Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 44 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
44
Dung lượng
290,53 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI NGUYỄN THỊ THÙY LINH PHÂNTÍCHSỰỔNĐỊNHVIPHÂNTHÔNGQUATẬPCÁCNHÂNTỬLUẬNVĂN THẠC SĨ TOÁN HỌC Hà Nội - 2018 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI NGUYỄN THỊ THÙY LINH PHÂNTÍCHSỰỔNĐỊNHVIPHÂNTHƠNGQUATẬPCÁCNHÂNTỬ Chun ngành: Tốn giải tích Mã số: 84 60 102 LUẬNVĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: TS NGUYỄN THỊ TOÀN Hà Nội - 2018 LỜI CẢM ƠN Lời xin bày tỏ lòng biết ơn chân thành sâu sắc tới giáo hướng dẫn TS Nguyễn Thị Tồn, người định hướng chọn đề tài tận tình hướng dẫn, giúp đỡ tơi suốt q trình làm hồn thiện luậnvăn Tơi xin bày tỏ lòng biết ơn chân thành tới Phòng Sau đại học, thầy giáo giảng dạy chun ngành Tốn giải tích, Trường Đại học sư phạm Hà Nội giúp đỡ tơi suốt q trình học tập trường Nhân dịp xin gửi lời cảm ơn đến gia đình, bạn bè ln cổ vũ, động viên, giúp đỡ tơi suốt q trình học tập hoàn thiện luậnvăn Hà Nội, ngày 20 tháng 07 năm 2018 Tác giả luậnvăn Nguyễn Thị Thùy Linh LỜI CAM ĐOAN Tôi xin cam đoan, bảo hướng dẫn cô giáo TS Nguyễn Thị Tồn, luậnvăn chun ngành tốn giải tích với đề tài: "Phân tíchổnđịnhviphânthơngquatậpnhân tử" hồn thành nhận thức tìm hiểu thân tác giả Trong trình nghiên cứu thực luận văn, tác giả kế thừa kết nhà khoa học với trân trọng biết ơn Hà Nội, ngày 20 tháng 07 năm 2018 Tác giả luậnvăn Nguyễn Thị Thùy Linh Mục lục MỞ ĐẦU Kiến thức chuẩn bị 1.1 Một số khái niệm 1.2 Nón pháp tuyến tập lồi 12 1.3 Dưới viphân hàm lồi 15 1.4 Cực trị toán tối ưu lồi 17 Tính ổnđịnhviphânthôngquatậpnhântử 21 2.1 Điều kiện tối ưu 21 2.1.1 Bài toán tối ưu lồi với ràng buộc bao hàm thức 22 2.1.2 Bài toán tối ưu lồi với ràng buộc hình học ràng buộc hàm 25 2.2 Dưới viphân hàm giá trị thôngquatậpnhântử 29 2.2.1 Dưới viphân hàm giá trị toán tối ưu lồi 29 2.2.2 Dưới viphân suy biến hàm giá trị toán tối ưu lồi 35 Kết luận 40 Tài liệu tham khảo 40 Mở đầu Lý chọn đề tài Tối ưu hóa lĩnh vực kinh điển tốn học có ảnh hưởng đến hầu hết lĩnh vực khoa học - công nghệ kinh tế - xã hội Trong thực tế, việc tìm giải pháp tối ưu cho vấn đề chiếm vai trò quan trọng Phương án tối ưu phương án hợp lý nhất, tốt nhất, tiết kiệm chi phí, tài nguyên, nguồn lực mà lại cho hiệu cao Bài toán tối ưu lý thuyết tối ưu tốn tìm cực tiểu hàm số, số ràng buộc Bài tốn tối ưu có mối quan hệ mật thiết với số toán liên quan đến tối ưu: từ bất đẳng thức Ky Fan (còn biết với tên gọi thơng dụng tốn cân ), bất đẳng thức biến phân, toán điểm yên ngựa, toán bù, đến toán thực tiễn trò chơi khơng hợp tác (cũng gọi toán cân Nash ), toán mạng giao thông kinh tế túy trao đổi Theo B.V Kolmanovskii (lời tựa tiếng Nga cho [6]), “Thông thường, việc điều khiển tối ưu hệ thống thực tế thực điều kiện không xác định, với nguyên nhân khác nhau, ví dụ như: diện ngoại cảnh cho trước cách khơng xác, sai số thực chương trình điều khiển, lỗi kênh đo đạc, chậm trễ cần khoảng thời gian để thu thập xử lý kết đo đạc Hệ việc khơng tương thích mơ hình tốn học với đối tượng thực Do vậy, mơ hình tốn học cần phải có độ ổnđịnhnhân tố không xác định” Cũng theo B.V Kolmanvskii (tài liệu trích dẫn trên), “Các vấn đề khác liên quan đến việc phântích độ nhạy tính ổnđịnh nhiễu vấn đề truyền thống lý thuyết tối ưu Những năm gần đây, đề tài trở thành vấn đề thời sự, thu hút quan tâm nhiều nhà khoa học Đặc biệt, mối liên hệ lý thuyết tối ưu với ứng dụng thực tế khó khăn lý thuyết đặt nhiều toán thú vị.” Như vậy, bên cạnh tồn nghiệm, thuật tốn tìm nghiệm, việc nghiên cứu điều kiện cực trị độ nhạy nghiệm vấn đề lý thuyết tối ưu ứng dụng Đã có nhiều kết nghiên cứu ổnđịnhviphân toán tối ưu xem [3, 7, 8, 9, 12, 13, 14, 15] tài liệu trích dẫn Với lý nêu trên, hướng dẫn TS Nguyễn Thị Tồn, tơi xin chọn đề tài nghiên cứu: Phântíchổnđịnhviphânthơngquatậpnhântử Ngồi phần Mở đầu, Kết luận Danh mục tài liệu tham khảo, cấu trúc luậnvăn gồm hai chương sau: Chương “Kiến thức chuẩn bị” trình bày số khái niệm tính chất giải tích lồi nón pháp tuyến tập lồi, viphân hàm lồi cực trị tốn tối ưu lồi Chương “Tính ổnđịnhviphânthơngquatậpnhân tử” trình bày điều kiện cực trị cho toán tối ưu lồi với ràng buộc bao hàm thức ràng buộc hình học lẫn ràng buộc hàm Từ đưa cơng thức tính viphânviphân suy biến hàm giá trị tốn tối ưu lồi thơngquatậpnhântử Mục đích nghiên cứu Một mặt, đưa điều kiện cần đủ cực trị cho toán tối ưu lồi Mặt khác, thiết lập cơng thức tính tốn viphânviphân suy biến hàm giá trị tốn tối ưu lồi thơngquatậpnhântử phù hợp Nhiệm vụ nghiên cứu Nghiên cứu vi phân, viphân suy biến hàm giá trị thôngquatậpnhântử phù hợp toán tối ưu lồi Đối tượng phạm vi nghiên nghiên cứu Luậnvăntập trung nghiên cứu điều kiện cực trị toán tối ưu lồi viphân hàm giá trị thôngquatậpnhântử toán tối ưu lồi Phương pháp nghiên cứu • Dịch, đọc nghiên cứu tài liệu • Tổng hợp, phân tích, vận dụng kiến thức cho mục đích nghiên cứu Đóng góp Góp phần làm phong phú thêm kết toán tối ưu, cơng thức tính tốn viphânviphân suy biến hàm giá trị thơngquatậpnhântử phù hợp Có thể sử dụng làm tài liệu tham khảo cho sinh viên, học viên cao học có quan tâm đến lĩnh vực tốn giải tích, tốn tối ưu Định lý 2.3 Giả sử ϕ (¯ x, ) liên tục điểm y với x¯, y ∈ int C, gi x¯, y < với i ∈ I hj x¯, y = với j ∈ J Khi đó, điểm y¯ ∈ G (¯ x) nghiệm Px¯ tồn λi ≥ 0, i ∈ I µj ∈ R, j ∈ J cho (a) ∈ ∂y ϕ (¯ x, y¯) + λi ∂y gi (¯ x, y¯) + i∈I µj ∂y hj (¯ x, y¯) + N ((¯ x, y¯) ; C) ; j∈J (b) λi gi (¯ x, y¯) = 0, i ∈ I Chứng minh Với x¯ ∈ X, lấy tùy ý y¯ ∈ G (¯ x) Chú ý Px¯ viết dạng {ϕ (¯ x, y) : y ∈ G (¯ x)} Nếu ϕ (¯ x, ) liên tục điểm y với (¯ x, y0 ) ∈ int C, gi x¯, y < với i ∈ I hj x¯, y = với j ∈ J, điều kiện (b) Định lý 2.1 thỏa mãn Do đó, y¯ ∈ M (¯ x) ∈ ∂y ϕ (¯ x, y¯) + N (¯ y ; G (¯ x)) (2.12) Ta cần N (¯ y ; G (¯ x)) = λi ∂y gi (¯ x, y¯) + µj ∂y hj (¯ x, y¯) + N ((¯ x, y¯) ; C) , j∈J i∈I(¯ x,¯ y) (2.13) với I (¯ x, y¯) := {i : gi (¯ x, y¯) = 0, i ∈ I} , λi ≥ 0, i ∈ I, µj ∈ R, j ∈ J Để ý Ωi (¯ x) G (¯ x) = ∩ i∈I Qj (¯ x) ∩ C, (2.14) j∈J vơi Ωi (¯ x) = {y : gi (¯ x, y) ≤ 0} (i ∈ I) Qj (¯ x) = {y : hj (¯ x, y) = 0} (j ∈ J) tập lồi Theo giả thiết, y0 ∈ int Ωi (¯ x) ∩ i∈I Qj (¯ x) ∩ int C j∈J 28 Vì vậy, theo Mệnh đề 1.2 (2.14) ta có N (¯ y ; G (¯ x)) = Qj (¯ x) + N ((¯ x, y¯) ; C) N (¯ y ; Ωi (¯ x)) + N y¯; i∈I j∈I (2.15) Một mặt, theo Bổ đề 2.1, với i ∈ I (¯ x, y¯) ta có N (¯ y ; Ωi (¯ x)) = K∂y gi (¯x,¯y) = {λi ∂y gi (¯ x, y¯) , λi ≥ 0} (2.16) Mặt khác, theo Bổ đề 2.2 công thức hj (¯ x, ) = yj∗ , y − αj , j ∈ J, khẳng định x, y¯) : j ∈ J} Qj (¯ x) = span yj∗ : j ∈ J = span {∂y hj (¯ x, y¯) ; N (¯ j∈J (2.17) Kết hợp (2.15), (2.16) (2.17) ta thu (2.13) Vì khẳng địnhđịnh lý 2.2 Dưới viphân hàm giá trị thơngquatậpnhântử Mục trình bày kết luậnvăn đưa cơng thức tính tốn viphânviphân suy biến hàm giá trị toán tối ưu lồi với ràng buộc hình học ràng buộc hàm 2.2.1 Dưới viphân hàm giá trị toán tối ưu lồi Định lý sau cho ta kết ổnđịnhviphân tốn tối ưu lồi với ràng buộc hình học ràng buộc hàm Định lý 2.4 (Xem [4, Định lý 5.2]) Với j ∈ J, giả sử hj (x, y) = x∗j , yj∗ , (x, y) − αj , αj ∈ R 29 Giả sử thêm ϕ hàm liên tục điểm x0 , y với x0 , y ∈ int C, gi x0 , y < với i ∈ I hj x0 , y = với j ∈ J Khi với x¯ ∈ dom µ, µ (¯ x) = −∞ y¯ ∈ M (¯ x) ta có x∗ + Q∗ ∂µ (¯ x) = (2.18) (x∗ ,y ∗ )∈∂ϕ(¯ x,¯ y) ∂ ∞ µ (¯ x) = x∗ + Q∗ , (2.19) (x∗ ,y ∗ )∈∂ ∞ ϕ(¯ x,¯ y) Q∗ := {u∗ ∈ X : (u∗ , −y ∗ ) ∈ A + N ((¯ x, y¯) ; C)} , (2.20) A := cone ∂gi (¯ x, y¯) + span x∗j , yj∗ , i ∈ J , (2.21) i∈I(¯ x,¯ y) x, y¯)} nón sinh với cone ∂gi (¯ x, y¯) = {λzi∗ : λ ≥ 0, zi∗ ∈ ∂gi (¯ ∂gi (¯ x, y¯) Mục đích phần trình bày cơng thức cho tính tốn ước lượng viphân hàm giá trị tối ưu Px thôngquatậpnhântử phù hợp Hàm Lagrange tương ứng toán chứa tham số Px là: L (x, y, λ, µ) := ϕ (x, y) + λT g (x, y) + µT h (x, y) + δ ((x, y) ; C) (2.22) với λ = (λ1 , λ2 , , λm ) ∈ Rm µ = (µ1 , µ2 , , µk ) ∈ Rk Với cặp (x, y) ∈ X × Y, ký hiệu Λ0 (x, y) tập tất nhântử λ ∈ Rm µ ∈ Rk với λi ≥ với i ∈ I λi = với i ∈ I\I (x, y) , I (x, y) = {i ∈ I : gi (x, y) = 0} 30 Với tham số x¯, hàm Lagrange tương ứng với tốn khơng nhiễu (Px¯ ) L (¯ x, y, λ, µ) := ϕ (¯ x, y) + λT g (¯ x, y) + µT h (¯ x, y) + δ ((¯ x, y) ; C) (2.23) Ký hiệu Λ (¯ x, y¯) tậpnhântử Lagrange tương ứng với nghiệm tối ưu y¯ x, y¯) bao gm cp (, à) Rm ì Rk tha ca tốn Px¯ Do đó, Λ (¯ mãn x, y¯, λ, µ) , ∈ ∂y L (¯ λi gi (¯ x, y¯) = 0, i = 1, , m, λi ≥ 0, i = 1, , m Ở đây, ∂y L (¯ x, y¯, λ, µ) viphân hàm L (¯ x, ·, λ, µ) ký hiệu (2.23) y¯ Rõ ràng δ ((¯ x, y) ; C) = δ (y; Cx¯ ) , với Cx¯ := {y ∈ Y : (¯ x, y) ∈ C} Sử dụng tậpnhântử Λ0 (x, y) , định lý cung cấp cho công thức tính tốn xác viphân hàm giá trị tối ưu µ (x) Định lý 2.5 Giả sử hj (x, y) = x∗j , yj∗ , (x, y) − αj , αj ∈ R, j ∈ J M (¯ x) khác rỗng với x¯ ∈ dom µ Nếu ϕ liên tục điểm x0 , y với x0 , y ∈ int C, gi x0 , y < với i ∈ I hj x0 , y = với j ∈ J, với y¯ ∈ M (¯ x) ta có ∂µ (¯ x) = prX (∂L (¯ x, y¯, λ, µ) ∩ (X × {0})) , (2.24) (λ,µ)∈Λ0 (¯ x,¯ y) với ∂L (¯ x, y¯, λ, µ) viphân hàm L (., , λ, µ) (¯ x, y¯) với (x∗ , y ∗ ) ∈ X × Y, prX (x∗ , y ∗ ) := x∗ Chứng minh Giả sử x¯∗ ∈ ∂µ (¯ x) Theo Định lý 2.4, ∃ (x∗ , y ∗ ) ∈ ∂ϕ (¯ x, y¯) u∗ ∈ Q∗ cho x¯∗ = x∗ + u∗ Theo (2.20) điều kiện u∗ ∈ Q∗ có 31 nghĩa (u∗ , −y ∗ ) ∈ N ((¯ x, y¯) ; C) + A (2.25) Thêm bao hàm thức (x∗ , y ∗ ) ∈ ∂ϕ (¯ x, y¯) từ (2.25) ta suy (x∗ + u∗ , 0) ∈ (x∗ , y ∗ ) + A + N ((¯ x, y¯) ; C) Do đó, (¯ x∗ , 0) ∈ ∂ϕ (¯ x, y¯) + A + N ((¯ x, y¯) ; C) (2.26) Với (λ, µ) ∈ Λ0 (¯ x, y¯) , từ giả thiết cho hàm ϕ, gi , hj tập C định lý cho phép áp dụng Định lý Moreau-Rockafellar (xem Định lý 1.7) cho hàm Lagrange L (x, y, λ, µ) ký hiệu (2.22) ta đạt λi ∂gi (¯ x, y¯) + ∂L (¯ x, y¯, λ, µ) = ∂ϕ (¯ x, y¯) + µj hj (¯ x, y¯) j∈J i∈I(¯ x,¯ y) (2.27) + N ((¯ x, y¯) ; C) Từ ∂hj (¯ x, y¯) = x∗j , yj∗ , (2.27) ta có ∂ϕ (¯ x, y¯) + A + N ((¯ x, y¯) ; C) = ∂L (¯ x, y¯, λ, µ) (2.28) (λ,µ)∈Λ0 (¯ x,¯ y) Vì vậy, (2.26) có nghĩa x¯∗ ∈ prX (∂L (¯ x, y¯, λ, µ) (X ì {0})) (2.29) (,à)0 ( x, y) Do đó, bao hàm thức "⊂" (2.24) xác Để thu bao hàm thức ngược, cố định x¯∗ thỏa mãn (2.29), ta cần x¯∗ ∈ ∂µ (¯ x) Giống lưu ý trước đó, (2.29) tương đương (2.26) Chọn cặp (x∗ , y ∗ ) ∈ ∂ϕ (¯ x, y¯) thỏa mãn (¯ x∗ , 0) ∈ (x∗ , y ∗ ) + A + N ((¯ x, y¯) ; C) 32 Khi đó, với u∗ := x¯∗ − x∗ , ta có (x∗ + u∗ , 0) ∈ (x∗ , y ∗ ) + A + N ((¯ x, y¯) ; C) Do bao hàm thức (2.25) Từ đó, theo (2.18) (2.20), véctơ x¯∗ = x∗ + u∗ ∈ ∂µ (¯ x) Định lý chứng minh Dưới ví dụ minh họa cho Định lý 2.5 Ví dụ 2.1 Cho X = Y = R, C = X × Y, ϕ (x, y) = |x + y| = max{x + y, −x − y}, m = 1, k = (khơng có ràng buộc hàm đẳng thức), g1 (x, y) = y với (x, y) ∈ X × Y Chọn x¯ = 0, y¯ = ý M (¯ x) = {¯ y } , ta có Λ0 (¯ x, y¯) = [0, ∞) L (x, y, λ) = ϕ (x, y) + λy Khi đó, theo [10, Định lý 3, trang 200-201], ta có ∂ϕ (¯ x, y¯) = co (1, 1)T , (−1, −1)T , với co C bao lồi C Từ ∂L (¯ x, y¯, λ) = ∂ϕ (¯ x, y¯) + {(0, λ)} , từ (2.24) ta tính ∂µ (¯ x) = prX (∂L (¯ x, y¯, λ) ∩ (X × {0})) λ∈Λ0 (¯ x,¯ y) ∂L (¯ x, y¯, λ) ∩ (X × {0}) = prX λ∈Λ0 (¯ x,¯ y) = prX co (1, 1)T , (−1, −1)T + ({0} × R+ ) ∩ (X × {0}) = [−1, 0] Để kiểm tra kết quả, ta nhận thấy trực tiếp 33 x ≥ 0, ∂µ (x) = inf {|x + y| : y ≤ 0} = |x| x < Vì vậy, có ∂µ (¯ x) = [−1, 0] Như (2.24) Định lý sau trình bày đánh giá cho viphân hàm giá trị µ (.) x¯ cách sử dụng tậpnhântử Lagrange Λ (¯ x, y¯) tương ứng với nghiệm y¯ Px¯ Định lý 2.6 Dưới giả thiết Định lý 2.5, ta có ∂µ (¯ x) ⊂ ∂x L (¯ x, y¯, λ, µ), (2.30) (λ,µ)∈Λ(¯ x,¯ y) với ∂x L (¯ x, y¯, λ, µ) viphân L (., y¯, λ, µ) x¯ Chứng minh Chọn tùy ý véctơ x¯∗ ∈ ∂µ (¯ x) Trong Định lý 2.5 ta (2.26) (2.28) thỏa mãn Do đó, tìm véctơ (λ, µ) ∈ Λ0 (¯ x, y¯) cho (¯ x∗ , 0) ∈ ∂L (¯ x, y¯, λ, µ) (2.31) Sử dụng định nghĩa vi phân, từ (2.31) ta suy x¯∗ , x − x¯ ≤ L (x, y¯, λ, µ) − L (¯ x, y¯, λ, µ) , ∀x ∈ X 0, y − y¯ ≤ L (¯ x, y, λ, µ) − L (¯ x, y¯, λ, µ) , ∀y ∈ Y Do đó, x¯∗ ∈ ∂x L (¯ x, y¯, λ, µ) , ∈ ∂y L (¯ x, y¯, λ, µ) (2.32) Từ (λ, µ) ∈ Λ0 (¯ x, y¯) , ta có λi gi (¯ x, y¯) = λi ≥ với i ∈ I Do đó, kết luật thứ hai (2.32) kéo theo (λ, µ) ∈ Λ (¯ x, y¯) Như vậy, (2.30) kéo theo từ kết luận (2.32) 34 Ví dụ kết luậnĐịnh lý 2.6 ngặt Ví dụ 2.2 Cho X = Y = R, C = X × Y, ϕ (x, y) = |x + y| , m = 1, k = (khơng có ràng buộc với hàm đẳng thức), g1 (x, y) = y, ∀ (x, y) ∈ X × Y Chọn x¯ = 0, y¯ = ý M (¯ x) = {¯ y } Ta có L (x, y, λ) = ϕ (x, y) + λy Λ (¯ x, y¯) = {λ ≥ : ∈ ∂y L (¯ x, y¯, λ)} = {λ ≥ : ∈ [−1, 1] + λ} = [0, 1] Như Ví dụ 2.1, ta có ∂µ (¯ x) = [−1, 0] Bây ta tính vế phải (2.30) Bằng cách tính tốn đơn giản, ta có ∂x L (¯ x, y¯, λ) = [−1, 1] với λ ∈ Λ (x, y) Khi đó, ∂x L (¯ x, y¯, λ) = [−1, 1] Do đó, ví λ∈Λ(¯ x,¯ y) dụ kết luận (2.30) ngặt 2.2.2 Dưới viphân suy biến hàm giá trị toán tối ưu lồi Đầu tiên, ta thấy x ∈ dom µ µ (x) = inf {µ (x, y) : y ∈ G (x)} < ∞, với G (x) đưa (2.7) Từ suy luận bất đẳng thức ngặt tồn y ∈ G (x) với (x, y) ∈ dom ϕ, ta có δ (x; dom µ) = inf {δ ((x, y) ; dom ϕ) : y ∈ G (x)} 35 (2.33) Để tính tốn viphân suy biến µ (.) , ta xét toán δ ((x, y) ; dom ϕ) → inf Px cho (x, y) ∈ C, gi (x, y) ≤ (i ∈ I), hj (x, y) = (j ∈ J) Hàm Lagrange tương ứng cho Px L (x, y, λ, µ) := δ ((x, y) ; dom ϕ) + λT g (x, y) + µT h (x, y) + δ ((x, y) ; C) , (2.34) với λ = (λ1 , λ2 , , λm ) ∈ Rm , µ = (µ1 , µ2 , , µk ) ∈ Rk Xét Px toán cho dạng Px với (δ (x, y) ; dom ϕ) đóng vai trò ϕ (x, y,) áp dụng Định lý 2.5 (tương ứng Định lý 2.6) để tính tốn (đánh giá) viphân suy biến µ (.) sau: Định lý 2.7 Dưới giả thiết Định lý 2.5, với y¯ ∈ M (¯ x) ta có ∞ ∂ µ (¯ x) = prX ∂ L (¯ x, y, , à) (X ì {0}) , (2.35) (λ,µ)∈Λ0 (¯ x,¯ y) với ∂ L (¯ x, y¯, λ, µ) = ∂ ∞ ϕ (¯ x, y¯) + λi ∂gi (¯ x, y¯) i∈I(¯ x,¯ y) + µj ∂hj (¯ x, y¯) + N ((¯ x, y¯) ; C) (2.36) j∈J viphân hàm L (., , λ, µ) (¯ x, y¯) , với cặp (λ, µ) ∈ Λ0 (¯ x, y¯) chọn Chứng minh Bao hàm thức y¯ ∈ M (¯ x) kéo theo (¯ x, y¯) ∈ dom ϕ y¯ ∈ G (¯ x) Vì vậy, δ ((¯ x, y¯) ; dom ϕ) = y¯ điểm chấp nhận toán Px¯ Vì δ ((¯ x, y¯) ; dom ϕ) ≥ 0, ∀y ∈ G (¯ x) , ta khẳng định y¯ nghiệm Px¯ Giá trị tối ưu tương ứng 36 δ (¯ x; dom µ) = (xem (2.33)) Do đó, theo Định lý 2.5 cơng thức (2.33), ta có ∂δ (¯ x; dom µ) = prX ∂ L ( x, y, , à) (X ì {0}) (λ,µ)∈Λ0 (¯ x,¯ y) Từ ∂δ (¯ x; dom µ) = ∂ ∞ µ (¯ x) , ta có (2.35) Với (λ, µ) ∈ Λ0 (¯ x, y¯) , nhớ hj , j ∈ J hàm afin, ϕ hàm liên tục x0 , y với x0 , y ∈ int C, gi x0 , y < 0, ∀i ∈ I hj x0 , y = 0, ∀j ∈ J ta áp dụng Định lý 1.7 với hàm Lagrange L (x, y, λ, µ) xác định (2.34) để thu λi ∂gi (¯ x, y¯) ∂ L (¯ x, y¯, λ, µ) = ∂δ ((¯ x, y¯) ; dom ϕ) + i∈I(¯ x,¯ y) + µj ∂hj (¯ x, y¯) + N ((¯ x, y¯) ; C) j∈J Kết hợp với đẳng thức ∂δ ((¯ x, y¯) ; dom ϕ) = ∂ ∞ ϕ (¯ x, y¯) ta thu kết (2.36) Tiếp theo, ký hiệu Λ∞ (¯ x, y¯) tậpnhântử Lagrange suy biến tương ứng với nghiệm y¯ Px¯ , gồm cặp (λ, µ) ∈ Rm × Rk , thỏa mãn x, y¯, λ, µ) , ∈ ∂y L (¯ λi gi (¯ x, y¯) = 0, i = 1, , m, λi ≥ 0, i = 1, , m Ở ∂y L (¯ x, y¯, λ, µ) viphân hàm L (¯ x, , λ, µ), với L (x, y, λ, µ) đưa theo (2.34), y¯ Định lý 2.8 Dưới giả thiết Định lý 2.5, với y¯ ∈ M (¯ x) , ta có ∂ ∞ µ (¯ x) ⊂ ∂x L (¯ x, y¯, λ, µ), (λ,µ)∈Λ∞ (¯ x,¯ y) 37 (2.37) ∂x L (¯ x, y¯, λ, µ) viết tắt viphân hàm L (., y¯, λ, µ) x¯ Chứng minh Để thu (2.37) ta áp dụng Định lý 2.6 cho toán chứa tham số P(¯x) , nhớ y¯ nghiệm P(¯x) Thật vậy, từ (2.30) ta có ∂δ (¯ x; dom µ) ⊂ ∂x L (¯ x, y¯, λ, µ) (λ,µ)∈Λ∞ (¯ x,¯ y) Vì ∂δ (¯ x; dom µ) = ∂ ∞ µ (¯ x) , nên bao hàm thức tương đương với (2.37) Kết luận Chương Kết chương bao gồm: - Trình bày điều kiện cực trị toán tối ưu lồi với ràng buộc bao hàm thức Định lý 2.1 Đặc biệt, phần chứng minh Mệnh đề 2.1 nói lên mối quan hệ viphân hàm hai biến viphân theo biến hàm Chúng tơi tự chứng minh Định lý 2.2 , phiên khác Định lý 2.1; - Trình bày điều kiện cực trị toán tối ưu lồi với ràng buộc hình học ràng buộc hàm Định lý 2.3 Trong phần này, tự chứng minh Mệnh đề 2.2 nói lên tính lồi hàm đa trị G-hàm ràng buộc - Trình bày cơng thức tính xác viphân hàm giá trị toán tối ưu lồi chứa tham số với ràng buộc hình học ràng buộc hàm thơngquatậpnhântửĐịnh lý 2.5 Trong phần trình bày đánh giá cho viphân hàm giá trị toán tối ưu lồi chứa tham số với ràng buộc hình học ràng buộc hàm thôngquatậpnhântử Lagrange Định lý 2.6 38 - Trình bày cơng thức tính xác viphân suy biến hàm giá trị toán tối ưu lồi chứa tham số với ràng buộc hình học ràng buộc hàm thơngquatậpnhântửĐịnh lý 2.7 Trong phần trình bày đánh giá cho viphân hàm giá trị toán tối ưu lồi chứa tham số với ràng buộc hình học ràng buộc hàm thôngquatậpnhântử Lagrange Định lý 2.8 39 KẾT LUẬN CHUNG Nội dung luậnvăn trình bày cách hệ thống kết báo [3] viphânviphân suy biến thôngquatậpnhântử hàm giá trị toán tối ưu lồi chứa tham số với ràng buộc bao hàm thức ràng buộc hình học ràng buộc hàm Cụ thể, - Trình bày khái niệm tập lồi, nón pháp tuyến tập lồi, viphân hàm lồi cực trị tốn tối ưu lồi; - Trình bày điều kiện cần đủ cực trị cho toán tối ưu lồi với ràng buộc bao hàm thức ràng buộc hình học ràng buộc hàm; - Trình bày cơng thức tính tốn viphânviphân suy biến thôngquatậpnhântử hàm giá trị toán tối ưu lồi chứa tham số với ràng buộc hình học ràng buộc hàm Có thể phát triển kết luậnvăn sau: - Tìm cơng thức đánh giá viphânviphân suy biến thôngquatậpnhântử hàm giá trị toán điều khiển tối ưu rời rạc lồi (bài toán điều khiển tối ưu liên tục lồi) chứa tham số với phương trình trạng thái tuyến tính ràng buộc trạng thái lẫn điều khiển Tài liệu tham khảo [A] Tài liệu tiếng Việt [1] Hoàng Tụy (2006), Lý thuyết Tối ưu, Bài giảng lớp cao học, Viện Tốn [2] Nguyễn Đơng n (2007), Giáo trình Giải tích đa trị, NXB Khoa học tự nhiên Công nghệ, Hà Nội [B] Tài liệu tiếng Anh [3] D T V An, N D Yen (2017), Differential stability analysis via multiplier sets, Vietnam Journal of Mathematics, 46, 365–379 [4] D T V An, N D Yen (2015), Differential stability of convex optimization problems under inclusion constraints, Applicable Analysis, 94, 108–128 [5] J F Bonnans, A Shapiro (2000), Perturbation Analysis of Optimization Problems, Springer, New York [6] A L Dontchev (1983), Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems, Springer-Verlag, Berlin [7] J Gauvin, F Dubeau (1982), Differential properties of the marginal function in mathematical programming, Mathematical Programming Studies, 19, 101–119 [8] J Gauvin, W J Tolle (1977), Differential stability in nonlinear programming, SIAM Journal on Control and Optimization, 15, 294–311 [9] B Gollan (1984), On the marginal function in nonlinear programming, Mathematics of Operations Research, 9, 208–221 [10] A D Ioffe, V M Tikhomirov (1979), Theory of Extremal Problems, North-Holland Publishing Company, North-Halland [11] B S Mordukhovich (2006), Variational Analysis and Generalized Differentiation I, Basis Theory, Springer, Berlin, New York [12] B S Mordukhovich, N M Nam, N D Yen (2009), Subgradients of marginal functions in parametric mathematical programming, Mathematical Programming Series B, 116, 369–396 [13] L Thibault (1991), On subdifferentials of optimal value functions, SIAM Journal on Control and Optimization, 29, 1019–1036 [14] L Q Thuy, B T Thanh, N T Toan (2017), On the no-gap secondorder optimality conditions for a discrete optimal control problem with mixed constraints, Journal of Optimization Theory and Applications, 173, 421–442 [15] N T Toan, J -C Yao (2014), Mordukhovich subgradients of the value function to a parametric discrete optimal control problem, Journal of Global Optimization, 58, 595–612 42 ... thức tính tốn vi phân vi phân suy biến hàm giá trị tốn tối ưu lồi thơng qua tập nhân tử phù hợp Nhiệm vụ nghiên cứu Nghiên cứu vi phân, vi phân suy biến hàm giá trị thông qua tập nhân tử phù hợp... ĐẠI HỌC SƯ PHẠM HÀ NỘI NGUYỄN THỊ THÙY LINH PHÂN TÍCH SỰ ỔN ĐỊNH VI PHÂN THÔNG QUA TẬP CÁC NHÂN TỬ Chun ngành: Tốn giải tích Mã số: 84 60 102 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học:... chất vi phân vi phân suy biến hàm lồi tính khác rỗng vi phân, vi phân tổng hàm lồi theo hai phiên khác Trong phần này, chứng minh Mệnh đề 1.4 nói lên mối quan hệ vi phân vi phân suy biến hàm tập