Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 127 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
127
Dung lượng
2,73 MB
Nội dung
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC TRẦN TĂNG THẮNG PHÁTTRIỂNTƯDUYSÁNGTẠOCHOHỌCSINHTHÔNGQUADẠYHỌCCHỦĐỀBẤTĐẲNGTHỨCLỚP10BANNÂNGCAO LUẬN VĂN THẠC SĨ SƯ PHẠM TOÁN HÀ NỘI – 2017 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC TRẦN TĂNG THẮNG PHÁTTRIỂNTƯDUYSÁNGTẠOCHOHỌCSINHTHÔNGQUADẠYHỌCCHỦĐỀBẤTĐẲNGTHỨCLỚP10BANNÂNGCAO LUẬN VĂN THẠC SĨ SƯ PHẠM TOÁN CHUYÊN NGÀNH: LÝ LUẬN VÀ PHƯƠNG PHÁP DẠYHỌC (BỘ MƠN TỐN) Mã số: 14 01 11 Người hướng dẫn khoa học: TS Nguyễn Đức Huy HÀ NỘI – 2017 LỜI CẢM ƠN Với tình cảm chân thành lòng biết ơn sâu sắc, tác giả xin trân trọng cảm ơn thầy cô giáo, Hội đồng khoa học, Ban giám hiệu trường Đại học Giáo dục - Đại học Quốc gia Hà Nội giảng dạytạo điều kiện thuận lợi cho tác giả suốt q trình học tập, nghiên cứu hồn thành khóa học Đặc biệt, tác giả xin bày tỏ lòng kính trọng biết ơn sâu sắc tới TS Nguyễn Đức Huy tận tình hướng dẫn, giúp đỡ tác giả suốt q trình làm hồn thiện luận văn Tác giả xin cảm ơn quan tâm tạo điều kiện thầy cô giáo Ban giám hiệu, thầy giáo tổ Tốn Tin, trường THPT Nguyễn Khuyến, thành phố Hải Phòng tạo điều kiện thuận lợi cho tác giả suốt trình học tập thựcđề tài Lời cảm ơn chân thành tác giả xin dành cho người thân gia đình bạn bè, đặc biệt bạnlớpCaohọc Tốn khóa 2015 - 2017 ln quan tâm, cổ vũ, động viên, giúp đỡ để tác giả hoàn thành luận văn cách tốt Tuy có nhiều cố gắng luận văn chắn không tránh khỏi thiếu sót Tác giả mong nhận ý kiến đóng góp thầy giáo bạn đồng nghiệp Xin trân trọng cảm ơn! Hà Nội, tháng 11 năm 2017 Tác giả Trần Tăng Thắng i DANH MỤC CÁC KÝ HIỆU VIẾT TẮT AM - GM Bấtđẳngthức trung bình cộng trung bình nhân BĐT Bấtđẳngthức C-S Cauchy - Schwarz CMR Chứng minh ĐC Đối chứng GV Giáo viên HS Họcsinh SĐC Sau đối chứng SGK Sách giáo khoa STN Sau thực nghiệm TDST Tưsángtạo TĐC Trước đối chứng TN Thực nghiệm TS Tiến sĩ TTN Trước thực nghiệm THPT Trung học phổ thông ii MỤC LỤC Lời cảm ơn i Danh mục kí hiệu viết tắt ii Danh mục bảng vi Danh mục biểu đồ vii MỞ ĐẦU 1 Lý chọn đề tài Mục đích nghiên cứu Nhiệm vụ nghiên cứu Đối tượng phạm vi nghiên cứu Giả thuyết khoa học Phương pháp nghiên cứu Đóng góp luận văn Cấu trúc luận văn Chương 1: CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN VẤN ĐỀPHÁTTRIỂNTƯDUYSÁNGTẠOCHOHỌCSINH TRONG DẠYHỌC MƠN TỐN Ở TRƯỜNG THPT 1.1 Cơ sở lý luận 1.1.1 Tư 1.1.1.1 Khái niệm tư 1.1.1.2 Đặc điểm tư 1.1.1.3 Các giai đoạn tư 1.1.1.4 Các thao tác tư 1.1.2 Tưsángtạo 1.1.2.1 Khái niệm sángtạo 1.1.2.2 Khái niệm tưsángtạo 1.1.2.3 Một số thành tố đặc trưng tưsángtạo10 1.1.3 Pháttriểntưsángtạochohọcsinh 12 1.1.3.1 Những tiềm mơn Tốn cần hình thành pháttriển TDST chohọcsinh 13 1.1.3.2 Một số biể u TDST mơn Tốn cần tập trung pháttriểnchohọcsinh 14 1.1.3.3 Phương hướng dạyhọcpháttriển TDST cho ho ̣c sinhthơngqua mơn Tốn 15 1.2 Cơ sở thực tiễn vấn đềpháttriển TDST chohọcsinhdạyhọc mơn Tốn trường THPT Nguyễn Khuyến, thành phố Hải Phòng 17 1.2.1 Khái quát khảo sát thực trạng 17 iii 1.2.1.1 Mục đích khảo sát 17 1.2.1.2 Đối tượng khảo sát 18 1.2.1.3 Phương pháp khảo sát 18 1.2.1.4 Mô tả nội dung khảo sát 18 1.2.1.5 Mô tả việc đánh giá kết khảo sát 18 1.2.2 Kết khảo sát thực trạng 19 1.2.2.1 Nội dung chủđềbấtđẳngthức chương trình Đại số & Giải tích 10nângcao 19 1.2.2.2 Thực trạng biểu TDST họcsinh trình học tập 20 1.2.2.3 Thực trạng vấn đềdạyhọcpháttriển TDST chohọcsinh giáo viên 25 1.2.3 Đánh giá chung khảo sát thực trạng 33 Kết luận chương 35 Chương 2: MỘT SỐ BIỆN PHÁP PHÁTTRIỂNTƯDUYSÁNGTẠOCHOHỌCSINHTHÔNGQUADẠYHỌCCHỦĐỀBẤTĐẲNGTHỨCLỚP10BANNÂNGCAO 37 2.1 Một số biện pháp pháttriểntưsángtạochohọcsinhlớp10thôngquadạyhọcchủđềbấtđẳngthức 38 2.1.1 Biện pháp 1: Rèn luyện chohọcsinh sử dụng linh hoạt thao tác tư 38 2.1.2 Biện pháp 2: Khuyến khích họcsinh tìm nhiều lời giải cho toán lựa chọn cách giải tối ưu 44 2.1.3 Biện pháp 3: Quan tâm tới sai lầm học sinh, tìm nguyên nhân cách khắc phục 49 2.1.4 Biện pháp 4: Rèn luyện chohọcsinh khả khai thác kết toán để giải toán khác 52 2.1.5 Biện pháp 5: Rèn luyện chohọcsinh khả pháttriển toán, xây dựng toán từ toán cho 55 2.1.6 Biện pháp 6: Tăng cường chohọcsinh giải toán thực tiễn đểtừ hình thành động sángtạochohọcsinh 58 2.2 Thiết kế số giáo án dạyhọcchủđềbấtđẳngthứclớp10bannângcao theo hướng biện pháp đề xuất 63 2.2.1 Giáo án 63 2.2.2 Giáo án 68 2.2.3 Giáo án 74 Kết luận chương 78 Chương 3: THỰC NGHIỆM SƯ PHẠM 80 iv 3.1 Mục đích thực nghiệm 80 3.2 Đối tượng thực nghiệm 80 3.4 Thời gian thực nghiệm 81 3.5 Tổ chức tiến hành thực nghiệm 81 3.6 Kết thực nghiệm sư phạm 82 3.6.1 Các bình diện đánh giá 82 3.6.1.1 Đánh giá mặt định lượng 82 3.6.1.2 Đánh giá mặt định tính 83 3.6.2 Mô tả sơ đề kiểm tra 84 3.6.3 Phân tích kết thực nghiệm 86 3.6.3.1 Đánh giá định lượng 86 3.6.3.2 Đánh giá định tính 91 3.7 Đánh giá chung thực nghiệm sư phạm 94 Kết luận chương 97 KẾT LUẬN 99 Danh mục cơng trình khoa học cơng bố tác giả có liên quan tới luận văn 102 TÀI LIỆU THAM KHẢO 103 PHỤ LỤC 105 v DANH MỤC CÁC BẢNG Bảng 1.1: Một số biểu TDST họcsinhhọcqua phiếu thăm dò ý kiến giáo viên 20 Bảng 1.2: Một số biểu TDST họcsinhhọcqua phiếu thăm dò ý kiến họcsinh 22 Bảng 1.3: Mức độ thực hoạt động học giáo viên nhằm pháttriển TDST chohọcsinhqua phiếu thăm dò ý kiến giáo viên 25 Bảng 1.4: Mức độ thực số hoạt động giáo viên trình dạyhọc TDST chohọcsinhqua phiếu thăm dò ý kiến họcsinh 30 Bảng 3.1: So sánh kết kiểm tra trước thực nghiệm họcsinhlớpthực nghiệm lớp đối chứng 86 Bảng 3.2: So sánh kết kiểm tra sau thực nghiệm họcsinhlớpthực nghiệm lớp đối chứng 88 Bảng 3.3: So sánh kết trước sau thực nghiệm lớp đối chứng 89 Bảng 3.4: So sánh kết trước sau thực nghiệm lớpthực nghiệm 90 vi DANH MỤC CÁC BIỂU ĐỒ Biểu đồ 1.1: Một số biểu TDST họcsinhhọcqua phiếu thăm dò ý kiến giáo viên 21 Biểu đồ 1.2: Một số biểu TDST họcsinhhọcqua phiếu thăm dò ý kiến họcsinh 23 Biểu đồ 1.3: Mức độ thực hoạt động học giáo viên nhằm pháttriển TDST chohọcsinhqua phiếu thăm dò ý kiến giáo viên 29 Biểu đồ 1.4: Mức độ thực số hoạt động giáo viên trình dạyhọc TDST chohọcsinhqua phiếu thăm dò ý kiến họcsinh 31 Biểu đồ 3.1: So sánh kết kiểm tra trước thực nghiệm họcsinhlớpthực nghiệm lớp đối chứng 87 Biểu đồ 3.2: So sánh kết kiểm tra sau thực nghiệm họcsinhlớpthực nghiệm lớp đối chứng 88 Biểu đồ 3.3: So sánh kết trước sau thực nghiệm lớp đối chứng 89 Biểu đồ 3.4: So sánh kết trước sau thực nghiệm lớpthực nghiệm90 vii MỞ ĐẦU Lý chọn đề tài Theo Nghị Hội nghị Trung ương khóa XI (29-NQ/TW) đổi bản, tồn diện giáo dục đào tạo với quan điểm đạo: “Giáo dục đào tạo quốc sách hàng đầu, nghiệp Đảng, Nhà nước toàn dân; Đầu tưcho giáo dục đầu tưphát triển, ưu tiên trước chương trình, kế hoạch pháttriển kinh tế - xã hội; Chuyển mạnh trình giáo dục từchủ yếu trang bị kiến thứcsangpháttriển toàn diện lực phẩm chất người học; Học đôi với hành, lý luận gắn với thực tiễn, giáo dục nhà trường kết hợp với giáo dục gia đình giáo dục xã hội” [1] Để đáp ứng trình đổi bản, toàn diện giáo dục đào tạo đặc biệt giáo dục phổ thông cần đổi theo định hướng pháttriển lực hình thành phẩm chất người học phải khuyến khích họcsinhtự học, sáng tạo, vận dụng kiến thức vào thực tiễn đồng thời phải áp dụng phương pháp giáo dục đại vào dạyhọc Với ho ̣c sinh phổ thông, tưsángtạo (TDST) thể hiê ̣n qua viêc̣ vâ ̣n du ̣ng kiế n thức tự cấ u trúc la ̣i đã biết, tim ̀ tòi, phát điều chưa biết Với mỡi mơn ho ̣c TDST có đă ̣c trưng riêng, ho ̣c môn Toán viêc̣ tìm tòi các lời giải khác hoă ̣c sáng ta ̣o bài toán mới là cách thể hiêṇ của TDST Bấtđẳngthức (BĐT) chủđề xuất từ sớm chương trình tốn phổ thơng, từ lúc học tiểu họchọcsinh làm quen với BĐT với việc so sánh số tự nhiên, phân số đồng thời BĐT xuất tất phân mơn tốn học đại số, hình học, số học, đặc biệt khái niệm giới hạn phân mơn giải tích xây dựng dựa vào đánh giá BĐT Do đó, dạyhọcchủđề BĐT hội tốt đểpháttriển TDST chohọcsinh phổ thơng Đã có nhiều cơng trình nghiên cứu [6], [9], [11], [12], [15], [17], [22], [24], [28], [29] nước nước đề cập tới vấn đề lý luận thực 16 A.V Petrovski (1982), Tâm lí học lứa tuổi tâm lí học sư phạm Nxb Giáo dục 17 G Polya (1978), Sángtạo Tốn học Nxb Giáo dục 18 Hồng Phê (1988), Từ điển tiếng việt Nxb Khoa học xã hội 19 Trần Phương (2001), Các phương pháp kĩ thuật chứng minh bấtđẳngthức Nxb Hà Nội 20 Đoàn Quỳnh (2007) Đại số 10nângcao Nxb Giáo du ̣c 21 X.L Rubinstein (1940), Những sở tâm lí học đại cương Nxb Giáo dục 22 Huỳnh Văn Sơn (2009), Tâm lí họcsángtạo Nxb Giáo dục 23 Cung Kim Tiến (2002), Từ điển triết học Nxb Văn hóa tơng tin 24 Nguyễn Cảnh Toàn (1998), Tập chohọcsinh giỏi Toán làm quen dần với nghiên cứu toán học Nxb Giáo dục 25 Dương Thiệu Tống (2005), Phương pháp nghiên cứu khoa học giáo dục tâm lý Nxb Khoa học xã hội 26 Nguyễn Minh Tuấn (2014), Lý thuyết sở hàm lồi bấtđẳngthức cổ điển Nxb Đại học Quốc gia Hà Nội 27 Tôn Thân (1995), Xây dựng câu hỏi tập nhằm bồi dưỡng số yếu tố tưsángtạochohọcsinh giỏi Toán trường Trung học sở Việt Nam Viện Khoa học Giáo dục 28 Chu Cẩm Thơ (2015), Pháttriểntưthơngquadạyhọc mơn tốn trường phổ thông Nxb Đại học Sư phạm Hà Nội 29 Nguyễn Văn Thuận (2004), Góp phần pháttriển lực tư logic sử dụng xác ngơn ngữ toán họcchohọcsinh đầu cấp Trung học phổ thôngdạyhọc Đại số Luận án Tiến sĩ Giáo dục học trường Đại học Vinh 30 Nguyễn Quang Uẩn (1999), Tâm lý học đại cương Nxb Đại học Quốc gia Hà Nội 31 Nguyễn Như Ý (1999), Từ điển Tiếng Việt Nxb Đà nẵng 104 PHỤ LỤC Phụ lục PHIẾU THAM KHẢO Ý KIẾN HỌCSINH Câu Trong học, em thực hoạt động nào? Các phương án trả lời Rất nhiều Nhiều Không nhiều Không Một số hoạt động STT Thích hỏi, tò mò hay thắc mắc Tìm cách giải vấn đề hay độc đáo cho câu hỏi, tập hay tốn Tìm nhiều cách giải cho vấn đềhọc tập Tìm câu trả lời nhanh, xác cho câu hỏi yêu cầu giáo viên Biết cách suy luận, phát hiện, giải vấn đề, biết cách họctựhọc Đưa lập luận hợp lý cho câu trả lời Đưa câu hỏi hay chủđề giải 105 Tô đen vào phương án phù hợp Câu Theo em dạyhọc mơn Tốn, Thầy/Cô em thực hoạt động sau với mức độ nào? Các phương án trả lời Rất nhiều Nhiều Không nhiều Không Tô đen vào phương án STT Một số biểu phù hợp Yêu cầu họcsinh khai thác kết toán để giải toán khác hay đề xuất sángtạo tốn Hướng dẫn họcsinh tìm nhiều cách giải, lựa chọn phương án giải tối ưu cho tập hay toán Hướng dẫn họcsinh phân tích tìm sai lầm cách giải tập hay toán, nguyên nhân sai lầm, đưa hướng khắc phục Xin cảm ơn đóng góp ý kiến em! 106 Phụ lục PHIẾU THAM KHẢO Ý KIẾN GIÁO VIÊN Câu Theo Thầy/Cô, họcsinh thường biểu tưsángtạohọc nào? Các phương án trả lời Rất nhiều STT Nhiều Khơng nhiều Một số biểu Thích hỏi, tò mò hay thắc mắc Tìm cách giải vấn đề hay độc đáo Tìm nhiều cách giải cho vấn đềhọc tập Tìm câu trả lời nhanh, xác cho câu hỏi yêu cầu giáo viên Biết cách suy luận, phát hiện, giải vấn đề, biết cách họctựhọc Đưa lập luận hợp lý cho câu trả lời Không Tô đen vào phương án phù hợp Họcsinh đưa nhiều câu trả lời khác cho vấn đề sử dụng từ ngữ cụ thể, xác để diễn đạt Họcsinhtư trình tư (diễn đạt lại trình tìm lời giải cho vấn đề) Đưa câu hỏi phức tạp chủđề giải 107 Câu Trong trình dạy học, Thầy/cô thực hoạt động sau nào? Các phương án trả lời Rất thường xuyên Thường xuyên STT Thỉnh thoảng Rất Chưa Tơ đen vào phương án phù hợp Một số cách Hướng dẫn họcsinh phân tích vấn đề theo nhiều hướng khác Rèn cho HS biết diễn đạt toán, lời giải nhiều cách khác Kích thích trí tưởng tượng sángtạochohọcsinhthơngqua sử dụng câu hỏi có tác dụng gợi mở, gợi liên tưởng để diễn đạt lại vấn đề trừu tượng; sử dụng hình vẽ để phác họa lại hay tóm tắt lai đề bài, vấn đề Luôn giúp họcsinh nhận thức nội dung diễn đạt nhiều hình thức khác ngược lại Rèn chohọcsinh ln có phản ứng tính hợp lý đáp án q trình suy luận, giải vấn đề, đảo ngược vấn đề, có nhìn phê phán vấn đề Rèn chohọcsinh biết di chuyển hay phối hợp, kết hợp tổng quát thao tác tư duy, phương pháp suy luận Rèn chohọcsinh biết đặt lại toán, sơ đồ hoá toán nhằm đưa toán dạng quen thuộc Rèn chohọcsinh biết tách vấn đề, đối tượng 108 thành đối tượng, vấn đề nhỏ để giải bước, phần tập khó, yếu tố chodạng gián tiếp Rèn chohọcsinh kĩ suy luận, lập luận (quy nạp hay diễn dịch: từ riêng, cụ thể đến chung, khái quát hay từ chung, khái quát đến riêng, cụ thể) Rèn chohọcsinh biết lập kế hoạch giải, lập dàn ý, chương trình thựccho vấn đề cụ thể (theo quy trình, bước thực hiện), thể tính xác, tính hồn chỉnh làm như: có tóm tắt cần; có câu trả lời rõ ràng cho bước giải; có phép tính đúng; có đáp số; có chuyển đổi đơn vị đo cần Rèn chohọcsinh thói quen ln tìm nhiều 10 cách giải cho vấn đề ln tìm cách ngắn gọn nhất, sángtạoTạochohọcsinh thói quen: vấn đề giải cách giải dài dòng, với 11 nhiều bước tính nhỏ, ta nghĩ có cách giải khác ngắn gọn sáng sủa 12 13 Tập chohọcsinh không chấp nhận cách giải quen thuộc nhất, kích thích em tìm tòi đề xuất nhiều cách giải khác Rèn chohọcsinh biết hệ thống hoá sử dụng kiến thức, kĩ năng, thuật giải 109 trình hướng dẫn họcsinh luyện tập, ôn tập chủđề kiến thức Rèn chohọcsinh biết thực gộp bước tính giải; tìm nhiều cách giải, cách giải hay nhất; từ toán 14 suy sơ đồ, tóm tắt, đặt thành đề toán khác; giải suy luận gián tiếp, nhận xét sắc xảo, lập luận chặt chẽ, lơgíc Sử dụng câu hỏi dạy, dạng như: - Tại em làm vậy? 15 - Bằng cách em biết điều đó? - Trong việc đó, theo em việc khó? - Còn (điều gì) liên quan đến học mà em chưa biết rõ? Xin cảm ơn đóng góp ý kiến Thầy/Cô! 110 Phụ lục BÀI KIỂM TRA SO SÁNH TRÌNH ĐỘ HỌCSINH TRƯỚC KHI DẠYTHỰC NGHIỆM Đề Câu (2 điểm) Cho hai số thực a, b CMR a b 2 a b Câu (4 điểm) Cho hai số thực x, y & 3x y CMR 3x y 25 Câu (4 điểm) 1 1 (1) Cho ba số thực x, y, z CMR x y z x y z (2) Cho x, y, z thỏa mãn x y z Tìm giá trị lớn biểu thức P x y z x 1 y 1 z 1 Đáp án biểu điểm Câu 1(2đ) 2(4đ) Đáp án BĐT tương đương với BĐT sau: 2a 2b a b 2ab a 2ab b2 a b BĐT cuối ln đúng, BĐT cho chứng minh Dấu xảy a b 3x Từ giả thiết suy y Do BĐT tương đương với BĐT sau: 2 12 x x 25 3x 25 3x 4. 7 21x 30 x 25 100 x 5 BĐT cuối ln đúng, BĐT cho chứng 5 minh Dấu xảy x & y 14 111 Biểu điểm 1.5 đ 0.5 đ 3.0 đ 1.0 đ (1) Áp dụng bấtđẳngthức C-S, ta có 1 1 x y z x y z x x 3(4đ) z x y z x y 2 1.0 đ y 1 z 9 y z Dấu xảy x y z 1 (2) Ta có P x y z 1 Áp dụng câu 3(1) ta có 1 x y z 1 9 x y z 1 1 Suy x y z 1 3 Do P P 2 Dấu xảy x y z Vậy maxP 112 1.0 đ 1.0 đ 1.0 đ Phụ lục BÀI KIỂM TRA SO SÁNH TRÌNH ĐỘ HỌCSINH SAU KHI DẠYTHỰC NGHIỆM Đề Câu (2 điểm) Cho ba số thực a, b, c CMR a b c ab bc ca Câu (4 điểm) Cho hai số thực x, y & x y CMR x 4y Câu (4 điểm) (1) Cho ba số thực x, y , z & yz CMR x yz x yz (2) Cho x, y, z thỏa mãn x y z CMR x y z x 3x yz y y zx z 3z xy Đáp án biểu điểm BĐT cho tương đương với BĐT sau 2a 2b 2c 2ab 2bc 2ca 0.5 đ a 2ab b2 b2 2bc c c 2ca a 0.5 đ a b b c c a 0.5 đ BĐT cuối ln đúng, BĐT cho chứng minh 0.5 đ 5 x , với x 0, Do đó, 4 BĐT cần chứng minh tương đương với BĐT sau: 5 x 5 4 x 4 2đ 1(2đ) Biểu điểm Đáp án Câu 2 Từ giả thiết suy y 2(4đ) 5 5 5 16 x x 20 x x x 0, 4 4 4 20 15 x 25 x 20 x x 1 2 113 1.5 đ BĐT cuối ln đúng, BĐT cho chứng minh Dấu xảy x & y (1) Xét hiệu x yz x yz x yz 0 Do x yz x yz 3(4đ) Dấu xảy 0.5 đ 0.5 đ 0.5 đ yz x (2) Giả thiết x y z theo phần (1), ta có x 3x zy x x x x x Do x y z x yz yz y z x x x yz y z x y z x x y z 1.0 đ x x x 3x zy x y z Tương tự y y y zx y x y z ; 1.5 đ z z z 3z xy x y z Suy x y z 1 x 3x yz y y zx z 3z xy Dấu xảy x y z 114 0.5 đ Phụ lục MỘT SỐ CÁCH SÁNGTẠO - KHÁC ĐÁP ÁN QUA BÀI KIỂM TRA SAU THỰC NGHIỆM Câu Cho ba số thực dương a, b, c Cmr a b c ab bc ca Cách Áp dụng bấtđẳngthức AM-GM, ta có a2 b2 2ab; b2 c2 2ca; c2 a 2ab Cộng bấtđẳngthức vế theo vế, ta a b c ab bc ca Cách Áp dụng bấtđẳngthức C-S, ta có a.b b.c c.a a b c b c a a b c Từ suy a b c ab bc ca Câu Cho x, y thỏa mãn x y Chứng minh 4 x 4y Cách Áp dụng bấtđẳngthức C-S, ta có 1 1 12 12 12 12 12 25 x y x x x x y x x x x y 4 x y Cách Áp dụng bấtđẳngthức phụ 1 n2 x1 , x2 , , xn 0, n , n x1 x2 xn x1 x2 xn 1 1 1 52 25 Suy x y x x x x y x x x x y 4 x y Cách Áp dụng bấtđẳngthức C-S, ta có 2 2 4 x y x y 5 x x y x y y Cách Áp dụng bấtđẳngthức AM-GM, ta có 4 4x y x y x y x 4y x x 4y 4y 115 Phụ lục BÀI VIẾT CỦA NHÓM LỚP TN 10C1 – NHÓM LỚP ĐC 10C2 Bài toán: Cho số thực x Tìm giá trị nhỏ biểu thức Px x Nhiệm vụ nhóm: Em phân tích tìm tòi lời giải (nhiều cách giải) đề xuất tốn tổng qt kèm theo lời giải (nếu có) tương tự giống toán cho Sản phẩm nhóm lớp ĐC 10C2 (1 viết) Phân tích Dễ thấy tích hai số x , sử dụng bấtđẳngthức AMx GM cho hai số x 1 , lúc dấu xảy x x x x mâu thuẫn giả thiết x Cũng từ giả thiết cho x , nên nhóm dự đốn dấu xảy 5 x lúc P , tức tìm cách chứng minh P 2 Lời giải Ta chứng minh x x x x2 x x x x x 1 x x BĐT cuối x Từ suy P 5 2 Sản phẩm nhóm lớp TN 10C1 (3 viết đề xuất bài toán Dấu xảy x P tổng quát) Bài viết Như viết nhóm lớp ĐC 10C2 Bài viết Phân tích 116 Dấu xảy x , lúc x Do x x với Suy x x Lời giải Áp dụng bấtđẳngthức AM-GM, ta có Px 4 3 x x x x x x 2 Dấu xảy x P x Bài viết Phân tích Ta có x x x 2 lúc ta nghĩ tới việc sử dụng bấtđẳng x thức C-S Ta tìm a, b cho x 2 2 a b x a b x x Dựa vào dấu xảy x &x2 a bx Suy a 4b , chọn b a Lời giải Áp dụng bấtđẳngthức C-S, ta có x 2 x x x 4 1 2 16 15 Suy x x 25 x x 25 x x x x x 2 15 1 x x 25 x 10 152 10 15 x x x x x x 5 Do P Dấu xảy x P 2 117 Bài toán tổng quát: Cho số thực x n * Tìm giá trị nhỏ biểu thức P x n n x Phân tích Nếu áp dụng trực tiếp bấtđẳngthức AM-GM cho hai số khơng xảy dấu Lúc ta dự đoán dấu xảy xn , xn x lúc P n n Lời giải: Cách Ta chứng minh P n x n * n n n n n x x 1 0 1 n n Thật vậy, xét hiệu: P n x n n n x x n n 1 xnn xn n 1 x Dấu xảy x Vậy P n n Cách Áp dụng bấtđẳngthức AM-GM, ta có n n n 2n n P x x 1 x 2 n x n x n 2n x 2n 2n 2n n n n 2n n 1 x Dấu xảy x Vậy P n 118 n ... HỌC SINH THÔNG QUA DẠY HỌC CHỦ ĐỀ BẤT ĐẲNG THỨC LỚP 10 BAN NÂNG CAO 37 2.1 Một số biện pháp phát triển tư sáng tạo cho học sinh lớp 10 thông qua dạy học chủ đề bất đẳng thức 38... là: Phát triển tư sáng tạo cho học sinh thông qua dạy học chủ đề bất đẳng thức lớp 10 ban nâng cao Mục đích nghiên cứu Nghiên cứu đề xuất số biện pháp nhằm góp phần phát triển TDST cho học sinh. ..ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC TRẦN TĂNG THẮNG PHÁT TRIỂN TƯ DUY SÁNG TẠO CHO HỌC SINH THÔNG QUA DẠY HỌC CHỦ ĐỀ BẤT ĐẲNG THỨC LỚP 10 BAN NÂNG CAO LUẬN VĂN THẠC