Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)Giá trị trung bình với hàm tùy ý và một số lớp hàm lồi liên quan (Luận văn thạc sĩ)
ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC KHOA HỌC - NGUYỄN THỊ HƢƠNG GIÁ TRỊ TRUNG BÌNH VỚI HÀM TÙY Ý VÀ MỘT SỐ LỚP HÀM LỒI LIÊN QUAN LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2018 ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC KHOA HỌC - NGUYỄN THỊ HƢƠNG GIÁ TRỊ TRUNG BÌNH VỚI HÀM TÙY Ý VÀ MỘT SỐ LỚP HÀM LỒI LIÊN QUAN Chuyên ngành: Phƣơng pháp Toán sơ cấp Mã số: 8460113 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC (Xác nhận) PGS.TS Nguyễn Thị Thu Thủy THÁI NGUYÊN - 2018 iii Mục lục Bảng ký hiệu Mở đầu Chương Một số giá trị trung bình sơ cấp 1.1 Một số giá trị trung bình sơ cấp 1.1.1 1.1.2 1.2 Giá trị trung bình thơng thường Trung bình có trọng 1.1.3 Một số tính chất trung bình Mr (a) Hàm so sánh 1.2.1 1.2.2 Bất đẳng thức Một số hàm so sánh 13 Chương Giá trị trung bình với hàm tùy ý số lớp hàm lồi liên quan 18 2.1 2.2 2.3 Tính chất đặc trưng giá trị trung bình 18 2.1.1 Các giá trị trung bình tương đương 20 2.1.2 Tính chất đặc trưng giá trị trung bình Mr 21 Một số lớp hàm lồi liên quan 24 2.2.1 2.2.2 Hàm lồi liên tục 24 Hàm lồi hai lần khả vi 33 2.2.3 Hàm lồi nhiều biến 35 Một số dạng toán liên quan 37 2.3.1 M rng bt ng thc Hăolder 37 2.3.2 Mở rộng bất đẳng thức Minkowski 39 iv Kết luận 43 Tài liệu tham khảo 44 Bảng ký hiệu N∗ tập số tự nhiên dương (a) Mr (a) dãy số thực trung bình bậc r A(a) G(a) trung bình cộng trung bình nhân Mở đầu Bất đẳng thức có vị trí đặc biệt quan trọng tốn học không đối tượng để nghiên cứu mà đóng vai trò cơng cụ đắc lực mơ hình tốn học liên tục mơ hình tốn học rời rạc lý thuyết phương trình, lý thuyết xấp xỉ, lý thuyết biểu diễn v.v Trong hầu hết kỳ thi học sinh giỏi quốc gia, thi Olympic Toán khu vực quốc tế, thi Olympic Toán sinh viên trường đại học cao đẳng, toán liên quan đến bất đẳng thức hay đề cập thường thuộc loại khó khó Các tốn ước lượng tính giá trị cực trị (cực đại, cực tiểu) tổng, tích toán xác định giới hạn số biểu thức cho trước thường có mối quan hệ nhiều đến tính tốn, ước lượng (bất đẳng thức) tương ứng Trong bất đẳng thức, thứ tự xếp đại lượng trung bình số thực dương đóng vai trò quan trọng việc so sánh giá trị đại lượng trung bình Ngoài thứ tự xếp số đại lượng trung bình thơng thường trung bình cộng, trung bình nhân, trung bình điều hòa v.v , người ta quan tâm đến giá trị trung bình với hàm tùy ý số lớp hàm lồi liên quan Mục đích luận văn nhằm khảo sát tính chất giá trị trung bình với hàm tùy ý số lớp hàm lồi liên quan Nội dung đề tài luận văn trình bày chương Chương "Một số giá trị trung bình sơ cấp": trình bày kiến thức giá trị trung bình thơng thường, định lý trung bình cộng trung bình nhân, số tính chất trung bình Các kiến thức chương viết sở tổng hợp từ tài liệu [1] [2] Chương "Giá trị trung bình với hàm tùy ý số lớp hàm lồi liên quan": trình bày tính chất đặc trưng giá trị trung bình với hàm tùy ý số lớp hàm lồi liên quan Các kiến thức chương viết sở tài liệu [1], [2], [3] [4] Luận văn hoàn thành Trường Đại học Khoa học – Đại học Thái Nguyên hướng dẫn tận tình PGS.TS Nguyễn Thị Thu Thủy Tác giả xin bày tỏ lòng biết ơn sâu sắc tới Cơ Trong q trình học tập nghiên cứu Trường Đại học Khoa học – Đại học Thái Nguyên tác giả nhận quan tâm giúp đỡ động viên thầy cô khoa Tốn - Tin thầy trường Tác giả xin bày tỏ lòng biết ơn sâu sắc tới Thầy Cô Tác giả xin chân thành cảm ơn Ban giám hiệu Trường THPT Bạch Đằng, Thủy Nguyên, Hải Phòng anh chị em đồng nghiệp tạo điều kiện tốt cho tác giả thời gian học Cao học Xin cảm ơn anh chị học viên lớp Cao học Toán K10B1 bạn bè đồng nghiệp trao đổi, động viên khích lệ tác giả trình học tập làm luận văn Trường Đại học Khoa học – Đại học Thái Nguyên Thái Nguyên, tháng năm 2018 Tác giả luận văn Nguyễn Thị Hương Chương Một số giá trị trung bình sơ cấp Chương trình bày số khái niệm tính chất giá trị trung bình sơ cấp Các kiến thức chương tham khảo từ tài liệu [1] [2] 1.1 Một số giá trị trung bình sơ cấp Mục trình bày kiến thức về: giá trị trung bình thơng thường, định lý trung bình cộng trung bình nhân, số tính chất trung bình 1.1.1 Giá trị trung bình thơng thường Giả sử n ∈ N∗ Xét tập dãy số dương (a) := (a1 , a2 , , , , an ); (b) := (b1 , b2 , , bi , , bn ) Ký hiệu dãy không dãy gồm toàn số 0, nghĩa (0) := (0, 0, , 0) Định nghĩa 1.1.1 Ta nói dãy (a) tỷ lệ với dãy (b) tồn hai số α β không đồng thời cho αai = βbi (i = 1, 2, , n) Nhận xét 1.1.2 (i) Từ định nghĩa ta thấy dãy (0) tỷ lệ với dãy (a) (ii) Nếu hai dãy (a) (b) tỷ lệ hai dãy khác dãy (0) bi = = Sau định nghĩa trung bình bậc r với r = số thực cho trước Định nghĩa 1.1.3 Tổng Mr (a) định nghĩa bởi: Mr (a) := n n ari 1/r , (1.1) i=1 gọi trung bình bậc r, (a) := (a1 , a2 , , an ) dãy gồm n số không âm Nếu đặt A(a) := M1 (a) (1.2) H(a) := M−1 (a) (1.3) G(a) := √ n a1 a2 an , (1.4) thay tương ứng vào công thức (1.1), ta nhận trung bình cộng thơng thường n A(a) = , n i=1 trung bình điều hòa H(a) = n n a−1 i −1 i=1 trung bình nhân G(a) tương ứng 1.1.2 Trung bình có trọng Giả sử pi > (i = 1, , n) (1.5) đặt n Mr = Mr (a) = Mr (a, p) = i=1 n pi ari 1/r , (1.6) pi i=1 Mr = (r < số số a = 0) (1.7) n ap11 ap22 G = G(a) = G(a, p) = apnn 1/ pi i=1 (1.8) Vì trung bình hàm bậc không p, nên không làm n pi = Khi ta viết qi thay cho pi tính tổng quát ta giả sử i=1 sau: n qi ari Mr (a) = Mr (a, p) = n 1/r qi = i=1 (1.9) i=1 n G(a) = G(a, p) = aq11 aq22 aqnn qi = (1.10) i=1 Định nghĩa 1.1.4 Xét số thực r khác Khi tổng Mr (a, p) xác định theo công thức (1.9) gọi trung bình bậc r theo trọng (q) Nhận xét 1.1.5 (i) Ứng với r = −1, r = r = ta nhận trung bình điều hòa, trung bình cộng trung bình bình phương (ii) Trung bình có trọng trở thành trung bình thơng thường pi = với i = 1, , n 1.1.3 Một số tính chất trung bình Mr (a) Để chứng minh tính chất trung bình Mr (a), ta cần sử dụng bất đẳng thức sau ... bình Ngồi thứ tự xếp số đại lượng trung bình thơng thường trung bình cộng, trung bình nhân, trung bình điều hòa v.v , người ta quan tâm đến giá trị trung bình với hàm tùy ý số lớp hàm lồi liên. .. lồi liên quan Mục đích luận văn nhằm khảo sát tính chất giá trị trung bình với hàm tùy ý số lớp hàm lồi liên quan Nội dung đề tài luận văn trình bày chương Chương "Một số giá trị trung bình sơ... hàm tùy ý số lớp hàm lồi liên quan" : trình bày tính chất đặc trưng giá trị trung bình với hàm tùy ý số lớp hàm lồi liên quan Các kiến thức chương viết sở tài liệu [1], [2], [3] [4] Luận văn hoàn