 3) Kẻ đờng kính MK của đờng tròn đờng kính AB. Chứng minh 3 điểm K, B, N thẳng hàng. Câu IV (1đ) Xác định a, b, c thoả mãn: ( ) 2 23 5x 2 a b c x 3x 2 x 2 x 1 x 1 = + + + + . Su tm: on Tin Trung THCS Hong Vn Th __________________________________________________________________________________________________________ -9- thi vo THPT cỏc tnh Đề số 13 (Đề thi của tỉnh Hải Dơng năm học 2004 2005) Câu I (3đ) Trong hệ trục toạ độ Oxy cho hàm số y = (m 2)x 2 (*). 1) Tìm m để đồ thị hàm số (*) đi qua điểm: a) A(-1 ; 3) ; b) B ( ) 2; 1 ; c) C 1 ; 5 2 ữ 2) Thay m = 0. Tìm toạ độ giao điểm của đồ thị (*) với đồ thị của hàm số y = x 1. Câu II (3đ) Cho hệ phơng trình: (a 1)x y a x (a 1)y 2 + = + = có nghiệm duy nhất là (x; y). 1) Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào a. 2) Tìm các giá trị của a thoả mãn 6x 2 17y = 5. 3) Tìm các giá trị nguyên của a để biểu thức 2x 5y x y + nhận giá trị nguyên. Câu III (3đ) Cho tam giác MNP vuông tại M. Từ N dựng đoạn thẳng NQ về phía ngoài tam giác MNP sao cho NQ = NP và ã ã MNP PNQ= và gọi I là trung điểm của PQ, MI cắt NP tại E. 1) Chứng minh ã ã PMI QNI= . 2) Chứng minh tam giác MNE cân. 3) Chứng minh: MN. PQ = NP. ME. Câu IV (1đ) Tính giá trị của biểu thức: A = 5 3 4 2 x 3x 10x 12 x 7x 15 + + + với 2 x 1 x x 1 4 = + + . Su tm: on Tin Trung THCS Hong Vn Th __________________________________________________________________________________________________________ -10- [...]... (3đ) Tứ giác ABCD nội ti p đờng tròn đờng kính AD Hai đờng chéo AC, BD cắt nhau tại E Hình chiếu vuông góc của E trên AD là F Đờng thẳng CF cắt đờng tròn tại điểm thứ hai là M Giao điểm của BD và CF là N Chứng minh: a) CEFD là tứ giác nội ti p b) Tia FA là tia phân giác của góc BFM c) BE.DN = EN.BD Bài 5 (1đ) 2x + m Tìm m để giá trị lớn nhất của biểu thức 2 bằng 2 x +1 Su tm: on Tin Trung THCS Hong... kéo dài cắt AC tại F 1) Chứng minh CDEF là tứ giác nội ti p 2) Kéo dài DE cắt AC ở K Tia phân giác của góc CKD cắt EF và CD tại M và N Tia phân giác của góc CBF cắt DE và CF tại P và Q Tứ giác MPNQ là hình gì ? Tại sao? 3) Gọi r, r1, r2 theo thứ tự là bán kính đờng tròn nội ti p các tam giác ABC, ADB, ADC Chứng minh rằng: r2 = r12 + r22 Su tm: on Tin Trung THCS Hong Vn Th -17- ... A kẻ các ti p tuyến AP và AQ với đờng tròn (O), P và Q là các ti p điểm Đờng thẳng đi qua O vuông góc với OP và cắt đờng thẳng AQ tại M 1) Chứng minh rằng MO = MA 2) Lấy điểm N nằm trên cung lớn PQ của đờng tròn (O) Ti p tuyến tại N của đờng tròn (O) cắt các tia AP và AQ lần lợt tại B và C a) Chứng minh : AB + AC BC không phụ thuộc vào vị trí của điểm N b) Chứng minh : Nếu tứ giác BCQP nội ti p một... Kẻ đờng kính BA; trên tia đối của tia AB lấy điểm S, nối S với C cắt (O) tại M; MD cắt AB tại K; MB cắt AC tại H Chứng minh: ã ã 1) BMD = BAC , từ đó suy ra tứ giác AMHK là tứ giác nội ti p 2) HK song song với CD 3) OK OS = R2 Câu V (1đ) Cho hai số a, b 0 thoả mãn : 1 1 1 + = a b 2 Chứng minh rằng phơng trình ẩn x sau luôn có nghiệm: (x2 + ax + b)(x2 + bx + a) = 0 ( ) Su tm: on Tin Trung THCS Hong... AB) 1) Chứng minh tứ giác BCEF nội ti p đợc trong một đờng tròn Từ đó suy ra AE.AC = AF AB 2) Gọi A là trung điểm của BC Chứng minh AH = 2AO 3) Kẻ đờng thẳng d ti p xúc với đờng tròn (O) tại A Đặt S là diện tích của tam giác ABC, 2p là chu vi tam giác DEF a) Chứng minh d // EF b) Chứng minh S = pR Bài 4 (1đ) Giải phơng trình : 9 x 2 +16 = 2 2 x + 4 + 4 2 x Su tm: on Tin Trung THCS Hong Vn Th -21- ... nhật ban đầu Bài 4 (3đ) Cho điểm A ở ngoài đờng tròn tâm O Kẻ hai ti p tuyến AB, AC với đờng tròn (B, C là ti p điểm) M là điểm bất kì trên cung nhỏ BC (M B, M C) Gọi D, E, F tơng ứng là hình chiếu vuông góc của M trên các đờng thẳng AB, AC, BC; H là giao điểm của MB và DF; K là giao điểm của MC và EF 1) Chứng minh: a) MECF là tứ giác nội ti p b) MF vuông góc với HK 2) Tìm vị trí của điểm M trên cung... sao cho x + y 2 Bài 3 (3đ) Cho đờng tròn (O) đờng kính AB = 2R đờng thẳng d ti p xúc với đờng tròn (O) tại A M và Q là hai điểm phân biệt, chuyển động trên d sao cho M khác A và Q khác A Các đờng thẳng BM và BQ lần lợt cắt đờng tròn (O) tại các điểm thứ hai là N và P Chứng minh : 1) Tích BM.BN không đổi 2) Tứ giác MNPQ nội ti p đợc trong một đờng tròn 3) Bất đẳng thức: BN + BP + BM + BQ > 8R Bài 4... nhiều hơn mỗi bạn nữ 3 cây Tính số học sinh nam và số học sinh nữ của tổ Câu IV (3đ) Cho 3 điểm M, N, P thẳng hàng theo thứ tự ấy, gọi (O) là đờng tròn đi qua N và P Từ M kẻ các ti p tuyến MQ và MK với đờng tròn (O) (Q và K là các ti p điểm) Gọi I là trung điểm của NP 1) Chứng minh 5 điểm M, Q, O, I, K nằm trên một đờng tròn 2) Đờng thẳng KI cắt đờng tròn (O) tại F Chứng minh QF song song với MP 3) Nối... dây MN vuông góc với AB tại I Gọi c là điểm tuỳ ý thuộc cung lớn MN (c khác M, N và B) Nối AC cắt MN tại E Chứng minh: 1 Tứ giác IECB nội ti p 2 AM2 = AE.AC 3 AE.AC - AI.IB = AI2 Bài4 (1,0điểm) Cho a 4, b 5 , c 6 và a2+b2+c2= 90 Chứng minh: a+b+c 16 Su tm: on Tin Trung THCS Hong Vn Th -22- thi vo THPT cỏc tnh Đề tuyển sinh năm học 2006 -2007... C Lấy điểm K tuỳ ý thuộc cung BM nhỏ Gọi H là giao điểm của AK và MN a) Chứng minh tứ giác BCHK nội ti p b) Tính AH AK theo R c) Xác định vị trí của điểm K để tổng KM + KN + KB đạt giá trị lớn nhất, tính giá trị lớn nhất đó Bài 5(1đ) Cho x, y > 0 và x + y =2 Chứng minh rằng: x2y2 (x2+y2) 2 Su tm: on Tin Trung THCS Hong Vn Th -23- thi vo THPT cỏc . nội ti p. b) Tia FA là tia phân giác của góc BFM. c) BE.DN = EN.BD. Bài 5 (1đ) Tìm m để giá trị lớn nhất của biểu thức 2 2x m x 1 + + bằng 2. Su tm: on Tin. thứ tự là ti p điểm của ti p tuyến chung với đờng tròn đờng kính AB và BC. Gọi E là giao điểm của AM với CN. 1) Chứng minh tứ giác AMNC nội ti p. 2) Chứng

Ngày đăng: 21/08/2013, 15:10

Xem thêm

w