1. Trang chủ
  2. » Luận Văn - Báo Cáo

skkn sử DỤNG PHƯƠNG PHÁP GIẢN đồ véc tơ để GIẢI bài TOÁN điện XOAY CHIỀU

23 539 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 1,38 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁTRƯỜNG THPT HOẰNG HOÁ 4 SÁNG KIẾN KINH NGHIỆM SỬ DỤNG PHƯƠNG PHÁP GIẢN ĐỒ VÉC TƠ ĐỂ GIẢI BÀI TOÁN ĐIỆN XOAY CHIỀU Người thực hiện: Lê Thị Minh Thu Chức

Trang 1

SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ

TRƯỜNG THPT HOẰNG HOÁ 4

SÁNG KIẾN KINH NGHIỆM

SỬ DỤNG PHƯƠNG PHÁP GIẢN ĐỒ VÉC TƠ

ĐỂ GIẢI BÀI TOÁN ĐIỆN XOAY CHIỀU

Người thực hiện: Lê Thị Minh Thu

Chức vụ: Giáo viên

SKKN thuộc môn: Vật lí

THANH HOÁ NĂM 2018

Trang 2

MỤC LỤC

Trang

1 MỞ ĐẦU……….…… 1

1.1 Lí do chọn đề tài……….1

1.2 Mục đích nghiên cứu……… …… 1

1.3 Đối tượng nghiên cứu……… 1

1.4 Phương pháp nghiên cứu……… 1

2 NỘI DUNG SÁNG KIẾN KINH NGHIỆM……… ….2

2.1 Cơ sở lí luận của sáng kiến kinh nghiệm………2

2.2 Thực trạng vấn đề trước khi áp dụng sáng kiến kinh nghiệm……… 2

2.3 Các giải pháp đã sử dụng để giải quyết vấn đề……… 3

2.3.1 Phương pháp chung: Phương pháp dùng giản đồ véc tơ để giải bài toán điện xoay chiều dựa trên các cơ sở………3

2.3.2 Cách vẽ giản đồ véc tơ ……….……… 3

2.3.3 Một số bài toán chứng minh tính hiệu quả của phương pháp sử dụng giản đồ véc tơ so với phương pháp đại số 6

2.3.4 Các bài toán giải theo phương pháp giản đồ véc tơ………

……….13

2.4 Hiệu quả của sáng kiến kinh nghiệm 20

3 KẾT LUẬN VÀ ĐỀ XUẤT 20

Trang 3

1 MỞ ĐẦU 1.1 Lí do chọn đề tài

Bài tập vật lý là một trong những công cụ hữu ích , nó có ý nghĩa hết sứcquan trọng trong việc học vật lý ở trường phổ thông Thông qua việc giải tốt cácbài tập vật lý các em sẽ có những kỹ năng so sánh, phân tích, tổng hợp….do đó

sẽ góp phần to lớn trong việc phát triển tư duy của học sinh Đặc biệt bài tập vật

lý giúp học sinh củng cố kiến thức có hệ thống cũng như vận dụng những kiếnthức đã học vào việc giải quyết những tình huống cụ thể, làm cho bộ môn lôicuốn, hấp dẫn các em hơn

Tuy vậy, Vật lý là một môn học khó vì cơ sở của nó là toán học Bài tập

vật lý rất đa dạng và phong phú Trong phân phối chương trình số tiết bài tâp lạihơi ít so với nhu cầu cần củng cố kiến thức cho học sinh Chính vì thế, ngườigiáo viên phải làm thế nào để tìm ra phương pháp tốt nhất nhằm tạo cho học

sinh niềm say mê yêu thích môn học này Giúp học sinh việc phân loại các dạng

bài tập và hướng dẫn cách giải là rất cần thiết Việc làm này rất có lợi cho họcsinh trong thời gian ngắn đã nắm được các dạng bài tập, nắm được phương phápgiải và từ đó có thể phát triển hướng tìm tòi lời giải mới cho các dạng bài tươngtự

Có thể nói trong chương trình Vật lý lớp 12, bài tập về điện xoay chiều làphong phú, đa dạng và khó Việc nắm vững kiến thức, vận dụng kiến thức đểgiải các bài tập định lượng của chương này đối với học sinh thật không dễ dàng.Qua những năm đứng lớp tôi nhận thấy học sinh thường rất lúng túng trong việctìm cách giải các dạng bài tập toán này Với mong muốn tìm được các phươngpháp giải các bài toán trắc nghiệm một cách nhanh chóng đồng thời có khả năngtrực quan hóa tư duy của học sinh và lôi cuốn được nhiều học sinh tham gia vàoquá trình giải bài tập cũng như giúp một số học sinh không yêu thích hoặckhông giỏi môn vật lý cảm thấy đơn giản hơn trong việc giải các bài tập trắcnghiệm vật lý, tôi chọn đề tài “SỬ DỤNG PHƯƠNG PHÁP GIẢN ĐỒ VÉC-

TƠ ĐỂ GIẢI BÀI TOÁN ĐIỆN XOAY CHIỀU ”

1.2 Mục đích nghiên cứu

Mục đích của đề tài này là nhằm giúp học sinh khắc sâu những kiến thức

lí thuyết , có một hệ thống bài tập và phương pháp giải chúng, giúp các em cóthể nắm được cách giải và từ đó chủ động vận dụng các phương pháp này trongkhi làm bài tập Từ đó hoc sinh có thêm kỹ năng về cách giải các bài tập Vật lí,cũng như giúp các em học sinh có thể nhanh chóng giải các bài toán trắc nghiệm

về bài tập điện xoay chiều vốn phong phú và đa dạng

1.3 Đối tượng nghiên cứu

Đề tài “SỬ DỤNG PHƯƠNG PHÁP GIẢN ĐỒ VÉC-TƠ ĐỂ GIẢI BÀITOÁN ĐIỆN XOAY CHIỀU ” tập trung nghiên cứu nhằm giúp các em học sinhrèn luyện kĩ năng sử dụng phương pháp giản đồ véc tơ để giải một số dạng bàitập điện xoay chiều trong chương trình Vật lí lớp 12

1.4 Phương pháp nghiên cứu

a) Nghiên cứu xây dựng cơ sở lí thuyết

Trang 4

- Căn cứ chuẩn kiến thức kĩ năng của chương trình Vật lí 12 và sách giáo khoaVật lí 12.

- Căn cứ vào các phương pháp dạy học phù hợp, lấy người học làm trung tâm

- Căn cứ vào năng lực thực tế của học sinh tại các lớp ở các trường THPT

- Căn cứ vào yêu cầu của các đề thi THPT Quốc gia những năm vừa qua

- Nghiên cứu nội dung sách giáo khoa và tìm hiểu chương trình Vật lí lớp 12THPT Nghiên cứu các tài liệu tham khảo có liên quan để xác định các dạng bàitập điện xoay chiều

Trong đề tài này tôi trình bày cách sử dụng giản đồ véc tơ để giải một sốbài toán điện xoay chiều lớp 12, nhằm giúp các em học sinh nắm vững và thànhthạo phương pháp này, áp dụng để giải nhanh và hiệu quả một số dạng bài tậpđiện xoay chiều

b) Điều tra khảo sát thực tế, thu thập thông tin, thống kê, xử lí số liệu

- Tiến hành giảng dạy song song với việc tìm hiểu các học sinh lớp 12 trườngTHPT Hoằng Hoá 4, huyện Hoằng Hoá, Thanh Hoá Trên cơ sở phân tích địnhtính và định lượng kết quả thu được trong quá trình thực nghiệm sư phạm đểđánh giá tính khả thi và hiệu quả của các biện pháp do đề tài đưa ra

- Thời gian tiến hành thực nghiệm sư phạm: Từ tháng 9 năm 2016 đến tháng 5năm 2018 Địa điểm: Trường THPT Hoằng Hoá 4 – Hoằng Hoá – Thanh Hoá

2 NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận của sáng kiến kinh nghiệm.

Quá trình giải một bài tập vật lý nói chung và bài tập điện xoay chiều nóiriêng là quá trình tìm hiểu điều kiện của bài toán, xem xét hiện tượng vật lý đềcập, dựa vào kiến thức vật lý để tìm ra những cái chưa biết trên cơ sở những cái

đã biết Thông qua hoạt động giải bài tập, học sinh không những củng cố lýthuyết và tìm ra lời giải một cách chính xác, mà còn hướng cho học sinh cáchsuy nghĩ, lập luận để hiểu rõ bản chất của vấn đề, và có cái nhìn đúng đắn khoahọc Vì thế, mục đích cơ bản đặt ra khi giải bài tập điện xoay chiều là làm chohọc sinh hiểu sâu sắc hơn những quy luật vật lý, biết phân tích và ứng dụngchúng vào những vấn đề thực tiễn, vào tính toán kĩ thuật và cuối cùng là pháttriển được năng lực tư duy, năng lực tự giải quyết vấn đề

Muốn giải được bài tập điện xoay chiều, học sinh phải biết vận dụng cácthao tác tư duy, so sánh, phân tích, tổng hợp, khái quát hóa…để xác định đượcbản chất vấn đề cần giải quyết Vì vậy, việc giải thành thạo bài tập điện xoaychiều là phương tiện kiểm tra kiến thức, kĩ năng của học sinh

2.2 Thực trạng vấn đề trước khi áp dụng sáng kiến kinh nghiệm.

Qua thực tế khảo sát học sinh các lớp trực tiếp giảng , tôi nhận thấy khigiải các bài tập về dòng điện xoay chiều, đa số học sinh thường dùng phươngpháp đại số, còn phương pháp giản đồ véc tơ thì học sinh thường rất ít dùng vìngại vẽ hình, ngại tư duy Khi đọc đề bài xong, các em thường muốn có ngaycông thức đại số cho dạng bài tập đó để thay số rồi bấm máy tính lấy kết quả.Điều này là rất đáng tiếc vì phương pháp giản đồ véc tơ dùng giải các bài toán

Trang 5

điện xoay chiều rất hay và ngắn gọn, đặc biệt là các bài toán liên quan đến độlệch pha Có nhiều bài toán khi giải bằng phương pháp đại số rất dài dòng vàphức tạp còn khi giải bằng phương pháp giản đồ véc tơ thì tỏ ra rất hiệu quả ở sựngắn gọn, trực quan Việc khai thác hiệu quả phương pháp sẽ góp phần nâng caohiệu quả trong việc nắm kiến thức cũng như khả năng vận dụng để đạt kết quảcao trong kì thi.

Từ thực tế đó, tôi mạnh dạn chọn đề tài “SỬ DỤNG PHƯƠNG PHÁPGIẢN ĐỒ VÉC TƠ ĐỂ GIẢI BÀI TOÁN ĐIỆN XOAY CHIỀU” nhằm giúpcác em học sinh rèn luyện kĩ năng giải nhanh một số dạng bài tập về dòng điệnxoay chiều

2.3 Các giải pháp đã sử dụng để giải quyết vấn đề.

2.3.1 Phương pháp chung: Phương pháp dùng giản đồ véc tơ để giải bài toán điện xoay chiều dựa trên các cơ sở

+ Mỗi đại lượng xoay chiều được đặt bằng một véc tơ có độ dài tỉ lệ với giá trịhiệu dụng của đại lượng đó

+ Véc tơ được vẽ trong mặt phẳng pha, có gốc và chiều dương của pha để tínhgóc pha

+ Góc giữa hai véc tơ bằng độ lệch pha giữa hai đại lượng đó

+ Phép cộng đại số giữa các đại lượng xoay chiều thay thế bằng phép tổng hợpcác véc tơ tương ứng

+ Chọn gốc pha là véc tơ cường độ dòng điện I cho mạch mắc nối tiếp

+ Các thông tin về các đại lượng xoay chiều được hoàn toàn xác định từ kết quảtính toán trên giản đồ véc tơ

2.3.2 Cách vẽ giản đồ véc tơ

- Xét mạch R,L,C mắc nối tiếp như hình bên

Đặt vào hai đầu đoạn mạch AB một hiệu điện thế

xoay chiều Tại một thời điểm các giá trị tức thời của dòng điện là như nhau:

iR = iL = iC = i Nếu cường độ dòng điện đó có biểu thức i I c 0 os ( )t A thìbiểu thức của điện áp giữa hai điểm A - M, M - N và N - B lần lượt là:

os ( )

os( )( )

2 os( )( )

Do đó điện áp giữa hai điểm A,B: u ABu AMu MNu NB

Các đại lượng biến thiên điều hòa cùng tần số nên chúng có thể biểu diễn bằng các véc tơ quay:

U                            U                U               U

(Trong đó độ lớn các véc tơ biểu thị hiệu điện thế hiệu dụng của nó)

- Việc so sánh pha dao động giữa điện áp hai đầu mỗi phần tử với dòng điệnchạy qua nó cũng chính là so sánh pha dao động của chúng với dòng điện chạy

C

Trang 6

trong mạch chính Do đó trục pha trong giản đồ Frexnel ta chọn là trục dòngđiện thường nằm ngang Các véc tơ biểu diễn các điện áp hai đầu mỗi phần tử vàhai đầu mạch điện biểu diễn trên trục pha thông qua quan hệ pha của nó vớicường độ dòng điện.

a) Giản đồ véc tơ buộc (quy tắc hình bình hành)

+ uL nhanh pha

2

so với i =>UL vuông gócvới trục i và hướng lên

+ uC chậm pha

2

so với i => UC vuông gócvới trục i và hướng xuống

Cộng hai véc-tơ cùng phương ngược chiều U L

UC

trước, sau đó cộng tiếp với UR theo quy tắc hình bình hành

+ Chú ý đến một số hệ thức trong tam giác vuông

* Các bước giải toán :

+ Chọn trục gốc là trục dòng điện, sử dụng các điều kiện về

pha của i và u trên từng đoạn mạch Dựa vào giản đồ véc tơ xác định được:

+ Sau khi vẽ giản đồ vec tơ cần xác định xem góc α nào không đổi để tính tanα,sau đó xét tam giác có cạnh biểu diễn giá trị cần tìm, trong đó có một góc khôngđổi đối diện với cạnh không đổi, dùng định lý hàm số sin để tính và biện luận

LU

RU

 

I

CU

LU

RU

I

CU

Trang 7

b) Giản đồ véc tơ trượt (quy tắc đa giác )

Cách vẽ

- Chọn trục toạ độ nằm ngang là trục dòng điện

- Chọn điểm đầu mạch (A) làm gốc

- Vẽ lần lượt các véc-tơ biểu diễn các điện áp U , U , U  AM MN NB

lần lượt từ A sang B nối đuôi nhau theo nguyên tắc: R – ngang; L - lên.; C – xuống Độ dài các véc tơ tỉ lệ với các giá trị hiệu dụng tương ứng

- Nối các điểm trên giản đồ có liên quan đến dữ kiện của bài toán: Nối A và B

thì véc tơ AB biểu diễn hiệu điện thế uAB,véc tơ AN biểu diễn hiệu điện thế uAN,

véc tơ MB biểu diễn hiệu điện thế uNB

- Biểu diễn các số liệu lên giản đồ

- Dựa vào các hệ thức lượng trong

tam giác để tìm các điện áp hoặc góc chưa biết

Nhận xét:

+ Các điện áp trên các phần tử được biểu diễn

bởi các véc tơ mà độ lớn của các véc-tơ tỷ lệ với hiệu điện thế hiệu dụng củanó

+ Độ lệch pha giữa các hiệu điện thế là góc hợp bởi giữa các véc tơ tương ứngbiểu diễn chúng

+ Độ lệch pha giữa hiệu điện thế và cường độ

dòng điện là góc hợp bởi véc tơ biểu diễn nó với trục i

+ Việc giải bài toán là nhằm xác định độ lớn các

cạnh và góc của tam giác dựa vào các định lý

hàm số sin, hàm số cosin và các công thức toán học

+Nếu cuộn dây không thuần cảm ( trên đoạn MN có cả L và r)

Trang 8

thì U AB U R U L U RU C

ta vẽ L trước như sau: L- đi lên, r- đi ngang, R- đingang và C đi xuống hoặc vẽ r trước nha sau: r- đi ngang, L- đi lên, R- đi ngang

và C đi xuống

+ Trong toán học một tam giác sẽ giải được nếu biết

trước 3 yếu tố ( 2 cạnh 1 góc; 2 góc 1 cạnh; ba cạnh) trong 6 yếu tố ( ba góc và

ba cạnh) Để làm được điều đó ta sử dụng các định lý hàm số sin và hàm sốcosin

(gốc của UR trùng với ngọn

của UL ) Từ ngọn của véc tơ UR vẽ

nối tiếp véc tơ UC Véc tơ tổng U 

có gốc là gốc của UL và có ngọn là ngọn của véc tơ cuối cùng UC

Chú ý: - Khi giải toán ta phải dựa vào điều kiện của bài

toán để xác định sử dụng phương pháp nào để giải quyết

bài toán là nhanh nhất Thông thường nên sử dụng phương pháp véc tơ trượt vì phương pháp này đơn giản, hiệu quả giải nhanh và không tốn thời gian

- Thực ra không thể có một giản đồ chuẩn cho tất cả các bài toán điệnxoay chiều nhưng những giản đồ được vẽ trên là giản đồ có thể thường dùng Việc sử dụng giản đồ véc tơ nào là hợp lí còn phụ thuộc vào kinh nghiệm củatừng người Dưới đây là một số bài tập có sử dụng giản đồ véc tơ làm ví dụ

2.3.3 Một số bài toán chứng minh tính hiệu quả của phương pháp sử dụng giản đồ véc tơ so với phương pháp đại số.

Bài 1: Cho mạch điện như hình vẽ Biết cuộn dây thuần cảm Điện áp hiệu

dụng UAB= 15V, UAM= 20V, UMB= 25V Tính hệ số công suất của mạch?

Trang 9

Thay UC vào (2) giải ra ta được UR= 12V

Cách 2: Phương pháp véc tơ buộc.

+ Vẽ giản đồ véc tơ như hình vẽ:

25

AM MB

U

c U

+ Cách 1: Dùng phương pháp đại số để giải bài toán sẽ dài dòng Đối với những

học sinh có học lực trung bình thì việc tính toán sẽ hết khó khăn đối với các em

+ Cách 2: Dùng phương pháp véc tơ buộc sẽ dễ dàng hơn đối với những học

sinh có học lực trung bình, với cách vẽ đơn giản học sinh có thể nhìn vào giản

đồ véc-tơ để giải quyết bài toán một cách ngắn gọn Đây sẽ là cách tối ưu để họcsinh lựa chọn

Bài 2: Cho mạch điện như hình vẽ

Giá trị của các phần tử trong mạch

Trang 10

50 100

1 1

100

1 100

L Z

, 3

100

1 2

200 100

100 1

.

r R r

r r r

r R

Z Z

U

I

L

AN AN

1003

100

200

2 2

V Z

Z r

R I Z

I

2200

200

0

2 2

13

1003

Z Z

U U

Z Z

L C

L C

2

2

Do đó, AO là đường trung tuyến của ABN

AO MO

U U

r

R R r

3

1 2

 Suy ra, M là trọng tâm của ABN

+ Vậy, M vừa là trọng tâm vừa là trực tâm của  ABN, do đó  ABN đều, tức là:

Trang 11

NB Z

U I

C C

+ Từ giản đồ tính được:

) ( 3

100 2

), ( 3 200

) ( 3

200 60

sin 200 3

2 3

U

R

V AO

+ Cách 1: Bài toán giải hết sức phức tạp vì phải giải hệ phương trình Nếu độ

lệch pha uMN so với uAB không phải là

+ Cách 2: Đối với những học sinh có học lực trung bình cũng có thể dễ dàng vẽ

được giản đồ theo yêu cầu đề bài Đây sẽ là cách tối ưu để học sinh lựa chọn

Bài 3: Cho mạch điện như hình vẽ Điện trở thuần R 120 3  , cuộn dây cóđiện trở thuần r 30 3  Hiệu điện thế hai đầu đoạn mạch có biểu thức:

1

2 2

2 2

r

Z Z r R Z

I

U Z

Z r

I

U Z

r R

MB C

L

AN L

Trang 12

2 2

2 2

r

Z Z

Z

r

Z r

R

C L L

MB AN

C L

30

3 150

3 60

300 3

30

3 150

2 2

2 2

C L L

C L L

Z Z Z

Z Z

H L

A Z

Cách 2: Phương pháp véc tơ buộc

+ Vẽ giản đồ véc tơ như hình bên

+ Xét tam giác vuông phía trên

(chú ý U R  4U r):

60 300

5 300

Trang 13

   A

r

U I V

L

AB

r R

Z Z

tg

+ Biểu thức dòng điện: i 2 os 100c  t 0,106   A

*Nhận xét:

+ Cách 1: Bài toán giải hết sức phức tạp vì phải giải hệ phương trình

Đối với những học sinh có học lực trung bình thì việc tính toán sẽ hết khó khănđối với các em

+ Cách 2: Đối với những học sinh có học lực trung bình cũng có thể dễ dàng vẽ

được giản đồ theo yêu cầu đề bài Đây sẽ là cách tối ưu để học sinh lựa chọn

Bài 4: Cho mạch điện như hình Điện trở R80  , các vôn kế V1 đo điện áphai đầu đoạn mạch AM, vôn kế V2 đó điện áp hai đầu đoạn mạch MB( điện trởcủa các vôn kế rất lớn) Đặt vào hai đầu đoạn mạch một hiệu điện thế

MB AN

V MB

AB AB

tg tg

I

U Z

I

U Z

240 80

3

80 3 3

Ngày đăng: 05/09/2018, 07:49

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w