1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Solution manual vector mechanics engineers dynamics 8th beer chapter 10

139 120 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 139
Dung lượng 5,85 MB

Nội dung

Consider a virtual rotation δφ of link AB... Consider a virtual rotation δφ of link AB... Equation 1: WW... Since cosθ = is not a solution of the equation, we can divide all terms by 0 k

Trang 1

δφ = δθ

3G

Trang 8

x = x δxG =3δxD4

x = x δxH =4δxD5

I D

x = x δxI =5δxD(a) Virtual Work: δU =0: F xEδ E −FSPδxI = 0

Trang 10

δ =δ =δ = δVirtual Work:

Trang 11

Have y A = 2 cos ; l θ δy A = −2 sinl θ δθ

Trang 12

Chapter 10, Solution 10

Virtual Work:

2 cosA

3 sinF

δ = − θ δθVirtual Work: δU = 0: Q xδ A +P yδ F = 0

(2 cos ) ( 3 sin ) 0

Q l θ δθ + P − l θ δθ =

3 tan2

Q = P θ

Trang 13

Thus: P(−3 sinl θ δθ)+Q l( cosθ δθ)= 0

3 sin− Pl θ +Qlcosθ = 0

3 sin

3 tancos

P

θ

Trang 14

Chapter 10, Solution 12

A

x = a+b θ δx A = −(a+b)sinθ δθsin

G

y =a θ δy G =acosθ δθVirtual Work:

The reactions at A and B are perpendicular to the displacements of A and B hence do no work

Trang 15

sin cos4

Trang 16

(35 kN) sin 2 1.10365 kN

9 16sin

θ

θ =+

Trang 17

ABC: sin y B = a θ ⇒ δy B = acosθδθ

y = a θ ⇒δy = a θδθ

CDE: Note that as ABC rotates counterclockwise, CDE rotates clockwise

while it moves to the left

Trang 20

Virtual Work: δU = 0: cosMδθ −(P β δ) x D −(Psinβ δ) y D = 0

( cos )( sin ) ( sin )(3 cos ) 0

(c) For P directed , β =180° Equation (1): M = Pl(3sin180 cos° θ −cos180 sin° θ)

sin

M = Pl θ

Trang 21

Analysis of the geometry:

Trang 22

Virtual Work: δU = 0: −P xδ C −Mδθ = 0

sin

0cos

For the given conditions:P =1.0 kip =1000 lb, AB =2.5 in., and BC =10 in.:

(a) When 30 : sin 2.5sin30 , 7.181

Trang 23

From the analysis of Problem 10.19, sin( )

Trang 24

Chapter 10, Solution 21

Consider a virtual rotation δφ of link AB

Disregarding the second-order rotation of link BC,

C C

Trang 25

Consider a virtual rotation δφ of link AB

Disregarding the second-order rotation of link BC,

C C

Trang 26

(75 lb) 2 60 lb( ) sin

cos2

θθ

=

 

 

 sin 0.625cos

θ = °

36.4

θ = °  (Additional solutions discarded as not applicable are θ = ±180 )°

Trang 27

From the solution to Problem 10.16

2

2cos 1 sinsin

Trang 28

=

2

sincos

y =l θ δy = −l θ δθVirtual Work:

Trang 29

=

2

sincos

y =l θ δy = −l θ δθVirtual Work:

Trang 31

or θ = 39.1°

Trang 32

Then P l (sinθ −cos tanθ φ δθ) −kl3−(2cosφ +cosθ) (l sinθ +cos tanθ φ δθ) = 0

or 3 (2cos cos ) sin cos tan

sin cos tan

Trang 35

First note: y D =(250 mm sin) θ δy D =(250 mm cos) θ δθ

Virtual Work:

0:δU= (250 N)δy DF SPδx A= 0

(250 N 250 mm cos)( ) θ δθ −(1500 N cos)( θ −cos 45°)(600 mm sin) θ δθ = 0

or 5−72 tanθ(cosθ −cos 45° = ) 0

Solving numerically

15.03 and 36.9

Trang 36

or (150 lb 15 in cos)( ) θ δθ +(375 lb 1 cos)( − θ)  −(30in sin) θ δθ=0

or 2250cosθ −11250 1 cos( − θ)sinθ = 0

or (1 cos− θ)tanθ =0.200

Solving numerically, θ =40.22°

40.2

θ = ° W

Trang 38

Chapter 10, Solution 35

s =rθ

s r

δ = δθSpring is unstretched at θ = ° 0

SP

F =ks=k rθsin

C

x =l θcos

θθ

=

θ =1.054 rad 60.39

60.4

θ = ° W

Trang 39

=A

y lcos

1 2sin 45 cos 45 cos 2 cos 45

 ° + 

= −

Trang 40

Now, with P =150 lb, l =30 in., and k =40 lb/in.

θθ

 ° + 

Trang 41

From geometry: y A =lsinθ

Trang 42

0:δU = PδSF SPδy C = 0

(480 N 75 mm)( )δθ −(300 N tan) θ(375 mm sec) 2θ δθ =0

or 3.125 tan secθ 2θ = 1

Trang 43

Have siny A =l θ cosδy A=l θ δθ

θ

2.2222 radcos

θ

θ =

Trang 45

Have dAC = 212+7.22 =22.2 in.

7.2tan

21

φ = or φ =18.9246° Now α θ φ= +

By Law of Cosines:

2 22.22 102 2 22.2 10 cosAB

α

Trang 46

cyl =99.3 lb

Trang 47

Have dAC = 212 +7.22 =22.2 in.

7.2tan

21

φ = or φ =18.9246° Now α θ φ= +

By Law of Cosines:

2 22.22 102 2 22.2 10 cosAB

α

Trang 48

589.5791 1 cos− α =592.84 444 cos− α2

cos α −0.75307cosα +0.0055309 0= Solving α =41.785° and α =89.575°

18.9246

θ α φ α= − = − °

Trang 51

For Bar ABC:

2

C

y a

For the given position of member CD, is isosceles.CDE

Thus l D =a and l C =2 cos55a °

Then (2 cos55a ° −acos55°)δy C =(a−2 cos 55a 2 °)δy D

=

°Thus for given data

Trang 54

Equation (1):

WW

Trang 55

Link BC: xB =lcosθ

sinB

δ = − θ δθ

sinC

y =l θcosC

δ = θ δθ

2B

θ µ

=

−Substituting N into relationship for Mmax:

s

s s s

s

PP

Trang 57

For the linkage:

δ = θ δθ

3 sinF

δ = − θ δθ Virtual Work:

Trang 59

Recall Figure 8.9a Draw force triangle

Q W= θ φ+tan so that tan

θ φ δ

=

θη

Trang 60

A = − or Ay = 60 N

To determine A consider a horizontal displacement x, δxA:

Virtual Work: δU =0: A xxδ A = or 0, A = x 0

To determine M consider a counterclockwise rotation A, δθA:

Note that δyB =600δθA δyC =900δθA

Trang 62

D = −

or Dy =1.260 kN 

Trang 63

From the solution of Problem 10.41

δ = −

or δdAB =1.451 in shorter( )

Trang 64

Chapter 10, Solution 56

2370 lbBD

Trang 65

Apply vertical load P at C:

FG

F = P (T) Virtual Work:

Remove member FG and replace it with forces F FG and −F FG at pins F

and G, respectively Denoting the virtual displacements of F and G as

Trang 66

Virtual Work:

Remove member FG and replace it with forces F FG and −F FG at pins F

and G, respectively Since P and δx C have the same direction, and since

Trang 70

Chapter 10, Solution 62

lb12.5in

Trang 71

lb12.5in.

Trang 72

Pkl

θθ

 ° + 

Trang 73

Then withP=150 lb, l =30 in and k = 40 lb/in.

θθ

 ° + 

Trang 74

2ks SP Py A

21

Trang 76

x = φ =  θPotential Energy:

Trang 78

d V Wl d

2

d V Wl d

θ

θ

Trang 79

CD

W d

2

CD

W d

Trang 81

( )

2.5 0

= WL > ∴ θ = 270 , Stable° 

Trang 82

For equilibrium 0: 1.5sin1.5θ sinθ 0

dVdSolutions: One solution, by inspection, is θ =0,and a second angle less than 180° can be found numerically:

= > ∴ 137.8 ,θ = ° Stable 

Trang 83

1.06896 rad 61.247

61.2

θ = ° Stability

Trang 85

Have ( 0), 4 in., 0 20 rad

V = ky +Wy

2 0

π

Trang 86

B AB

y =l θ 18 in.l AB =Potential Energy:

21

V = ky +Wy

2 0

Trang 87

12.5 1 lb/in  x−20 in. +12.5 1 lb/in −x +40x−279 in + 10 lb  x−20 in.=0

Trang 88

2 4.24

=

or x =14.6579 in and x=25.342 in

Trang 89

Deflection of spring = s, where s = l2+ y2 − l

Trang 90

∠ = ∠ =  ° − ° + 

452

Trang 91

θ = −

and cos 0.2942812

θ = −

34.2

θ = ° and θ =145.8° W

Trang 92

34.2 :θ = ° 2 2( )

2

10.2940 0.9558 0.8993 0 Stable2

d V

ka

Trang 93

(b) For Stable equilibrium:

Trang 95

Since cosθ = is not a solution of the equation, we can divide all terms by 0 kl2cosθ and write

2cos cos tan mg

Trang 96

(b) For the given data

Solving by trial and error: θ =51.96 ,° 52.0θ = ° W

Stability: Differentiating Eq (1):

2cos cos cos 2 mgsin

2 cos51.96 cos103.92 0.4905sin 51.96

d V kl

21.2431kl 0

Trang 97

dθ = (P Q+ ) (sin θ β− )=Psin cosθ β

or (P Q+ )(sin cosθ β −cos sinθ β)=Psin cosθ β

Trang 98

Substracting P(sin cosθ β) from each member yields

(P Q)cos sinθ β Qsin cosθ β 0

Trang 99

dθ = (P Q+ ) (sin θ β− )=Psin cosθ β

or (P Q+ )(sin cosθ β −cos sinθ β)=Psin cosθ β

Trang 100

Substracting P(sin cosθ β) from each member yields

(P Q)cos sinθ β Qsin cosθ β 0

Trang 101

First note, by Law of Cosines:

Trang 103

First note that cable tension is uniform throughout,

41

49

Trang 104

Equilibrium condition:

10:

Trang 105

= −Solving numerically, θ = 0.9580 rad =54.9° θ =54.9°

Trang 106

mgkr

Trang 107

Have xC = dsin θ yB =hcosθ

Trang 109

Consider a small clockwise rotation θ of the plate about its center

a

d =   +a

 

 52

Trang 110

and

21

Trang 111

When 0, dV 0

d

θ

θ

= = for all values of P

For stable equilibrium when θ =0,require

a a

2 0

d V

dθ = 3

2 3

5sin 2 0 unstable4

Trang 112

44cos 2 2cos cos 2

9

≤ < W

Trang 113

From geometry:

sin 2 sinC

x = −a θ = − a φFor small values of θ φ,

2

θ = φ1

or =

2

cos 3 cosA

s x= = −a θPotential Energy:

7

P< ka

Trang 115

or 1

10

P < ka

1 0

0

dV

dθ = 2

2 0

d V

dθ = 3

= − < ⇒

Trang 116

a c a

φ

θ

=+ −sincos

a

a c a

θθ

=+ −sin

1 c cosa

θθ

=+ −

Differentiating both sides with respect to θ:

Trang 117

For θ φ= =0, and recalling Eq (1),

2 2

d V

dθ and

4 4

d V

dθ for ( )

2 2

1 m c m

ab

= In practice, however we shall want to keep m1 below this value

Trang 118

Chapter 10, Solution 96

For small values of θ and :φ aθ =bφ

ab

Trang 120

Stability Conditions for stability (see page 583)

2 2

20: 0

Trang 121

From the analysis of Problem 10.97 with

Trang 122

cos 2θ sin sinθ θ 2 cosθθ

sin sinθ θ cos 2θ cosθθ

Trang 123

Apply Equations 10.24

10: condition satisfied

∂ =

20: condition satisfied

Trang 124

cos sin sin 2 cos

θ

∂2

θ

Trang 125

When θ1=θ2= 0

10

∂ =

∂2

2 2 1

10: Condition satisfied

∂ =

20: Condition satisfied

∂ =

∂2

∂ <

Trang 126

Thus, for stable equilibrium when θ1=θ2= 0:

0≤ <P 0.21922kawith k =2 kN/m anda= 350 mm

0≤ <P 0.21922 2000 N/m 0.35 m

or 0≤P< 153.5 N

Trang 128

Chapter 10, Solution 102

First note, by the Law of Cosines

2 = 3 ft + 2 ft −2 3 ft 2 ft cosθDB

Also yA = 4.5cosθThen δyA = −4.5sinθδθVirtual Work

θ

DBF

or FDB =6 13 12cos− θ

17.895 kips

=DBF

17.90 kips

DB =

Trang 129

Given:

3.6 in

AB

l =1.6 in

BC

l =1.2 in

CD

l =1.6 in

DE

l =1.6 in

EF

l =4.8 in

Trang 130

49

Trang 131

θ

Trang 132

=

or θ =25.0° W

Trang 133

12

Trang 134

Chapter 10, Solution 108

Assuming

Ay

Trang 135

Apply vertical load P at D

Virtual Work:

We remove member BF and replace it with forces F and BF −F at pins BF

F and B, respectively Denoting the virtual displacements of points B and

F as δr and B δr respectively, and noting that P and F, δuuurD have the same direction, we have

δ = +

41.7 mmD

Trang 136

We remove member BF and replace it with forces F and BF −F at pins BF

F and B, respectively Denoting the virtual displacements of points B and

F as δr and B δr respectively, and noting that P and F, δuuurD have the same direction, we have

Trang 139

By inspection, one solution is cosθ =0 or θ =90.0°

Solving numerically: θ =0.38338 rad = 9.6883 and° θ = 0.59053 rad = 33.8351°

Stability

2 2

Ngày đăng: 13/09/2018, 13:42

TỪ KHÓA LIÊN QUAN

w