1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Nghiên cứu các tính chất của vật liệu sắt điện không chứa chì nền Bi0,5(NaK)0,5TiO3(BNKT) pha tạp li dạng khối và BNKT20 dạng màng

158 188 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 158
Dung lượng 6,28 MB

Nội dung

BỘ GIÁO DỤC ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGƠ ĐỨC QN NGHIÊN CỨU CÁC TÍNH CHẤT CỦA VẬT LIỆU SẮT ĐIỆN KHƠNG CHỨA CHÌ NỀN Bi0,5(NaK)0,5TiO3 (BNKT) PHA TẠP Li DẠNG KHỐI BNKT20 DẠNG MÀNG LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU Hà Nội – 2016 BỘ GIÁO DỤC ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGÔ ĐỨC QUÂN NGHIÊN CỨU CÁC TÍNH CHẤT CỦA VẬT LIỆU SẮT ĐIỆN KHƠNG CHỨA CHÌ NỀN Bi0,5(NaK)0,5TiO3 (BNKT) PHA TẠP Li DẠNG KHỐI BNKT20 DẠNG MÀNG Chuyên ngành: Vật liệu điện tử Mã số: 62440123 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS VŨ NGỌC HÙNG TS ĐẶNG ĐỨC DŨNG Hà Nội – 2016 I LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu riêng tơi hướng dẫn PGS TS Vũ Ngọc Hùng TS Đặng Đức Dũng Các số liệu kết luận án hoàn toàn trung thực chưa cơng bố cơng trình khoa học khác Thay mặt Tập thể hướng dẫn Tác giả PGS TS Vũ Ngọc Hùng Ngô Đức Quân II LỜI CÁM ƠN Trước hết tơi xin bày tỏ lòng kính trọng biết ơn sâu sắc đến PGS TS Vũ Ngọc Hùng TS Đặng Đức Dũng, người thầy tận tình hướng dẫn, giúp đỡ tạo điều kiện thuận lợi cho tơi q trình thực luận án Những lúc gặp khó khăn cản trở công việc sống, thầy ln bên quan tâm, động viên, khích lệ tơi kịp thời Là nhà khoa học mẫu mực, thầy truyền cảm hứng, truyền lửa cho giúp tơi vượt qua thử thách, khó khăn để học tập, để nghiên cứu khoa học vươn tới đỉnh cao trí thức Tơi xin chân thành cảm ơn Viện ITIMS, Viện Đào tạo Sau đại học Viện Vật lý kỹ thuật, trường ĐH Bách Khoa Hà Nội tạo điều kiện thời gian, vật chất tinh thần giúp tơi hồn thành luận án Tơi xin chân thành cảm ơn TS Nguyễn Đức Minh, TS Chu Mạnh Hoàng, TS Vũ Thu Hiền, ThS Phạm Ngọc Thảo anh chị bạn phòng thí nghiệm MEMS, Viện ITIMS, trường ĐH Bách Khoa Hà Nội động viên chia sẻ kinh nghiệm nghiên cứu khoa học có thảo luận đóng góp bổ ích giúp tơi hồn thiện luận án Tơi xin gửi lời cảm ơn sâu sắc tới GS Ill Won Kim GS Sunglae Cho, Khoa Vật lý, trường ĐH Ulsan, Hàn Quốc hỗ trợ kinh phí tạo điều kiện thuận lợi cho thực phép đo đạc luận án Tôi xin cảm ơn TS Dương Anh Tuấn PGS TS Aman Ullah tận tình giúp đỡ hướng dẫn sử dụng hệ đo Tôi xin gửi lời cảm ơn tới anh em, bạn bè, đồng nghiệp người thân bên, động viên khích lệ tơi thời gian qua Tôi xin cảm ơn anh chị đồng nghiệp môn Vật lý đại cương, Viện Vật lý kỹ thuật, trường ĐH Bách Khoa Hà Nội quan tâm, hỗ trợ tơi cơng việc để tơi có điều kiện hoàn thành luận án III Cuối tơi xin bày tỏ lòng biết ơn vơ hạn tới người thân u gia đình tơi Sự động viên hy sinh thầm lặng bố mẹ, vợ em tình cảm vơ giá, động lực tinh thần lớn lao khích lệ tơi vượt qua khó khăn trở ngại học tập sống để đạt kết cuối Hà Nội, ngày 12 tháng 04 năm 2016 Tác giả Ngô Đức Quân IV DANH MỤC CHỮ VIẾT TẮT CÁC KÝ HIỆU Các ký hiệu STT Ký hiệu Thuật ngữ Tiếng Anh A The area of electrodes Diện tích điện cực (m2) C The Curie constant Hằng số Curie Cg The grain capacitance Điện dung nội hạt (F) Cgb The grain capacitance Điện dung biên hạt (F) cijkl The elastic stiffness tensor Di The total surface charge Mật độ điện tích bề mặt tồn density phần (Cm-2) dijk The piezoelectric coefficient Hệ số áp điện (CN-1) EC The coercive field Trường điện kháng (V/m) Eg The band gap Độ rộng vùng cấm (eV) 10 Ɛg The grain conduction Năng lượng hoạt hóa dẫn nội activation energy hạt (eV) 11 Ɛgb The grain boundary Năng lượng hoạt hóa dẫn biên conduction activation energy hạt (eV) 12 Ei The electric field vector 13 JFN The Fowler-Nordheim Mật độ dòng xuyên ngầm current density Fowler-Nordheim (A/cm2) 14 JPF 15 JSCLC 16 JSch 17 kij The electromechanical Các thành phần hệ số liên coupling coefficient kết điện 18 kp The boundary Thuật ngữ Tiếng Việt Các thành phần ten-sơ suất Young (Nm-2) Điện trường ngồi (Vm-1) The Poole-Frenkel current Mật độ dòng Poole-Frenkel (A/cm2) density The space charge current Mật độ dòng điện tích khơng density gian (A/cm2) The Schottky current density planar Mật độ dòng Schottky (A/cm2) coupling Hệ số liên kết bề mặt V coefficient The thickness coupling Hệ số liên kết theo chiều dày 19 kt 20 M* The electric mudulus Modul điện 21 Pi The polarization Độ phân cực (C.m−2) 22 pi The pyroelectric coefficient Hệ số hỏa điện (Cm-2K-1) 23 Pr The remanent polarization Độ phân cực dư (C/m2) 24 Ps The spontaneous polarization Độ phân cực tự phát (C/m2) 25 Rg The grain resistance Điện trở nội hạt (Ω) 26 Rgb The grain resistance Điện trở biên hạt (Ω) 27 sijkl The elastic compliance 28 T 29 T0 30 TB The Burn temperature Nhiệt độ Burn (°C, K) sắt điện re-la-xo 31 TC The Curie point Điểm Curie (°C, K) 32 Td The temperature Nhiệt đảo pha (°C, K) 33 Xij The stress Ứng suất (Nm-2) 34 xij The strain Độ biến dạng (%) 35 Z' The real part of impedance Phần thực trở kháng phức 36 Z'' The imaginary of impedance Phần ảo trở kháng phức 37 Z* The complex impedance Trở kháng phức (Ω) 38 α The absorption Độ hấp thụ 39 δij The Kronecker’s symbol Ký hiệu Kronecker 40 ε* The complex constant Hằng số điện môi phức 41 ε0 The dielectric permittiverty Hằng số điện môi tuyệt đối of a vacuum (Fm-1) 42 εij The dielectric permittivity Hằng số điện môi vật liệu 43 κij The relative permittivity Hằng số điện môi tương đối coefficient boundary đàn hồi (m2N-1) Nhiệt độ (°C, K) The temperature The Các thành phần ten-sơ suất Curie–Weiss temperature depolarization dielectric dielectric Nhiệt Curie–Weiss (°C, K) VI 44 τg 45 τgb 46 χij The dielectric susceptibility 47 бg The grain conductivity 48 бgb The grain relaxation time The grain boundary relaxation time The grain Thời gian hồi phục nội hạt (s) Thời gian hồi phục biên hạt (s) Các thành phần ten-sơ độ cảm điện môi (Fm-1) Độ dẫn nội hạt (S/m) boundary conductivity Độ dẫn biên hạt (S/m) Các chữ viết tắt STT Ký hiệu Thuật ngữ Tiếng Anh Thuật ngữ Tiếng Việt AFE Antiferroelectrics Phản sắt điện AFM Atomic-Force Microscopy Kính hiển vi lực nguyên tử BFO BiFeO3 BKT Bi0,5K0,5TiO3 BNKT BNKT20 Bi0,5(Na0,80K0,20)0,5TiO3 BNKTS Bi0,5(Na,K)0,5Ti0,95Sn0,05O3 BNKTZ Bi0,5(Na,K)0,5Ti0,97Zr0,03O3 BNT Bi0,5Na0,5TiO3 10 BTO BaTiO3 11 CVD Chemical Vapor Deposition Lắng đọng pha hóa học 12 EFIS Electric-Field-Induced Strain Hệ số biến dạng gây điện trường 13 FE Ferroelectrics Sắt điện 14 FE-SEM 15 FN 16 MEMS 17 18 Bi0,5(Na,K)0,5TiO3 Field Emission Scanning Hiển vi điện tử quét phát xạ Electron Microscope trường Fowler-Nordheim Hiệu ứng Fowler-Nordheim MicroElectroMechanical Systems Hệ vi điện tử MPB Morphotropic Boundary Biên pha hình thái học PF Poole-Frenkel Phase Hiệu ứng Poole-Frenkel VII A Commercial Lead 19 PIC151 20 PIC255 21 PLD Pulsed Laser Deposition 22 PLZT (Pb,La)(Zr,Ti)O3 23 PMN Pb(Mg1/3Nb2/3)O3 24 PT 25 PZT PbZriO3 - PbTiO3 26 RQ Root Mean Roughness 27 SBT SrBi2Ta2O9 28 SCLC Space Charge Current 29 XRD X-Ray Diffraction Zirconate Titanate Ceramic Gốm PZT thương mại A Commercial Lead Gốm PZT thương mại Zirconate Titanate Ceramic Lắng đọng xung Laser PbTiO3 Square Độ nhám tồn phương trung bình Limited Dòng điện tích khơng gian Nhiễu xạ tia X VIII DANH MỤC HÌNH VẼ STT Tên hình vẽ Trang Hình 1.1 Một số kiểu cấu trúc vật liệu sắt điện: (a) Cấu trúc tinh thể pe-rov-skit ABO3 pha lập phương, (b) Cấu trúc pe-rov-skit LiNbO3 LiTaO3, (c) Cấu trúc kiểu lớp bi- 11 smut SrBi2Ta2O9 (SBT), (d) Cấu trúc kiểu đồng – vonfram (A1)2(A2)4(C)4(B1)2(B2)8O30 [25] Hình 1.2 Sự biến đổi cấu trúc BaTiO3 theo nhiệt độ [3] Hình 1.3 Sự chuyển pha từ pha lập phương thuận điện sang pha tứ giác sắt điện theo nhiệt độ vật liệu sắt điện Đường cong hệ số điện môi liệu đo gốm BaTiO3 Mũi tên hướng phân cực tự phát Ô đơn vị thể hình vng pha lập phương hình chữ nhật pha tứ giác [36] 12 13 Hình 1.4 Cấu trúc perovskite ABO3 PbTiO3 với cấu trúc lập phương pha thuận điện cấu trúc tứ giác pha sắt điện Hình 1.5 (a) Domain sắt điện 180o (b) 90o vùng vách domain chất sắt điện perovksite tứ giác Sơ đồ thay đổi độ phân cực qua vách domain 180o thể hình (a) Sự méo mạng tứ giác phóng đại hình (b) Hình 1.6 Sự hình thành vách domain sắt điện 90o 180o chất sắt điện perovskite tứ giác PbTiO3 Sự biến dạng tinh thể miền vách domain hình thành vách 90o 15 16 17 phóng đại Các ký hiệu giải thích phần Hình 1.7 Chất sắt điện đa tinh thể với định hướng ngẫu nhiên hạt trước sau phân cực hóa Một số vách domain diện vật liệu phân cực, nhiên, véc tơ phân cực toàn phần khác 19 Hình 1.8 Chu trình điện trễ (P-E) Vòng tròn với mũi tên đại diện cho trạng thái phân cực vật liệu điện 20 126 N D Quan, N V Quyet, L H Bac, D V Thiet, V N Hung, and D D Dung (2015) Structural, ferroelectric, optical properties of A-site-modified Bi0.5(Na0.78K0.22)0.5Ti0.97Zr0.03O3 lead-free piezoceramics Journal of Physics and Chemistry of Solids 77, pp 62-67 127 TÀI LIỆU THAM KHẢO Tiếng Việt: Bùi Thị Huyền (2011) Nghiên cứu tính chất sắt điện màng mỏng PZT dị lớp Luận văn thạc sỹ khoa học, Hà Nội Nguyễn Văn Đăng (2012) Chế tạo nghiên cứu tính chất perovskite ABO3 (BaTi1-xFexO3 BaTi1-x MnxO3) Luận án tiến sỹ, Hà Nội Thân Trọng Huy (2014) Nghiên cứu chế tạo tính chất gốm áp điện [(1x)Pb(Zr,Ti)O3 + xPb(Mn1/3Nb2/3)O3], x = ÷ 12%mol (PZT-PMnN) pha tạp La Luận án Tiến sỹ, Hà Nội Thân T H., Chương T V., Hồng L V and Luận N Đ T (2009) Chế tạo tính chất sắt điện, áp điện gốm PZT-PMnN Kỷ yếu hội nghị Vậtchất rắn khoa học vật liệu toàn quốc lần thứ (SPMS-2009), tr 389-393 Thân T H., Luận N Đ T., Chương T V and Hồng L V (2012) Nghiên cứu biên pha hình thái hệ gốm áp điện PZT – PMnSbN Tạp chí Khoa học Cơng nghệ 50 (4), tr 535-543 Tiếng Anh: 10 11 12 13 Aksel E., Forrester J S., Jones J L., Thomas P A., Page K and Suchomel M R (2011) Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3 Applied Physics Letters 98(15), p 152901 Arlt G (1990) Twinning in ferroelectric and ferroelastic ceramics: stress relief J.Mater.Sci 25(6), pp 2655-2666 Arlta G and Neumanna H (1988) Internal bias in ferroelectric ceramics: Origin and time dependence Ferroelectrics 87, p 109 Badapanda T., Rout S K., Cavalcante L S., Sczancoski J C., Panigrahi S., Longo E and Li M S (2009) Optical and dielectric relaxor behaviour of Ba(Zr0.25Ti0.75)O3 ceramic explained by means of distorted clusters Journal of Physics D: Applied Physics 42(17), p 175414 Baettig P S., Schelle C F., LeSar R., Waghmare U V and Spaldin a N A (2005) Theoretical prediction of new high-performance, lead-free piezoelectrics Chem Mater 17, p 1376 Bellaiche L and Vanderbilt D (1999) Intrinsic Piezoelectric Response in Perovskite Alloys: PMN-PT versus PZT Physical Review Letters 83(7), pp 13471350 Bichurin M., Petrov V., Zakharov A., Kovalenko D., Yang S C., Maurya D., Bedekar V and Priya S (2011) Magnetoelectric Interactions in Lead-Based and Lead-Free Composites Materials 4(12), pp 651-702 Binh D N., Jang H D., Hong I., Han H S., Le D T., Tai W P and Lee J S (2012) Low temperature sintering of lead-free Bi0.5(Na0.82K0.18)0.5TiO3 piezoelectric ceramics by co-doping with CuO and Nb2O5 Ceramics International 38, pp S359S362 128 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Binh D N., Lee H.-B., Le D T., Jeong S.-K., Kim I.-W., Tai W.-P and Lee J.-S (2011) Electric field-induced strain of lead-free Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 ceramics modified with LiTaO3 Current Applied Physics 11(3), pp S134-S137 Binh D N., Lee H.-B., Yoon C.-H., Kang J.-K., Lee J.-S and Kim I.-W (2011) Effect of Ta-Substitution on the Ferroelectric and Piezoelectric Properties of Bi0.5(Na0.82K0.18)0.5TiO3 Ceramics Transactions on Electrical and Electronic Materials 12(2), pp 64-67 Bonora P L., Deflorian F and Fedrizzi L (1996) Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion Electrochim Acta 41, p 1073 Buhrer C F (1962) Some properties of bismuth perovskites J Chem Phys 36, pp 798-803 Burfoot J C and Taylor G W (1979 ), Polar Dielectrics and Their Applications, Macmillan, London Cao W and Cross L E (1993) Theoretical Model for the Morphotropic Phase Boundary in Lead Zirconate-Lead Titanate Solid Solution Phys Rev B 47, p 4285 Caspari M E and Merz W J (1950) The Electromechanical Behavior of BaTiO3 Single-Domain Crystals Physical Review 80(6), pp 1082-1089 Cox D E., Noheda B., Shirane G., Uesu Y., Fujishiro K and Yamada Y (2001) Universal phase diagram for high-piezoelectric perovskite systems Applied Physics Letters 79(3), p 400 Cross L E (1987) Relaxor Ferroelectrics Ferroelectrics 76(1), pp 241 - 267 Cross L E (1993), Ferroelectric Ceramics Tayloring Properties for Specific Applications, Ferroelectric Ceramics, Birkhauser Verlag, Basel Cross L E (1993 ), Ferroelectric ceramics: tailoring properties for specific applications, Birkhauser Verlag Basel, Monte Verità Cross L E (2004), Materials Science:Lead-Free at Last, Vol 432, Nature, London Chen P.-Y., Chou C.-C., Tseng T.-Y and Chen H (2010) Correlation of Microstructures and Conductivities of Ferroelectric Ceramics Using Complex Impedance Spectroscopy Japanese Journal of Applied Physics 49(6), p 061505 Chen P.-Y., Chou C.-C., Tseng T.-Y and Chen H (2010) Second Phase and Defect Formation in Bi0.5Na0.5-xKxTiO3 Ceramics Japanese Journal of Applied Physics 49(6), p 061506 Chen X., Liao Y and Wang H (2010) Phase structure and electric properties of Bi0.5(Na0.825K0.175)0.5TiO3 ceramics prepared by a sol-gel method Journal of Alloys and Compounds 493(1-2), pp 368–371 Chen Y Q., Zheng X J and Li W (2010) Size effect of mechanical behavior for lead-free (Na0.82K0.18)0.5Bi0.5TiO3 nanofibers by nanoindentation Materials Science and Engineering A 527, pp 5462–5466 Chen Z.-H., Ding J.-N., Mei L., Yuan N.-Y and Zhang W.-W (2011) Piezoelectric and Dielectric Properties of Dy2O3-Doped Bi0.5 (Na0.82K0.18)0.5TiO3 Lead-Free Ceramics Ferroelectrics 425(1), pp 63-71 Chentir M.-T., Bouyssou E., Ventura L and Anceau C (2009) Leakage current evolution versus dielectric thickness in lead zirconate titanate thin film capacitors Journal of Applied Physics 105(6), p 061605 D.Y.Wang, Lin D M., S.Wong K., Kwok K W., J.Y.Dai and Chan H L W (2008) Piezoresponse and ferroelectric properties of lead-free 129 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 [Bi0.5(Na0.7K0.2Li0.1)0.5]TiO3 thin films by pulsed laser deposition Applied Physics Letters 92(22), p 222909 Dai X., DiGiovanni A and Viehland D (1993) Dielectric properties of tetragonal lanthanum modified lead zirconate titanate ceramics Journal of Applied Physics 74(5), pp 3399-3405 Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics Rep Prog Phys 61 pp 1267–1324 Devonshire A F (1949) XCVI Theory of barium titanate The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40(309), pp 10401063 Devonshire A F (1951) CIX Theory of barium titanate—Part II The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42(333), pp 1065-1079 DiDomenico M., Wemple S H., Porto S P S and Bauman R P (1968) Raman Spectrum of Single-Domain BaTiO3 Physical Review 174(2), pp 522-530 Dinh T H., Lee H.-Y., Yoon C.-H., Malik R A., Kong Y.-M., Lee J.-S and Tran V D N (2013) Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics Journal of the Korean Physical Society 62(7), pp 1004-1008 Dittmer R., Jo W., Daniels J., Schaab S., Rödel J and Johnson D W (2011) Relaxor Characteristics of Morphotropic Phase Boundary (Bi1/2Na1/2)TiO3(Bi1/2K1/2)TiO3 Modified with Bi(Zn1/2Ti1/2)O3 Journal of the American Ceramic Society 94(12), pp 4283-4290 Dobal P S., Dixit A., Katiyar R S., Yu Z., Guo R and Bhalla A S (2001) MicroRaman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system Journal of Applied Physics 89(12), p 8085 Eitel R E., Clive A R., Thomas R S., Paul W R., Wes H and Seung-Eek P (2001) New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O –PbTiO Ceramics Japanese Journal of Applied Physics 40(10R), p 5999 Elkechai O., Manier M and Mercurio J P (1996) Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT-KBT) system: A structural and electrical study physica status solidi (a) 157(2), pp 499-506 Fan G., Lu W., Wang X and Liang F (2007) Morphotropic phase boundary and piezoelectric properties of (Bi1∕2Na1∕2)TiO3–(Bi1∕2K1∕2)TiO3–KNbO3 lead-free piezoelectric ceramics Applied Physics Letters 91(20), p 202908 Fousek J and Janovec V (1969) The Orientation of Domain Walls in Twinned Ferroelectric Crystals Journal of Applied Physics 40(1), pp 135-142 Fridkin B M (1980), Ferroelectric Semiconductors, Consultants Bureau, New York Fu P., Xu Z., Chu R., Li W., Wang W and Liu Y (2012) Gd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics Materials & Design 35, pp 276-280 Fu P., Xu Z., Chu R., Li W., Xie Q and Zang G (2011) Effects of Eu2O3 on the structure and electrical properties of 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics Current Applied Physics 11(3), pp 822-826 Fu P., Xu Z., Chu R., Wu X., Li W and Zhang H (2012) Structure and electrical properties of the Ho2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics Journal of Materials Science: Materials in Electronics 23(12), pp 2167-2172 130 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Fu P., Xu Z., Zhang H., Chu R., Li W and Zhao M (2012) Structure and electrical properties of Er2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics Materials & Design 40, pp 373-377 Fujita K and Ishibashi Y (1997) Phase-diagrams in successive phase-transition in ferroelectrics with perovskite-type structure - case of the first-order transitions from the cubic phase Jpn J Appl Phys 36, pp 5214-5218 Gerhardt R (1994) Impedance and dielectric spectroscopy revisited: Distinguishing localized relaxation from long-range conductivity Journal of Physics and Chemistry of Solids 55(12), pp 1491–1506 Goldschmidt V M (1927) Krystallbau und chemische Zusammensetzung Ber Dtsch Chem Ges 60(5), pp 1263–1268 Grinberg I., Suchomel M R., Davies P K and Rappe A M (2005) Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bibased perovskite solid solutions from crystal chemical data and first-principles calculations Journal of Applied Physics 98(9), p 094111 Guo R., Cross L E., Park S E., Noheda B., Cox D E and Shirane G (2000) Origin of the High Piezoelectric Response in PbZr1-xTixO3 Physical Review Letters 84(23), pp 5423-5426 Gibbs G V., Hill F C., Boisen M B and Downs R T (1998) Power law relationships between bond length, bond strength and electron density distributions Phys Chem Minerals 25, p 585±590 Haertling G H (1999) Ferroelectric Ceramics: History and Technology J Am Ceram Soc 82(4), p 797 Han H.-S., Ahn C.-W., Kim I W., Hussain A and Lee J.-S (2012) Destabilization of ferroelectric order in bismuth perovskite ceramics by A-site vacancies Materials Letters 70, pp 98-100 Han H.-S., Do N.-B., Pham K.-N., Jang H.-D., Tran V D N., Tai W.-P and Lee J.S (2011) Sintering Behaviour and Piezoelectric Properties of CuO-Added LeadFree Bi(Na,K)TiO3 Ceramics Ferroelectrics 421(1), pp 88-91 Haun M J., Furman E., Jang S J and Cross L E (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology Ferroelectrics 99(1), pp 13-25 Haun M J., Furman E., Jang S J., McKinstry H A and Cross L E (1987) Thermodynamic theory of PbTiO3 Journal of Applied Physics 62 (8), pp 33313338 Haun M J., Zhuang Z Q., Furman E., Jang S J and Cross L E (1989) Electrostrictive Properties of the lead Zirconate Titanate Solid-Solution System J Am Ceram Soc 72, p 1140 Hiruma Y., Yoshii K., Nagata H and Takenaka T (2008) Phase transition temperature and electrical properties of (Bi1∕2Na1∕2)TiO3–(Bi1∕2A1∕2)TiO3 (A=Li and K) lead-free ferroelectric ceramics J Appl Phys 103, pp 084-121 Hong I K., Han H S., Yoon C H., Ji H N., Tai W P and Lee J S (2012) Strain enhancement in lead-free Bi0.5(Na0.78K0.22)0.5TiO3 ceramics by CaZrO3 substitution Journal of Intelligent Material Systems and Structures 24(11), pp 1343-1349 Hou Y.-D., Chang L.-M., Zhu M.-K., Song X.-M and Yan H (2007) Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the lowtemperature sintered 0.5PZN–0.5PZT systems Journal of Applied Physics 102(8), p 084507 Hu H., Zhu M., Hou Y and Yan H (2009) Dielectric, piezoelectric, and ferroelectric properties of MnCO3-added 74(Bi1/2Na1/2) TiO3-20.8(Bi1/2K1/2)TiO3- 131 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 5.2BaTiO3 lead-free piezoelectric ceramics IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 56(5), pp 897-905 Hussain A., Ahn C W., Lee J S., Ullah A and Kim I W (2010) Large electricfield-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics Sensors and Actuators A: Physical 158(1), pp 84-89 Hussain A., Ahn C W., Ullah A., Lee J S and Kim I W (2010) Effects of Hafnium Substitution on Dielectric and Electromechanical Properties of Lead-free Bi 0.5 (Na 0.78 K 0.22 ) 0.5 (Ti 1- x Hf x )O Ceramics Japanese Journal of Applied Physics 49(4R), p 041504 Hussain A., Ahn C W., Ullah A., Lee J S and Kim I W (2012) Dielectric, ferroelectric and field-induced strain behavior of K0.5Na0.5NbO3-modified Bi0.5(Na0.78K0.22)0.5TiO3 lead-free ceramics Ceramics International 38(5), pp 4143-4149 Iaffe B., Roth R S and Marzullo S (1955) Properties of Piezoelectric Ceramics in the Solid-Solution Series Lead Titanate-Lead Zirconate-Lead Oxide: Tin Oxide and Lead Titanate-Lead Hafnate Journal of Research of the National Bureau of Standards 55(5) Ishibashi Y (1996 ), Polarization reversal in ferroelectrics Ferroelectric Thin Films: Synthesis and Basic Properties, Gordon and Breach, Amsterdam Ishibashi Y and Takagi Y (1971) Note on Ferroelectric Domain Switching J Phys Soc Jpn 31, pp 506-510 Isikawa Y., Akiyama Y and Hayashi T (2009) Piezoelectric and Dielectric Properties of (Bi,Na,K,Ag)TiO3–BaTiO3 Lead-Free Piezoelectric Ceramics Japanese Journal of Applied Physics 48(9), p 09KD03 Iwata M and Ishibashi Y (1999) Theory of Morphotropic Phase Boundary in Solid Solution Systems of Perovskite-Type Oxide Ferroelectrics: p-e Hysteresis Loop Jpn J Appl Phys Vol 38, pp 5670–5673 Izumi M., Yamamoto K., Suzuki M., Noguchi Y and Miyayama M (2008) Large electric-field-induced strain in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 solid solution single crystals Applied Physics Letters 93(24), p 242903 Jaffe B., Cook W R and Jaffe H (1971), Piezoelectric Ceramics, Academic Press, New York Jan J C., Tsai H M., Pao C W., Chiou J W., Asokan K., Kumar K P K., Pong W F., Tang Y H., Tsai M H., Kuo S Y and Hsieh W F (2005) Direct experimental evidence of hybridization of Pb states with O 2p states in ferroelectric perovskite oxides Applied Physics Letters 87(1), p 012103 Jiang X P., Li L Z., Zeng M and Chan H L W (2006) Dielectric properties of Mn-doped (Na0.8K0.2)0.5Bi0.5TiO3 ceramics Materials Letters 60(15), pp 17861790 Jo W., Dittmer R., Acosta M., Zang J., Groh C., Sapper E., Wang K and Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective Journal of Electroceramics 29(1), pp 71-93 Jo W., Granzow T., Aulbach E., Rödel J r and Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 leadfree piezoceramics Journal of Applied Physics 105(9), p 094102 Jo W., Schaab S., Sapper E., Schmitt L A., Kleebe H.-J., Bell A J and Rödel J r (2011) On the phase identity and its thermal evolution of lead free (Bi0.5Na0.5)TiO36 mol% BaTiO3 Journal of Applied Physics 110(7), p 074106 Joan F and Shirane G (1962), Ferroelectric Crystals, Pergamon Press, New York 132 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 Kang J.-K., Heo D.-J., Nguyen V Q., Han H.-S., Lee J.-S and Ahn K.-K (2012) Low-temperature sintering of lead-free Bi0.5(Na,K)0.5TiO3-based electrostrictive ceramics with CuO addition Journal of the Korean Physical Society 61(6), pp 899-902 Kao K C (2004), Dielectric Phenomena in Solids: with Emphasis on Physical Concepts of Electronic Processes, Elsevier Academic Press, Amsterdam Kim T.-Y and Jang H M (2000) B-site vacancy as the origin of spontaneous normal-to-relaxor ferroelectric transitions in La-modified PbTiO3 Applied Physics Letters 77(23), p 3824 Kreisel J., Glazer A M., Jones G., Thomas P A., Abello L and Lucazeau G (2000) An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na 1- x K x ) 0.5 Bi 0.5 TiO (0 < x < 1) solid solution Journal of Physics: Condensed Matter 12(14), p 3267 Kumar M M and Ye Z.-G (2001) Dielectric and electric properties of the donorand acceptor- doped ferroelectric SrBi2Ta2O9 J Appl Phys 90, pp 934 – 941 Kwon S., Sabolsky E M., Messing G L and Trolier-McKinstry S (2005) High Strain, Textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 Ceramics: Templated Grain Growth and Piezoelectric Properties Journal of the American Ceramic Society 88(2), pp 312-317 Lee D S., Lim D H., Kim M S., Kim K H and Jeong S J (2011) Electric fieldinduced deformation behavior in mixed Bi0.5Na0.5TiO3 and Bi0.5(Na0.75K0.25)0.5TiO3BiAlO3 Applied Physics Letters 99(6), p 062906 Lee J.-S., Binh D N., Hussain A., Lee H D., Kim I W., Kim I W and Tai W P (2010) Enhanced Electric-Field-Induced Strain at the Ferroelectric-Electrostrcitive Phase Boundary of Yttrium-Doped Bi0.5(Na0.82K0.18)0.5TiO3 Lead-Free Piezoelectric Ceramics Journal of the Korean Physical Society 57(41), p 892 Lee J.-S., Pham K.-N., Han H.-S., Lee H.-B and Tran V D N (2012) Strain enhancement of lead-free Bi1/2(Na0.82K0.18)1/2TiO3 ceramics by Sn doping Journal of the Korean Physical Society 60(2), pp 212-215 Lee S., Levi R D., Qu W., Lee S C and Randall C A (2010) Band-gap nonlinearity in perovskite structured solid solutions Journal of Applied Physics 107(2), p 023523 Lee S., Woodford W H and Randall C A (2008) Crystal and defect chemistry influences on band gap trends in alkaline earth perovskites Applied Physics Letters 92(20), p 201909 Lei N., Zhu M., Yang P., Wang L., Wang L., Hou Y and Yan H (2011) Effect of lattice occupation behavior of Li+ cations on microstructure and electrical properties of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics Journal of Applied Physics 109(5), p 054102 Levin I., Cockayne E., Krayzman V., Woicik J C., Lee S and Randall C A (2011) Local structure of Ba(Ti,Zr)O3 perovskite-like solid solutions and its relation to the band-gap behavior Physical Review B 83(9) Li W., Xu Z., Chu R., Fu P and Zang G (2012) Enhanced ferroelectric properties in (Ba1−xCax)(Ti0.94Sn0.06)O3 lead-free ceramics Journal of the European Ceramic Society 32(3), pp 517-520 Li Y., Chen W., Xu Q., Zhou J., Gu X and Fang S (2005) Electromechanical and dielectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 lead-free ceramics Materials Chemistry and Physics 94(2-3), pp 328-332 133 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 Li Y., Chen W., Xu Q., Zhou J., Wang Y and Sun H (2007) Piezoelectric and dielectric properties of CeO2-doped Bi0.5Na0.44K0.06TiO3 lead-free ceramics Ceramics International 33(1), pp 95-99 Liao Y., Xiao D and Lin D (2007) Piezoelectric and ferroelectric properties of Bi0.5(Na1-x-yKxAgy)0.5TiO3 lead-free piezoelectric ceramics Applied Physics A 90(1), pp 165-169 Liao Y., Xiao D., Lin D., Zhu J., Yu P., Wu L and Wang X (2006) The effects of CeO2-doping on piezoelectric and dielectric properties of Bi0.5(Na1−x−yKxLiy)0.5TiO3 piezoelectric ceramics Materials Science and Engineering: B 133(1-3), pp 172176 Lin D., Xiao D., Zhu J and Yu P (2006) Piezoelectric and ferroelectric properties of Bi0.5(Na1−x−yKxLiy)0.5TiO3 lead-free piezoelectric ceramics Applied Physics Letters 88(6), p 062901 Lines M E and Glass A M (1979), Principles and applications of ferroelectrics and related materials, Clarendon Press, Oxford Lisa and Klein C (1988), Sol- gel technology for thin films, fibers, preforms, electronics, and specialty shapes, Noyes-Publications, Park Ridge New Jersey USA Masahiro N., Yuji H., Hajime N and Tadashi T (2008) Fabrication and Piezoelectric Properties of Grain-Oriented (Bi 1/2 K 1/2 )TiO –BaTiO Ceramics Japanese Journal of Applied Physics 47(5S), p 3829 Mihara T and Watanabe H (1995) Electronic Conduction Characteristics of SolGel Ferroelectric P b ( Z r 0.4 T i 0.6 ) O Thin-Film Capacitors: Part I Japanese Journal of Applied Physics 34(10R), p 5664 Mihara T., Yoshimori H., Watanabe H and Araujo C A P d (1995) Characteristics of Bismuth Layered S r B i T a O Thin-Film Capacitors and Comparison with P b ( Z r , T i ) O Japanese Journal of Applied Physics 34(9S), p 5233 Miller S L., Nasby R D., Schwank J R., Rodgers M S and Dressendorfer P V (1990) Device modeling of ferroelectric capacitors Journal of Applied Physics 68(12), pp 6463-6471 Mishra S K., Pandey D and Singh A P (1996) Effect of phase coexistence at morphotropic phase boundary on the properties of Pb(ZrxTi1−x)O3 ceramics Applied Physics Letters 69(12), pp 1707-1709 Moosavi A., Bahrevar M A., Aghaei A R., Ramos P., Algueró M and Amorín H (2014) High-field electromechanical response of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 across its morphotropic phase boundary J Phys D: Appl Phys 47, p 055304 Moosavi A., Bahrevar M A., Aghaei A R., Ramos P., Algueró M and Amorín H (2014) High-field electromechanical response of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 across its morphotropic phase boundary Journal of Physics D: Applied Physics 47(5), p 055304 Nagata H., Itagaki M and Takenaka T (2003) Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric SrBi Ta O -Bi TiTaO Ceramics Ferroelectrics 286(1), pp 85-92 Nagata H., Yoshida M., Makiuchi Y and Takenaka T (2003) Large Piezoelectric Constant and High Curie Temperature of Lead-Free Piezoelectric Ceramic Ternary System Based on Bismuth Sodium Titanate-Bismuth Potassium TitanateBarium Titanate near the Morphotropic Phase Boundary Japanese Journal of Applied Physics 42(Part 1, No 12), pp 7401-7403 134 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 Nam P K., Hussain A., Ahn C W., Kim W., Jeong S J and Lee J.-S (2010) Giant strain in Nb-doped Bi 0.5 (Na 0.82 K 0.18) 0.5 TiO lead-free electromechanical ceramics Materials Letters 64(20), pp 2219-2222 Nelmes R J and Kuhs W F (1985) The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K Solid State Communications 54(8), pp 721–723 Newnham R E (1975 ), Structure–Property Relations, Springer-Verlag, Berlin Nobre M A L and Lanfredi S (2003) Dielectric spectroscopy on Bi3Zn2Sb3O14 ceramic: an approach based on the complex impedance Journal of Physics and Chemistry of Solids 64(12), pp 2457-2464 Noheda B., Cox D E., Shirane G., Gonzalo J A., Cross L E and Park S.-E (1999) A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution Appl Phys Lett 74, p 2059 Noheda B., Gonzalo J A., Cross L E., Guo R., Park S E., Cox D E and Shirane G (2000) Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3 Phys Rev B 61(8687) Nye J F (1985), Physical Properties of Crystals, Oxford University Press, Oxford Ngoc T V D., Ali H., Hyoung-Su H., Thi Hinh D., Jae-Shin L., Chang-Won A and Ill-Won K (2012) Comparison of Ferroelectric and Strain Properties between BaTiO - and BaZrO -Modified Bi 1/2 (Na 0.82 K 0.18 ) 1/2 TiO Ceramics Japanese Journal of Applied Physics 51(9S2), p 09MD02 Ngoc T V D., Han H.-S., Kim K.-J., Malik R A., Hussain A and Lee J.-S Relaxor and fieldinduced strain behavior in lead-free Bi0 (Na0 82K0 18) 0.5TiO3 ceramics modified with BaZrO3 Journal of Ceramic Processing Research 13(supplement 2), pp s177-s180 Ngoc T V D., Han H.-S., Yoon C.-H., Lee J.-S., Jo W and Rödel J (2011) Leadfree electrostrictive bismuth perovskite ceramics with thermally stable fieldinduced strains Materials Letters 65(17-18), pp 2607-2609 Nguyen C T Q., Nguyen M D., Dekkers M., Houwman E., Vu H N and Rijnders G (2014) Process dependence of the piezoelectric response of membrane actuators based on Pb(Zr0.45Ti0.55)O3 thin films Thin Solid Films 556, pp 509-514 Nguyen M D., Dekkers M., Vu H N and Rijnders G (2013) Film-thickness and composition dependence of epitaxial thin-film PZT-based mass-sensors Sensors and Actuators A: Physical 199, pp 98-105 Nguyen M D., Nguyen C T Q., Trinh T Q., Nguyen T., Pham T N., Rijnders G and Vu H N (2013) Enhancement of ferroelectric and piezoelectric properties in PZT thin films with heterolayered structure Materials Chemistry and Physics 138(2-3), pp 862-869 Nguyen M D., Trinh T Q., Dekkers M., Houwman E P., Vu H N and Rijnders G (2014) Effect of dopants on ferroelectric and piezoelectric properties of lead zirconate titanate thin films on Si substrates Ceramics International 40(1), pp 1013-1018 Ohno T., Mori T., Suzuki H., Fu D., Wunderlich W., Takahashi M and Ishikawa K (2002) Size Effect for Lead Zirconate Titanate Nanopowder with Pb(Zr0.3Ti0.7)O3 Composition Jpn J Appl Phys 41, p 6985 Otoničar M., Škapin S D., Spreitzer M and Suvorov D (2010) Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 system Journal of the European Ceramic Society 30(4), pp 971-979 Panda P K (2009) Review: environmental friendly lead-free piezoelectric materials Journal of Materials Science 44(19), pp 5049–5062 135 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 Parija B., Badapanda T., Panigrahi S and Sinha T P (2012) Ferroelectric and piezoelectric properties of (1 − x) (Bi0.5Na0.5)TiO3–xBaTiO3 ceramics Journal of Materials Science: Materials in Electronics 24(1), pp 402-410 Parija B., Badapanda T., Senthil V., Rout S K and Panigrahi S Diffuse phase transition, piezoelectric and optical study of Bi0·5Na0·5TiO3 ceramic Bull Mater Sci 35(2), pp 197–202 Parija B., Rout S K., Cavalcante L S., Simões A Z., Panigrahi S., Longo E and Batista N C (2012) Structure, microstructure and dielectric properties of 100−x(Bi0.5Na0.5)TiO3−x[SrTiO3] composites ceramics Applied Physics A 109(3), pp 715-723 Park S.-E and Shrout T R (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals Journal of Applied Physics 82(4), pp 1804-1811 Patterson E A and Cann D P (2012) Bipolar piezoelectric fatigue of Bi(Zn0.5Ti0.5)O3-(Bi0.5K0.5)TiO3-(Bi0.5Na0.5)TiO3 Pb-free ceramics Applied Physics Letters 101(4), p 042905 Patterson E A., Cann D P., Pokorny J and Reaney I M (2012) Electromechanical strain in Bi(Zn1/2Ti1/2)O3–(Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 solid solutions Journal of Applied Physics 111(9), p 094105 Płcharski J and Weiczorek W (1988 ) PEO based composite solid electrolyte containing nasicon Solid State Ions 28(2), pp 979-982 Pronin I P., Syrnikov P P., Isupov V A., Egorov V M and Zaitseva N V (1980) Peculiarities of phase transitions in sodium-bismuth titanate Ferroelectrics 25(1), pp 395-397 Qiao S., Wu J., Wu B., Zhang B., Xiao D and Zhu J (2012) Effect of Ba0.85Ca0.15Ti0.90Zr0.10O3 content on the microstructure and electrical properties of Bi0.51(Na0.82K0.18) 0.50TiO3 ceramics Ceramics International 38(6), pp 4845-4851 Quan N D., Huu Bac L., Thiet D V., Hung V N and Dung D D (2014) Current Development in Lead-Free Bi0.5(Na,K)0.5TiO3-Based Piezoelectric Materials Advances in Materials Science and Engineering 2014, pp 1-13 Quyet N V., Chang-Hyo H., Hyun-Young L., Kong Y M., Lee J.-S and Ahn K.K (2012) Enhancement in the microstructure and the strain properties of Bi1/2(Na,K)1/2TiO3-based lead-free ceramics by Li substitution Journal of the Korean Physical Society 61(6), pp 895-898 Quyet N V., Han H.-S., Kim K.-J., Dang D.-D., Ahn K.-K and Lee J.-S (2012) Strain enhancement in Bi1/2(Na0.82K0.18)1/2TiO3 lead-free electromechanical ceramics by co-doping with Li and Ta Journal of Alloys and Compounds 511(1), pp 237-241 Randall C A., Newnham R E and Cross L E (2004), History of the First Ferroelectric Oxide, BaTiO3, Materials Research Institute, The Pennsylvania State University, University Park, USA Ranjan R and Dviwedi A (2005) Structure and dielectric properties of (Na0.50Bi0.50)1−xBaxTiO3: 0≤x≤0.10 Solid State Communications 135(6), pp 394399 Ringgaard E and Wurlitzer T (2005) Lead-free piezoceramics based on alkali niobates J Eur Ceram Soc 25, pp 2701–2706 Robels U., Calderwood J H and Arlt G (1995) Shift and deformation of the hysteresis curve of ferroelectrics by defects: An electrostatic model Journal of Applied Physics 77(8), pp 4002-4008 136 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 Saghi-Szabo G., Cohen R E and Krakauer H (1999) First-principles study of piezoelectricity in tetragonal PbTiO3 and PbZr1/2Ti1/2O3 Phys Rev B 59, pp 12771-12776 Sakaki C., Newalkar B., Komarneni S and Uchino K (2001) Grain Size Dependence of High Power Piezoelectric Characteristics in Nb Doped Lead Zirconate Titanate Oxyde Ceramics Jpn J Appl Phys 40, p 6907 Sasaki A., Chiba T., Mamiya Y and Otsuki E (1999) Dielectric and Piezoelectric Properties of (Bi 0.5 Na 0.5 )TiO –(Bi 0.5 K 0.5 )TiO Systems Japanese Journal of Applied Physics 38(9S), p 5564 Sawaguchi E (1953) Ferroelectricity versus Antiferroelectricity in the Solid Solutions of PbZrO3 and PbTiO3 Journal of the Physical Society of Japan 8(5), pp 615-629 Sawyer C B and Tower C H (1930) Rochelle Salt as a Dielectric Physical Review 35(3), pp 269-273 Scott J F (2000), Ferroelectric memories, Springer, Berlin Scott J F., Kammerdiner L., Parris M., Traynor S., Ottenbacher V., Shawabkeh A and Oliver W F (1988) Switching Kinetics Of Lead Zirconate Titanate Submicron Thin-Film Memories Journal Of Applied Physics 64, p 787 Sen S., Pramanik P and Choudhary R N P (2005) Impedance spectroscopy study of the nanocrystalline ferroelectric (PbMg)(ZrTi)O3 system Applied Physics A 82(3), pp 549-557 Shannon R D (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides Acta Crystallogr A 32, pp 751–767 Shen Zhang, Xianlin Dong and Seiji Kojima (1997) Temperature Dependence of Dielectric, Elastic and Piezoelectric Properties of Pb(Zr x Ti 1- x )O Ceramics Near the Morphotropic Phase Boundary Japanese Journal of Applied Physics 36(5S), p 2994 Shieh J., Lin Y C and Chen C S (2010) Influence of phase composition on electrostrains of doped (Bi 0.5 Na 0.5 )TiO –BaTiO –(Bi 0.5 K 0.5 )TiO lead-free ferroelectric ceramics Smart Materials and Structures 19(9), p 094007 Shieh J., Lin Y C and Chen C S (2010) Intricate straining of manganese-doped (Bi 0.5 Na 0.5 )TiO - BaTiO - (Bi 0.5 K 0.5 )TiO lead-free ferroelectric ceramics Journal of Physics D: Applied Physics 43(2), p 025404 Shirane G and Suzuki K (1952) Crystal structure of Pb(Zr-Ti)O3 J Phys Soc Jpn 7(333) Shrout T R and Zhang S J (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19, pp 113–126 Shur M (1990), Physics of Semiconductor Devices, Englewood Cliffs, NJ: Prentice-Hall Shur V and Rumyantsev E (1998) Arising and Evolution of the Domain Structure in Ferroics Journal of the Korean Physical Society 32, pp S727-S732 Shur V Y (1996 ), Fast polarization reversal process: evolution of ferroelectric domain structure in thin films Ferroelectric Thin Films: Synthesis and Basic Properties, Gordon and Breach, Amsterdam Shuvaeva V A., Zekria D., Glazer A M., Jiang Q., Weber S M., Bhattacharya P and Thomas P A (2005) Local structure of the lead-free relaxor ferroelectric(KxNa1−x)0.5Bi0.5TiO3 Physical Review B 71(17) 137 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 Singh A and Chatterjee R (2011) Structural, electrical, and strain properties of stoichiometric 1−x−y(Bi0.5Na0.5)TiO3−x(Bi0.5K0.5TiO3)−y(Na0.5K0.5)NbO3 solid solutions Journal of Applied Physics 109(2), p 024105 Sirotin Y I and Shaskolskaya M P (1982), Fundamentals of Crystal Physics, Mir Publishers, Moscow Smolenski G A., Isupov V A., Agranovskaya A I and Krainik N N (1961) New ferroelectrics of complex composition Sov Phys Solid State 2, p 2651 Stemmer S., Streiffer S K., Ernst F and Rüuhle M (1995) Atomistic structure of 90° domain walls in ferroelectric PbTiO3 thin films Philosophical Magazine A 71(3), pp 713-724 Stolichnov I., Tagantsev A., Setter N., Cross J S and Tsukada M (1999) Control of leakage conduction of high-fatigue-endurance (Pb, La)(Zr, Ti)O3 film ferroelectric capacitors with Pt/SrRuO3 electrodes Applied Physics Letters 75(12), pp 1790-1792 Suchomel M R., Fogg A M., Allix M., Niu H J., Claridge J B and Rosseinsky M J (2006) Bi2ZnTiO6:  A Lead-Free Closed-Shell Polar Perovskite with a Calculated Ionic Polarization of 150 μC cm-2 Chem Mater 18, p 4987 Sze S M (1981), Physics of semiconductor devices, John Wiley and Sons, New York T Mitsui, I Tatsuzaki and Nakamura E (1976), An Introduction to the Physics of Ferroelectrics, Gordon and Breach, London Tadashi T and Masatoshi Y (1993) Solid-Solution (Bi 1- x Pb x )(Ni (1- x )/2 Ti (1+ x )/2 )O for New Piezoelectric Ceramics Japanese Journal of Applied Physics 32(9S), p 4218 Tagantsev A K., Landivar M., Colla E., Brooks K G and Setter N (1995), Depletion, depolarizing effects and switching in ferroelectric thin films Science and Technology of Electroceramic Thin Films, MA: Kluwer, Boston Tagantsev A K., Landivar M., Colla E and Setter N (1995) Identification of passive layer in ferroelectric thin films from their switching parameters Journal of Applied Physics 78(4), pp 2623-2630 Takaaki T., Yutaka K., Naoki O., Tadashi T and Osamu F (1997) 90° Domain Reorientation and Electric-Field-Induced Strain of Tetragonal Lead Zirconate Titanate Ceramics Japanese Journal of Applied Physics 36(9S), p 5970 Takenaka T and Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics J Eur Ceram Soc 25, pp 2693–2700 Takenaka T., Nagata H and Hiruma Y (2008) Current Developments and Prospective of Lead-Free Piezoelectric Ceramics Jpn J Appl Phys 47(5), pp 3787–3801 Takenaka T., Nagata H and Hiruma Y (2009) Phase Transition Temperatures and Piezoelectric Properties of (Bi1/2Na1/2)TiO3 and (Bi1/2K1/2)TiO3 -Based Bismuth Perovskite Lead-Free Ferroelectric Ceramics Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions 56(8), pp 1595-1612 Tani T (1998) Crystalline-oriented Piezoelectric Bulk Ceramics with a Perovskitetype Structure Journal of the Korean Physical Society 32(3), pp S1217–S1220 Tian C and Chan S W (2000) Ionic Conductivities, Sintering Temperatures and Microstructures of Bulk Ceramic CeO2 Doped With Y2O3 Solid State Ionics 134, pp 89–102 Tu C S., Siny I G and Schmidt V H (1994) Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2Bi1/2TiO3 Physical Review B 49(17), pp 11550-11559 138 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 Thao P N (2013) Optimization of fabrication parameters of Ba-doped Pb(Zr0.52Ti0.48)O3 thin films on TiN/Si substrates using Pulsed Laser Deposition Master Thesis of Science, Ha Noi Thomas N W (1990) A new framework for understanding relaxor ferroelectrics Journal of Physics and Chemistry of Solids 51(12), pp 1419-1431 Uchino K (1986) Actuators: Materials and Applications Am Ceram Soc Bull 65(4), pp 647-652 Ullah A (2014) Large Electromechanical Response in the Piezoelectric BNKT-BST based Ceramics and Ferroelectric ZnSnO3/PVDF-TrFE Nanocomposite Doctor of Philosophy, Ulsan, Korea Ullah A., Ahn C W., Hussain A., Lee S Y and Kim I W (2011) Phase Transition, Electrical Properties, and Temperature-Insensitive Large Strain in BiAlO3-Modified Bi0.5(Na0.75K0.25)0.5TiO3 Lead-Free Piezoelectric Ceramics Journal of the American Ceramic Society 94(11), pp 3915-3921 Ullah A., Ahn C W., Hussain A., Lee S Y., Lee H J and Kim I W (2010) Phase transitions and large electric field-induced strain in BiAlO3-modified Bi0.5(Na,K)0.5TiO3 lead-free piezoelectric ceramics Current Applied Physics 10(4), pp 1174-1181 Ullah A., Ahn C W., Lee S Y., Kim J S and Kim I W (2012) Structure, ferroelectric properties, and electric field-induced large strain in lead-free Bi0.5(Na,K)0.5TiO3–(Bi0.5La0.5)AlO3 piezoelectric ceramics Ceramics International 38, pp S363-S368 Vanderbilt D and Cohen M H (2001) Monoclinic and triclinic phases in higherorder Devonshire theory Physical Review B 63(9), p 094108 Varada Rajulu K C., Tilak B and Sambasiva Rao K (2011) Impedance spectroscopy study of BNKLT polycrystalline ceramic Applied Physics A 106(3), pp 533-543 Vedantam R (2004) Investigation of Dielectric Properties of some Lead Based Complex Niobate Perovskites Doctoral Thesis, Madras, India Vuong L D and Gio P D (2013) Effect of Li2CO3 Addition on the Sintering Behavior and Physical Properties of PZT-PZN-Pmnn Ceramics International Journal of Materials Science and Applications 2(3), p 89 Wang B., Luo L., Ni F., Du P., Li W and Chen H (2012) Piezoelectric and ferroelectric properties of (Bi1−xNa0.8K0.2Lax)0.5TiO3 lead-free ceramics Journal of Alloys and Compounds 526, pp 79-84 Wang D Y and Nowick A S (1980) The “grain-boundary effect” in doped ceria solid electrolytes Journal of Solid State Chemistry 35(3), pp 325-333 Wang H., Xu H., Luo H., Yin Z., Bokov A A and Ye Z G (2005) Dielectric anomalies of the relaxor-based 0.9Pb(Mg1∕3Nb2∕3)O3-0.1PbTiO3 single crystals Applied Physics Letters 87(1), p 012904 Wang K., Hussain A., Jo W., Rödel J and Viehland D D (2012) TemperatureDependent Properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 Lead-Free Piezoceramics Journal of the American Ceramic Society 95(7), pp 2241-2247 Waser R (1997) Dielectric analysis of integrated ceramic thin film capacitors Integr Ferroelectr 15, pp 39–51 Waser R and Klee M (1992) Theory of conduction and breakdown in perovskite thin films Integrated Ferroelectrics 2(1-4), pp 23-40 Whatmore R W (1986 ) Pyroelectric devices and materials Rep Prog Phys 49 (12), p 1335 139 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 Wilkinson A P., Xu J., Pattanaik S and Billinge J L (1998) Neutron-scattering studies of compositional heterogeneity in sol-gel processed lead zirconate titanates Chem Mater 10, p 3611 Wu B., Han C., Xiao D., Wang Z., Zhu J and Wu J (2012) Investigation of a new lead-free (0.89−x)(Bi0.5Na0.5)TiO3–0.11(Bi0.5K0.5)TiO3–xBa0.85Ca0.15Ti0.90Zr0.10O3 ceramics Materials Research Bulletin 47(11), pp 3937-3940 Xiangping J., Longzhu L., Fulan J., Yanyan Z and Lihua L (2008) Effects of Mndoping on the piezoelectric and ferroelectric properties of (Na0.8K0.2)0.5Bi0.5TiO3 ceramics Key Eng Mater 69, pp 368-372 Xie H., Jin L., Shen D., Wang X and Shen G (2009) Morphotropic phase boundary, segregation effect and crystal growth in the NBT–KBT system Journal of Crystal Growth 311(14), pp 3626-3630 Xu Y (1991), Ferroelectric materials and their applications, Elsevier Science Publisher, Tokyo-Paris-New York Yang H., Shan X U., Zhou C., Zhou Q I N., Li W and Cheng J U N (2013) Microstructure, dielectric and piezoelectric properties of lead-free Bi 0·5 Na 0·5 TiO  −Bi 0·5 K 0·5 TiO  −BiMnO ceramics Bulletin of Materials Science 36(2), pp 265-270 Yang Z., Hou Y., Liu B and Wei L (2009) Structure and electrical properties of Nd2O3-doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 ceramics Ceramics International 35(4), pp 1423-1427 Yang Z P., Liu B., L.Wei L and Hou Y T (2008) Structure and electrical properties of (1- x)Bi0:5Na0:5TiO3-xBi0:5K0:5TiO3 ceramics near morphotropic phase boundary Mater Res Bull 43, pp 81-89 Yoshihiro I and Makoto I (1999) A Theory of Morphotropic Phase Boundary in Solid-Solution Systems of Perovskite-Type Oxide Ferroelectrics Japanese Journal of Applied Physics 38(2R), p 800 Yoshihiro I and Makoto I (1999) Theory of Morphotropic Phase Boundary in Solid-Solution Systems of Perovskite-Type Oxide Ferroelectrics: Elastic Properties Japanese Journal of Applied Physics 38(3R), p 1454 Yoshii K., Hiruma Y., Nagata H and Takenaka T (2006) Electrical Properties and Depolarization Temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Lead-free Piezoelectric Ceramics Jpn J Appl Phys 45, p 4493 Yuan Y., Zhang S and Zhou X (2008) Effects of La occupation site on the dielectric and piezoelectric properties of [Bi0.5(Na0.75K0.15Li0.10)0.5]TiO3 ceramics Journal of Materials Science: Materials in Electronics 20(11), pp 1090-1094 Yuan Y., Zhang S., Zhou X and Liu J (2005) Phase transitions and electrical properties in La3+-substituted Bi0.5(Na0.75K0.15Li0.10)0.5TiO3 ceramics Journal of Materials Science 41(2), pp 565-567 Yuji H., Tomomi W., Hajime N and Tadashi T (2008) Piezoelectric Properties of (Bi 1/2 Na 1/2 )TiO -Based Solid Solution for Lead-Free High-Power Applications Japanese Journal of Applied Physics 47(9S), p 7659 Zaman A., Iqbal Y., Hussain A., Ryu G H., Song T K., Kim M H and Kim W J (2012) Influence of zirconium substitution on dielectric, ferroelectric and fieldinduced strain behaviors of lead-free 0.99[Bi1/2(Na0.82K0.18)1/2(Ti1−x Zr x )O3]0.01LiSbO3 ceramics Journal of the Korean Physical Society 61(5), pp 773-778 Zhang S.-T., Kounga A B., Aulbach E., Ehrenberg H and Rödel J r (2007) Giant strain in lead-free piezoceramics Bi 0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system Applied Physics Letters 91(11), p 112906 140 215 216 217 218 219 220 221 222 223 224 225 226 227 Zhang S.-T., Kounga A B., Aulbach E., Granzow T., Jo W., Kleebe H.-J and Rödel J r (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 I Structure and room temperature properties Journal of Applied Physics 103(3), p 034107 Zhang S., Shrout T R., Nagata H., Hiruma Y and Takenaka T (2007) Piezoelectric properties in (K0.5Bi0.5)TiO3-(Na0.5Bi0.5)TiO3-BaTiO3 lead-free ceramics IEEE Trans Ultrason Ferroelectr Freq Control 54(5), pp 910–917 Zhang Y.-R., Li J.-F and Zhang B.-P (2008) Enhancing Electrical Properties in NBT–KBT Lead-Free Piezoelectric Ceramics by Optimizing Sintering Temperature Journal of the American Ceramic Society 91(8), pp 2716-2719 Zhang Y., Chu R., Xu Z., Hao J., Chen Q., Peng F., Li W., Li G and Yin Q (2010) Piezoelectric and dielectric properties of Sm2O3-doped 0.82Bi0.5Na0.5TiO3– 0.18Bi0.5K0.5TiO3 ceramics Journal of Alloys and Compounds 502(2), pp 341345 Zhao S., Li G., Ding A., Wang T and Yin Q (2006) Ferroelectric and piezoelectric properties of (Na, K)0.5Bi0.5TiO3 lead free ceramics Journal of Physics D: Applied Physics 39(10), pp 2277-2281 Zhou C., Liu X., Li W and Yuan C (2009) Dielectric and piezoelectric properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–BiCrO3 lead-free piezoelectric ceramics Journal of Alloys and Compounds 478(1-2), pp 381-385 Zhou C., Liu X., Li W and Yuan C (2009) Microstructure and electrical properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–LiNbO3 lead-free piezoelectric ceramics Journal of Physics and Chemistry of Solids 70(3-4), pp 541-545 Zhou C., Liu X., Li W., Yuan C and Chen G (2010) Structure and electrical properties of Bi0.5(Na, K)0.5TiO3−BiGaO3 lead-free piezoelectric ceramics Current Applied Physics 10(1), pp 93-98 Zhou Q., Zhou C., Li W., Cheng J., Wang H and Yuan C (2011) Microstructure and piezoelectric properties of Bi0.5(Na0.82K0.18)0.5TiO3−NaSbO3 ceramics Journal of Physics and Chemistry of Solids 72(8), pp 909-913 Zhu M., Hu H., Lei N., Hou Y and Yan H (2009) MnO Modification on Microstructure and Electrical Properties of Lead-Free Bi0.485Na0.425K0.06Ba0.03TiO3 Solid Solution Around Morphotropic Phase Boundary International Journal of Applied Ceramic Technology 7, pp E107-E113 Zipparo M J., Shung K K and Shrout T R (1997) Piezoceramics for highfrequency (20 to 100 MHz) single-element imaging transducers IEEE Trans UFFC 44(5), pp 1038-1048 Zou M., Fan H., Chen L and Yang W (2010) Microstructure and electrical properties of (1−x)[0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3]–xBiFeO3 lead-free piezoelectric ceramics Journal of Alloys and Compounds 495(1), pp 280-283 Zvirgzds A., Kapostins P P and Zvirgzde J V (1982) X-ray study of phase transitions in ferroelectric Na0.5Bi0.5TiO3 Ferroelectrics 40, pp 75-77 ... trung vào vai trò tạp chất đến tính chất áp điện BNKT Kết mở phương hướng để nâng cao tính chất vật li u sắt điện khơng chì 1.1 Tính chất sắt điện vật li u 1.1.1 Cấu trúc vật li u Cho dù vật li u. .. GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGƠ ĐỨC QN NGHIÊN CỨU CÁC TÍNH CHẤT CỦA VẬT LI U SẮT ĐIỆN KHƠNG CHỨA CHÌ NỀN Bi0,5(NaK)0,5TiO3 (BNKT) PHA TẠP Li DẠNG KHỐI VÀ BNKT20 DẠNG MÀNG... đồng pha tạp Li, Sn BNKT đồng pha tạp Li, Zr phương pháp phản ứng pha rắn Nghiên cứu ảnh hưởng nồng độ pha tạp lên cấu trúc, tính chất sắt điện, tính chất áp điện tính chất quang vật li u Trên

Ngày đăng: 06/11/2018, 23:52

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w