1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Một số bài tập về bất đẳng thức (Phạm Công Thành Quảng Ngãi)

10 403 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 473,86 KB

Nội dung

Một số bài tập về bất đẳng thức (Phạm Công Thành Quảng Ngãi). Tài liệu tổng hợp 1 số bài tập về bất đẳng thức Bunhiakopxki và AmGm ( Cauchy)..............................................................................................................................

TEST 1: BUNHIAKOPXKI AND AM-GM “In mathematics the art of proposing a question must be held of higher value than solving it.” Georg Cantor PROBLEM 1: If a,b are positive numbers such that: a  b  then: 2018a  2017b  16140 PROBLEM 2: If a, b, c are positive numbers then: a  2018a  b  c  2020 PROBLEM 3: If a, b, c are positive numbers then: a(2a  b) 1 ac  c) (CMATH)  (b  PROBLEM 4: Let a, b, c are positive numbers such that abc=1 Prove that: a 1   3a  2ab  2 PROBLEM 5: If a, b, c are positive numbers then: 18 x  y  z 1     6( x  y ) (2 y  3z )( z  18 x) 12 x  y  z x  y  z x  y  z PROBLEM 6: Let a, b, c > such that ab  bc  ca   3abc Prove that: 2018 2018a  4024ab  2015b  2018 PROLEM 7: If a, b, c are positives numbers and ab+bc+ca=abc then:  b2  2a  ab 1 1  ab  bc  ca  abc  a  b  ab  PROBLEM 8: Let a, b, c are positive numbers such that  b  c  bc  c  a  ca  Find the minimum value of the empression: a  b4 ab  a  b2  ab  ( c )2 PROBLEM 9: If a, b, c are positive numbers then:  2 ( 2018abc  1) ( a  4b  2)( 4b  (1009c)  2)( (1009c)  a  2)  a1  a2   a2018  2 a1  a2   a2018  PROBLEM 10: Let a1 , a2 , , a2018 are real numbers satisfying:  Find the minimum value and maximum value of a2018 THE END Good luck! RESOLUTION Pham Cong Thanh PROBLEM 1: If a,b are positive numbers such that: a  b  then: 2018a  2017b  16140 Dễ thấy a>b>0 Ta có:  a  b2  (a  b)(a  b) 4035 4035  4035  [ (a  b)][ ( a  b)] 2 2  Áp dụng BĐT ab  ( ab ) suy ra: 4035 4035  [ (a  b)][ (a  b)]  [ 2 4035 (a  b)  (a  b) 2018a  2017b 2 ]2  ( ) 2  (2018a  2017b)2  16140  2018a  2017b  16140 (đpcm) 4036   a  4035 Dấu “=” xảy  b  4034  4035 PROBLEM 2: If a, b, c are positive numbers then: a  2018a  b  c  2020 Ta có:  2017. Áp dụng BĐT  2017.  a abc   (a  b  c). 2018a  b  c 2018a  b  c 2018a  b  c 1    suy ra: x y z x yz a 9  (a  b  c)  2018a  b  c 2020(a  b  c) 2020 a  2018a  b  c  2020 (đpcm) Dấu “=”xảy a=b=c PROBLEM 3: If a, b, c are positive numbers then: a(2a  b) 1 ac  c)  (b  Ta có: (b  ac  c)  ( b b  a c  a c ) a Áp dụng BĐT Bunhiakopxki, ta có: ( b b  a c  a => a (2a  b)  (b  ac  c) a bc c2 a  a2 ab  ac  c c c2 )  (2a  b)(b  c  ) a a c(2c  a) b(2b  c) b2 c2   Tương tự: 2 (a  ab  c)2 ab  bc  a (a  bc  b) ac  bc  b a(2a  b) a2 b2 c2   =>  2 (b  ac  c)2 ab  ac  c ab  bc  a ac  bc  b Áp dụng BĐT Cauchy- Schward, ta có: a(2a  b) a2 b2 c2 (a  b  c ) (a  b  c )     1 2 a  b  c  2(ab  bc  ca ) (a  b  c )2 ac  c)2 ab  ac  c ab  bc  a ac  bc  b  (b  =>đpcm Dấu “=” xảy a=b=c PROBLEM 4: Let a, b, c are positive numbers such that abc=1 Prove that: a 1   3a  2ab  2 Ta có: a8  3a  2ab  = (a8    1)  3a  2ab   AM GM (a  1)  2ab   AM GM 2( a  ab  1) => 1  a  3a  2ab  2(a  ab  1) Tương tự: => a 1 1   c  3c  2ca  2(c ca  1) b  3b  2bc  2(b  bc  1) 1    3a  2ab  ab  a  Với abc=1 dễ chứng minh => a 1   3a  2ab  2  ab  a   =>đpcm Dấu “=” xảy a=b=c=1 PROBLEM 5: If a, b, c are positive numbers then: 18 x  y  z 1     6( x  y ) (2 y  3z )( z  18 x) 12 x  y  z x  y  z x  y  z BĐT   (2 y  3z )  ( z  18 x) 1     6( x  y) (2 y  3z )( z  18 x) 12 x  y  z x  y  z x  y  z 1 1 1      6( x  y) y  3z z  18 x 12 x  y  z x  y  z x  y  z Đặt a=6x; b=2y; c=z BĐT  1  a  3b   2a  b  c Ta dễ dàng chứng minh BĐT Thật vậy: Áp dụng BĐT 1   ta có: a b ab 1    a  3b a  b  2c 2(a  2b  c) a  2b  c 1    b  3c 2a  b  c 2(a  b  2c ) a  b  2c 1    c  3a a  2b  c 2(2a  b  c) 2a  b  c Cộng vế tương ứng => đpcm Dấu “=” xảy a=b=c hay 6x=2y=z PROBLEM 6: Let a, b, c > such that ab  bc  ca   Ta có:  2018a  4024ab  2015b  2018a  4024ab  2015b Áp dụng BĐT => 2  3abc Prove that: 2018 2018 (2a  b)  2014(a  b)  2a  b 1    x y z x yz 3 1 1  2a  b   a  a  b  ( a  b  c )  ( a  b  c ) Lại có ab  bc  ca  3abc 2018 1     a b c 2018   2018a  4024ab  2015b   Đpcm Dấu “=” xảy a  b  c  2018 2 2018 PROLEM 7: If a, b, c are positives numbers and ab+bc+ca=abc then:  b2  2a  ab Áp dụng BĐT Bunhiakopxki cho số (1; 2) (b; 2.a) , ta có: (1  2)(b2  2a )  Bunhiakopxki (b  2a)2  b  2a   b  2a b  2a b  2a  ab 3ab Tương tự:   c  2b c  2b  ; bc 3bc a  2c a  2c  ca 3ca b  2a c  2b a  2c 3(ab  bc  ca) b  2a      (đpcm) ab 3ab 3bc 3ca 3abc Dấu “=” xảy a=b=c=3 1 1  ab  bc  ca  abc  a  b  ab  PROBLEM 8: Let a, b, c are positive numbers such that  b  c  bc  c  a  ca  Find the minimum value of the empression: a  b4 ab  a  b2  ab  ( c )2 Ta có: (a  b2 )(a  b)2   a  b  2a 3b  2ab3  2a 2b   a  b4  2ab(a  b  ab) a  b4  2ab  a  b  ab b4  c c4  a4  bc  2ca Tương tự: ; b  c  bc c  a  ca a  b4     2ab (1) a  b  ab ab a 2b b c c a Lại có: ( )     2(a  b  c )  AM GM 3 a c c a b ab ( )   a (2)  c 1    Mặt khác: => a  b  c  ab bc ca abc a  b4 ab  a2  b2  ab + ( c )   a2   2ab  ( a)2  Từ (1) (2) suy ra: Vậy GTNN a  b4 ab  a  b2  ab  ( c )2 Dấu “=” xảy a=b=c=1 PROBLEM 9: If a, b, c are positive numbers then:  2 ( 2018abc  1) ( a  4b  2)( 4b  (1009c)  2)( (1009c)  a  2) Đặt x=a; y=2b; z=1009c BĐT   ( xyz  1)3 ( x  y  2)( y  z  2)( z  x  2) Thật vậy, ta có: (1  x)(1  y )(1  z )  xyz  ( xy  yz  xz )  ( x  y  z )   AM GM xyz  3 x y z  3 xyz   ( xyz  1)3  1  (1) ( xyz  1) (1  x)(1  y)(1  z ) Lại có (1  x)(1  y )(1  z )  (1  x)(1  y ) (1  y )(1  z ) (1  x)(1  z )  ( x  y  2)( y  z  2)( x  z  2) Mà ( x  y  2)( y  z  2)( x  z  2) ( 2( x2  y )  2)( 2(y2  z )  2)( 2(z  x2 )  2) ( x2  y  2)( y2  z  2)( z  x  2)   8  (1  x)(1  y )(1  z )   ( x  y  2)( y2  z  2)( z  x  2) 8  (2) 2 (1  x)(1  y )(1  z ) ( x  y  2)( y  z  2)( z  x  2) Từ (1) (2) suy ra: đpcm  a1  a2   a2018  2 a1  a2   a2018  PROBLEM 10: Let a1 , a2 , , a2018 are real numbers satisfying:  Find the minimum value and maximum value of a2018  a1  a2   a2018   a1  a2   a2017   a2018   2 2 2 a1  a2   a2018  a1  a2   a2017   a2018 Ta có:  Áp dụng BĐT Bunhiakopxki, ta có: (1    1)(a12  a2   a2017 )  ( a1  a2   a2017 ) 2 2  2017(a1  a2   a2017 )  ( a1  a2   a2017 ) 2  2017(1  a2018 )  (1  a2018 )  2018a2018  2a2018  2016    a2018   1008 1009 Vậy GTNN a2018  1008 GTLN a2018 1009 THANKS FOR READING ... a, b, c are positives numbers and ab+bc+ca=abc then:  b2  2a  ab Áp dụng BĐT Bunhiakopxki cho số (1; 2) (b; 2.a) , ta có: (1  2)(b2  2a )  Bunhiakopxki (b  2a)2  b  2a   b  2a b  2a

Ngày đăng: 01/05/2018, 16:18

TỪ KHÓA LIÊN QUAN

w