Consider a virtual rotation δφ of link AB... Consider a virtual rotation δφ of link AB... Equation 1: WW... Since cosθ = is not a solution of the equation, we can divide all terms by 0 k
Trang 1δφ = δθ
3G
Trang 8x = x δxG =3δxD4
x = x δxH =4δxD5
I D
x = x δxI =5δxD(a) Virtual Work: δU =0: F xEδ E −FSPδxI = 0
Trang 10δ =δ =δ = δVirtual Work:
Trang 11Have y A = 2 cos ; l θ δy A = −2 sinl θ δθ
Trang 12Chapter 10, Solution 10
Virtual Work:
2 cosA
3 sinF
δ = − θ δθVirtual Work: δU = 0: Q xδ A +P yδ F = 0
(2 cos ) ( 3 sin ) 0
Q l θ δθ + P − l θ δθ =
3 tan2
Q = P θ
Trang 13Thus: P(−3 sinl θ δθ)+Q l( cosθ δθ)= 0
3 sin− Pl θ +Qlcosθ = 0
3 sin
3 tancos
P
θ
Trang 14Chapter 10, Solution 12
A
x = a+b θ δx A = −(a+b)sinθ δθsin
G
y =a θ δy G =acosθ δθVirtual Work:
The reactions at A and B are perpendicular to the displacements of A and B hence do no work
Trang 15sin cos4
Trang 16(35 kN) sin 2 1.10365 kN
9 16sin
θ
θ =+
Trang 17ABC: sin y B = a θ ⇒ δy B = acosθδθ
y = a θ ⇒δy = a θδθ
CDE: Note that as ABC rotates counterclockwise, CDE rotates clockwise
while it moves to the left
Trang 20Virtual Work: δU = 0: cosMδθ −(P β δ) x D −(Psinβ δ) y D = 0
( cos )( sin ) ( sin )(3 cos ) 0
(c) For P directed , β =180° Equation (1): M = Pl(3sin180 cos° θ −cos180 sin° θ)
sin
M = Pl θ
Trang 21Analysis of the geometry:
Trang 22Virtual Work: δU = 0: −P xδ C −Mδθ = 0
sin
0cos
For the given conditions:P =1.0 kip =1000 lb, AB =2.5 in., and BC =10 in.:
(a) When 30 : sin 2.5sin30 , 7.181
Trang 23From the analysis of Problem 10.19, sin( )
Trang 24Chapter 10, Solution 21
Consider a virtual rotation δφ of link AB
Disregarding the second-order rotation of link BC,
C C
Trang 25Consider a virtual rotation δφ of link AB
Disregarding the second-order rotation of link BC,
C C
Trang 26(75 lb) 2 60 lb( ) sin
cos2
θθ
=
sin 0.625cos
θ = °
36.4
θ = ° (Additional solutions discarded as not applicable are θ = ±180 )°
Trang 27From the solution to Problem 10.16
2
2cos 1 sinsin
Trang 28=
2
sincos
y =l θ δy = −l θ δθVirtual Work:
Trang 29=
2
sincos
y =l θ δy = −l θ δθVirtual Work:
Trang 31or θ = 39.1°
Trang 32Then P l (sinθ −cos tanθ φ δθ) −kl3−(2cosφ +cosθ) (l sinθ +cos tanθ φ δθ) = 0
or 3 (2cos cos ) sin cos tan
sin cos tan
Trang 35First note: y D =(250 mm sin) θ δy D =(250 mm cos) θ δθ
Virtual Work:
0:δU= (250 N)δy D −F SPδx A= 0
(250 N 250 mm cos)( ) θ δθ −(1500 N cos)( θ −cos 45°)(600 mm sin) θ δθ = 0
or 5−72 tanθ(cosθ −cos 45° = ) 0
Solving numerically
15.03 and 36.9
Trang 36or (150 lb 15 in cos)( ) θ δθ +(375 lb 1 cos)( − θ) −(30in sin) θ δθ=0
or 2250cosθ −11250 1 cos( − θ)sinθ = 0
or (1 cos− θ)tanθ =0.200
Solving numerically, θ =40.22°
40.2
θ = ° W
Trang 38Chapter 10, Solution 35
s =rθ
s r
δ = δθSpring is unstretched at θ = ° 0
SP
F =ks=k rθsin
C
x =l θcos
θθ
=
θ =1.054 rad 60.39
60.4
θ = ° W
Trang 39=A
y lcos
1 2sin 45 cos 45 cos 2 cos 45
° +
= −
Trang 40Now, with P =150 lb, l =30 in., and k =40 lb/in.
θθ
° +
Trang 41From geometry: y A =lsinθ
Trang 420:δU = PδS −F SPδy C = 0
(480 N 75 mm)( )δθ −(300 N tan) θ(375 mm sec) 2θ δθ =0
or 3.125 tan secθ 2θ = 1
Trang 43Have siny A =l θ cosδy A=l θ δθ
θ
2.2222 radcos
θ
θ =
Trang 45Have dAC = 212+7.22 =22.2 in.
7.2tan
21
φ = or φ =18.9246° Now α θ φ= +
By Law of Cosines:
2 22.22 102 2 22.2 10 cosAB
α
Trang 46cyl =99.3 lb
Trang 47Have dAC = 212 +7.22 =22.2 in.
7.2tan
21
φ = or φ =18.9246° Now α θ φ= +
By Law of Cosines:
2 22.22 102 2 22.2 10 cosAB
α
Trang 48589.5791 1 cos− α =592.84 444 cos− α2
cos α −0.75307cosα +0.0055309 0= Solving α =41.785° and α =89.575°
18.9246
θ α φ α= − = − °
Trang 51For Bar ABC:
2
C
y a
For the given position of member CD, is isosceles.∆CDE
Thus l D =a and l C =2 cos55a °
Then (2 cos55a ° −acos55°)δy C =(a−2 cos 55a 2 °)δy D
=
°Thus for given data
Trang 54Equation (1):
WW
Trang 55Link BC: xB =lcosθ
sinB
δ = − θ δθ
sinC
y =l θcosC
δ = θ δθ
2B
θ µ
=
−Substituting N into relationship for Mmax:
s
s s s
s
PP
Trang 57For the linkage:
δ = θ δθ
3 sinF
δ = − θ δθ Virtual Work:
Trang 59Recall Figure 8.9a Draw force triangle
Q W= θ φ+tan so that tan
θ φ δ
=
θη
Trang 60A = − or Ay = 60 N
To determine A consider a horizontal displacement x, δxA:
Virtual Work: δU =0: A xxδ A = or 0, A = x 0
To determine M consider a counterclockwise rotation A, δθA:
Note that δyB =600δθA δyC =900δθA
Trang 62D = −
or Dy =1.260 kN
Trang 63From the solution of Problem 10.41
δ = −
or δdAB =1.451 in shorter( )
Trang 64Chapter 10, Solution 56
2370 lbBD
Trang 65Apply vertical load P at C:
FG
F = P (T) Virtual Work:
Remove member FG and replace it with forces F FG and −F FG at pins F
and G, respectively Denoting the virtual displacements of F and G as
Trang 66Virtual Work:
Remove member FG and replace it with forces F FG and −F FG at pins F
and G, respectively Since P and δx C have the same direction, and since
Trang 70Chapter 10, Solution 62
lb12.5in
Trang 71lb12.5in.
Trang 72Pkl
θθ
° +
Trang 73Then withP=150 lb, l =30 in and k = 40 lb/in.
θθ
° +
Trang 742ks SP Py A
21
Trang 76x = φ = θPotential Energy:
Trang 78d V Wl d
2
d V Wl d
θ
θ
Trang 79CD
W d
2
CD
W d
Trang 81( )
2.5 0
= WL > ∴ θ = 270 , Stable°
Trang 82For equilibrium 0: 1.5sin1.5θ sinθ 0
dVdSolutions: One solution, by inspection, is θ =0,and a second angle less than 180° can be found numerically:
= > ∴ 137.8 ,θ = ° Stable
Trang 831.06896 rad 61.247
61.2
θ = ° Stability
Trang 85Have ( 0), 4 in., 0 20 rad
V = ky +Wy
2 0
π
Trang 86B AB
y =l θ 18 in.l AB =Potential Energy:
21
V = ky +Wy
2 0
Trang 8712.5 1 lb/in x−20 in. +12.5 1 lb/in −x +40x−279 in + 10 lb x−20 in.=0
Trang 882 4.24
=
or x =14.6579 in and x=25.342 in
Trang 89Deflection of spring = s, where s = l2+ y2 − l
Trang 90∠ = ∠ = ° − ° +
452
Trang 91θ = −
and cos 0.2942812
θ = −
34.2
θ = ° and θ =145.8° W
Trang 9234.2 :θ = ° 2 2( )
2
10.2940 0.9558 0.8993 0 Stable2
d V
ka
Trang 93(b) For Stable equilibrium:
Trang 95Since cosθ = is not a solution of the equation, we can divide all terms by 0 kl2cosθ and write
2cos cos tan mg
Trang 96(b) For the given data
Solving by trial and error: θ =51.96 ,° 52.0θ = ° W
Stability: Differentiating Eq (1):
2cos cos cos 2 mgsin
2 cos51.96 cos103.92 0.4905sin 51.96
d V kl
21.2431kl 0
Trang 97dθ = (P Q+ ) (sin θ β− )=Psin cosθ β
or (P Q+ )(sin cosθ β −cos sinθ β)=Psin cosθ β
Trang 98Substracting P(sin cosθ β) from each member yields
(P Q)cos sinθ β Qsin cosθ β 0
Trang 99dθ = (P Q+ ) (sin θ β− )=Psin cosθ β
or (P Q+ )(sin cosθ β −cos sinθ β)=Psin cosθ β
Trang 100Substracting P(sin cosθ β) from each member yields
(P Q)cos sinθ β Qsin cosθ β 0
Trang 101First note, by Law of Cosines:
Trang 103First note that cable tension is uniform throughout,
41
49
Trang 104Equilibrium condition:
10:
Trang 105−
= −Solving numerically, θ = 0.9580 rad =54.9° θ =54.9°
Trang 106mgkr
Trang 107Have xC = dsin θ yB =hcosθ
Trang 109Consider a small clockwise rotation θ of the plate about its center
a
d = +a
52
Trang 110and
21
Trang 111When 0, dV 0
d
θ
θ
= = for all values of P
For stable equilibrium when θ =0,require
a a
2 0
d V
dθ = 3
2 3
5sin 2 0 unstable4
Trang 11244cos 2 2cos cos 2
9
≤ < W
Trang 113From geometry:
sin 2 sinC
x = −a θ = − a φFor small values of θ φ,
2
θ = φ1
or =
2
cos 3 cosA
s x= = −a θPotential Energy:
7
P< ka
Trang 115or 1
10
P < ka
1 0
0
dV
dθ = 2
2 0
d V
dθ = 3
= − < ⇒
Trang 116a c a
φ
θ
=+ −sincos
a
a c a
θθ
=+ −sin
1 c cosa
θθ
=+ −
Differentiating both sides with respect to θ:
Trang 117For θ φ= =0, and recalling Eq (1),
2 2
d V
dθ and
4 4
d V
dθ for ( )
2 2
1 m c m
ab
= In practice, however we shall want to keep m1 below this value
Trang 118Chapter 10, Solution 96
For small values of θ and :φ aθ =bφ
ab
Trang 120Stability Conditions for stability (see page 583)
2 2
20: 0
Trang 121From the analysis of Problem 10.97 with
Trang 122cos 2θ sin sinθ θ 2 cosθθ
sin sinθ θ cos 2θ cosθθ
Trang 123Apply Equations 10.24
10: condition satisfied
Vθ
∂ =
∂
20: condition satisfied
Vθ
Trang 124cos sin sin 2 cos
θ
∂2
θ
∂
Trang 125When θ1=θ2= 0
10
Vθ
∂ =
∂2
2 2 1
10: Condition satisfied
Vθ
∂ =
∂
20: Condition satisfied
Vθ
∂ =
∂2
∂ <
∂
Trang 126Thus, for stable equilibrium when θ1=θ2= 0:
0≤ <P 0.21922kawith k =2 kN/m anda= 350 mm
0≤ <P 0.21922 2000 N/m 0.35 m
or 0≤P< 153.5 N
Trang 128Chapter 10, Solution 102
First note, by the Law of Cosines
2 = 3 ft + 2 ft −2 3 ft 2 ft cosθDB
Also yA = 4.5cosθThen δyA = −4.5sinθδθVirtual Work
θ
DBF
or FDB =6 13 12cos− θ
17.895 kips
=DBF
17.90 kips
DB =
Trang 129Given:
3.6 in
AB
l =1.6 in
BC
l =1.2 in
CD
l =1.6 in
DE
l =1.6 in
EF
l =4.8 in
Trang 13049
Trang 131θ
Trang 132−
=
or θ =25.0° W
Trang 13312
Trang 134Chapter 10, Solution 108
Assuming
Ay
Trang 135Apply vertical load P at D
Virtual Work:
We remove member BF and replace it with forces F and BF −F at pins BF
F and B, respectively Denoting the virtual displacements of points B and
F as δr and B δr respectively, and noting that P and F, δuuurD have the same direction, we have
δ = +
41.7 mmD
Trang 136We remove member BF and replace it with forces F and BF −F at pins BF
F and B, respectively Denoting the virtual displacements of points B and
F as δr and B δr respectively, and noting that P and F, δuuurD have the same direction, we have
Trang 139By inspection, one solution is cosθ =0 or θ =90.0°
Solving numerically: θ =0.38338 rad = 9.6883 and° θ = 0.59053 rad = 33.8351°
Stability
2 2