1. Trang chủ
  2. » Giáo án - Bài giảng

BAI TAP NHI THUC NIUTON

6 1,7K 24
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 260 KB

Nội dung

Bi tp v i s t hp: Quy tác cộng, Quy tắc nhân: 1. Một trờng phổ thông có 12 học sinh chuyên tin và 18 học sinh chuyên toán. Thành lập một đoàn gồm hai ngời sao cho có một học sinh chuyên toán và một học sinh chuyên tin. Hỏi có bao nhiêu cách lập một đoàn nh trên? 2. Từ các số 1,2,3,4,5,6,7,8. a. Có bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau? b. Có bao nhiêu số gồm 5 chữ số đôi một khác nhau và chia hết cho 5? 3. Có thể lập bao nhiêu số chẳn gồm 5 chữ số khác nhau lấy từ 0,2,3,6,9? 4. Có bao nhiêu số chẳn có 4 chữ số đôi một khác nhau? 5. Từ các sô 0,1,2,3,4,5. a. Có bao nhiêu số có ba chữ số khác nhau chia hết cho 5 b. có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9? Hoán vị. 1. Cho 5 chữ số 1,2,3,4,5. a. Có bao nhiêu số có 5 chữ số khác nhau? b. Có bao nhiêu số có 5 chữ số đôi một khác nhau và bắt đầu là số3? c. Có bao nhiêu số có 5 chữ số đôi một khác nhau và không bắt đầu bằng số 1. d. Có bao nhiêu số có 5 chữ số khác nhau và bắt đầu la chữ số lẻ? 2. Có bao nhiêu xếp 5 bạn A,B,C,D, E vào một ghế dài sao cho: a. Bạn C ngồi chính giữa. b, Hai bạn A, E ngồi hai đầu ghế? 3. Một học sinh có 12 cuốn sách đôi một khác nhau trong đó có 4 cuốn Văn, 2 cuốn Toán, 6 cuốn Anh Văn, Hỏi có bao nhiêu cách sắp các cuốn sách lên một kệ dài sao cho các cuốn cùng môn nằm kề nhau? 4. Có hai bàn dài, mỗi bàn có 5 ghế. Ngời ta muốn xếp chổ ngồi cho 10 học sinh gồm 5 nam và 5 nữ. Hỏi có bao nhiêu cách sắp xếp nếu: a. Các học sinh ngồi tuỳ ý? b. Các học sinh nam ngồi một bàn, học sinh nữ ngồi một bàn? 5. Xét các số gồm 9 chữ số trong đó có 5 chữ số 1 và 4 chữ số còn lại là 2,3,4,5. Hỏi có bao nhiêu cách sắp nếu a. Năm chữ số 1 xếp kề nhau b. Năm chữ số 1 xếp tuỳ ý? Chỉnh hợp. 1. Từ các số 1,2,3,4,5,6 lập bao nhiêu số có 4 chữ số đôi một khác nhau? 2. Có bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau?? 3. Từ các số 0,1,3,5,7 lập bao nhiêu số gồm 4 chữ số khác nhau a. Chia hết cho 5 b. Không chia hết cho 5? 4. Từ các số 0,1,2,3,4,5,6,7 lập bao nhiêu số có 5 chữ số khác nhau trong đó a. Số tạo thành là số chẳn? b. Một trong 3 chữ số đầu tiên phải có mặt số 1? c. nhất thiết phải có mặt chữ số 5?? d. Phải có mặt hai số 0 và 1? 5. Từ các số 1,2,3,4,5,6,7 lập đựoc bao nhiêu số có 3 chữ số khác nhau và nhỏ hơn 276?? 6, Giải các phơng trình và bất phơng trình sau: a. )2(672. 2 ã 2 xxxx PAAP +=+ b. xAA xx 215 23 + c. 8910 9 xxx AAA =+ Tổ hợp. 1. Đề thi trắc nghiệm có 10câu hỏi Học sinh cần chọn trả lời 8 câu 1 a. Hỏi có mấy cách chọn tuỳ ý? b. Hỏi có mấy cách chọn nếu 3 câu đầu là bắt buộc? c. Hỏi có bao nhiêu cách chọn 4 trong 5 câu đầu và 4 trong 5 câu sau?? 2. Một tổ có 12 học sinh. Thầy giáo có 3 đề kiểm tra khác nhau. Cần chọn 4 học sinh cho mỗi đề kiểm tra. Hỏi có mấy cách chọn? 3. Có 5 tem th khác nhau và 6 bì th khác nhau. Ngời ta muốn chọn từ đó ra 3 tem th và 3 bì th và dán 3 tem th lên 3 bì th đã chọn. Mỗi bì th chỉ dán 1 tem. Hỏi có bao nhiêu cách làm nh thế? 4. Một lớp có 20 học sinh trong đó có 2 cán bộ lớp. Hỏi có bao nhiêu cách chọn 3 ngời đi dự Hội nghị sao cho trong đó có ít nhất 1 cán bộ lớp? 5. Có 5 nhà Toán học nam, 3 nhà Toán học nữ và 4 nhà Vật lý. Muốn lập một đoàn công tác có 3 nguời gồm cả nam lẫn nữ, cần có nhà Toán hoc lẫn Vật lý. Hỏi có bao nhiêu cách chọn? 6. Một đội Văn Nghệ gồm 10 nguời trong đó có 6 nữ, 4 nam. Có bao nhiêu cách chia đội văn nghệ: a. Thành hai nhóm có số nguời bằng nhau và mỗi nhóm có số nữ bằng nhau? b. Có bao nhiêu cách chọn 5 ngời trong đó không quá một nam? 7. Có hai đờng thẳng song song d 1 và d 2 . Trên d 1 lấy 15 điểm phân biệt, trên d 2 lấy 9 điểm phân biệt. Hỏi có bao nhiêu tam giác mà có 3 đỉnh là các điểm đã lấy? 8. Trong một hộp có 7 quả cầu xanh, 5 quả cầu đỏ và 4 quả cầu vàng, các quả cầu đều khác nhau. Chọn ngẫu nhiên 4 quả cầu trong hộp. Hỏi có bao nhiêu cách chọn: a. sao cho trong 4 quả cầu chọn ra có đủ cả ba màu? b. Không có đủ ba màu? 9. Một đội thanh niên tình nguyện có 15 ngời gồm 12 nam và 3 nữ. Hỏi có bao nhiêu cách phân công đội thanh niên tình nguyện đó về giúp đỡ ba tỉnh miền núi sao cho mỗi tỉnh có 4 nam và 1 nữ?? 10. Trong một môn học, thầy giáo có 30 câu hỏi khác nhau gồm 5 câu hỏi khó, 10 câu trung bình và 15 câu dễ. Từ 30 câu hỏi đó lập đợc bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau sao cho trong mỗi đề nhất thiết phải có đủ 3 loại câu hỏi và số câu hỏi dễ không ít hơn 2?? 11. Đội TNXK của một trờng có 12 học sinh, gồm 5 học sinh lớp A, 4 học sinh lớp B, 3 học sinh lớp C. Cần chọn 4 học sinh làm nhiệm vụ sao cho 4 học sinh này thuộc không quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn nh vậy?? 12. i tuyn hc sinh gii gm 18 em, gm 7hc sinh khi 12, 6 hc sinh khi 11, 5 hc sinh khi 10. C 8 em i d tri hố sao cho mi khi cú ớt nht 1 em c chn. Hi cú bao nhiờu cỏch c nh vy? 13. (ĐH Y-2000) Có 5 nhà toán học nam,3 nhà toán học nữ và 4 nhà vật lý nam.lập 1 đoàn công tác có 3 ng ời cần có cả nam và nữ ,có cả toán và lý .Hỏi có bao nhiêu cách 14. Một dạ tiệc có 10 nam và 6 nữ biết khiêu vũ.Hỏi có bao nhiêu cách chọn ra 3nam và 3 nữ để ghép thành 3 cặp nhảy 15. Bill Gate có 5 ngời bạn thân.Ông muốn mòi 5 trong số họ đi chơi xa .Trong 11 ngời này có 2 ngời không muốn gặp mặt nhau.Hỏi ngài tỷ phú có bao nhiêu cách mời 16. ĐH-CĐ khối B/2004 Có 30 câu hỏi khác nhau gồm 5 cau khó(K) 10 câu trung bình(TB)và 15 câu dễ(D).Từ 30 câu có có thể lập đợc bao nhiêu đề kiểm tra mỗi đề gồm 5 câu khác nhau sao cho mỗi đề fải có 3 loại(K- D-TB)và số câu dễ không ít hơn 2? 17. ĐH-CĐ khối B/2005 Một đội thanh nien tình nguyện có 15 ngời,gồm 12 nam và 3 nữ .Hỏi có bao nhiêu cách phân công đội tình nguyện đó về 3 miền núi sao cho mỗi tỉnh đều có 4 nam và 1 nữ 18. ***ĐH-CĐ khối B/2002 Cho đa giác đều A1,A2, A2n(n N và n 2) nội tiếp đờng tròn (O).Biết rằng số tam giác có đỉnh là 3 trong 2n đỉnh A1,A2, A2n nhiều gấp 20 lần số hình chữ nhật có các đỉnh là4 trong 2n đỉnh A1,A2, A2n.tìm n RúT GọN CáC BIểU THứC 1/ Rút gọn các biểu thức sau: 2 a. A= 4 7 8 9 10 3 5 2 7 P P P P P P P P P ữ b. B= 6 5 n n 4 n A +A A c. C = 2 5 3 4 2 5 4 3 2 1 5 5 5 5 3 2 P P P P A A A A A P 2P + + + ữ d. D= n+1 4 n n-k P A P + 5 6 7 15 15 15 7 17 C +2C C C + e. E= 2 3 3 6 8 15 3 3 5 1 1 1 C - C C 3 28 65 P A + f. F= 3 2 5 5 2 A - A P + 5 2 P P 2/ . Chứng minh : a. n n P = n-1 1 P + n-2 1 P b. n+2 n+1 2 n n+k n+k n+k A A Ak+ = c. 2 2 2 5 k n+1 n+3 n+5 n+5 P A A A n.k!A = d. k n-k n n C C = PHơng trình liên quan đến công thức tổ hợp: Giải các PT và BPT sau: 1. xxCCC xxx 14966 1221 =++ 2. P 2 x 2 -P 3 .x=8 3. 2 2 x 2x 2A +50=A , x N 4. 123 14 =+ x xxx CCA 5. 1 2 3 x x x 7 C +C +C = x 2 6. 3 2 2 x-1 x-1 x-2 2 C C = A 3 7. 1 2 1 x x+1 x+4 1 1 7 = C C 6C 8. 3 n-2 n n A +C =14n 9. 3 4 2 2 3 n n n A C A = 10. 3032 22 1 <+ + xx AC 11. 10 6 2 1 32 2 + xx x x C x AA 12 . Giải phơng trình 6 1 )!1( )!1(! = + x xx với x là số tự nhiên khác 0. 13. Giải bất phơngtrình 12 4 15 . + + < nnn n PPP P 14. Giải hệ: = =+ 8025 9052 y x y x y x y x CA CA 15. 2 1 1 5 3 y y x x y y x x C C C C = = 16. 23 2 20 nn CC = Các bài toán tổng hợp: 1. Có thể lập bao nhiêu số có 8 chữ số từ các số 1,2,3,4,5,6. trong đó 1 và 6 có mặt hai lần, các số còn lại 1 lần. 2. Có bao nhiêu số chẳn gồm 6 chữ số khác nhau trong đó chữ số đàu tiên là số lẻ. 3. Có bao nhiêu số gồm 6 chữ số khác nhau trong đó có đúng 3 chữ số chẳn và 3 chữ số lẻ. 4, Có baonhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau trong đó có mặt số 0 nhng không có mặt số 1 5. Có bao nhiêu số tự nhiên gồm 7 chữ sô biết rằng sô 2 có mặt 2 lần, số 3 có mặt 3 lần, các chữ số còn lại không quá một lần? 6.Cho hai ng thng song song d 1 v d 2 . Trờn ng thng d 1 ly 10 im phõn bit, trờn ng thng d 2 cú n im phõn bit (n>1). Bit rng cú 2800 tam giỏc cú nh l cỏc im ó cho. Tỡm n. 7.T cỏc ch s 0,1,2,3,4,5,6, cú th lõp bao nhiờu s chn, mi s cú 5 ch s khỏc nhau trong o cú ỳng 2 ch s l v hai ch s l ú ng cnh nhau? 8. T cỏc s 0,1,2,3,4 cú th lp baonhiờu s t nhiờn cú 5 ch s khỏc nhau? Tớnh tng tt c cỏc s t nhiờn ú. 9.Cú bao nhiờu s t nhiờn gm 5 ch s sao cho: Ch s 0 cú mt hai ln, s 1 cú mt 1 ln, 2 s cũn li phõn bit 3 10. Cú bao nhiờu s t nhiờn cú bn ch s sao cho khụng cú ch s no lp li 3 ln. 11. Cú bao nhiờu s t nhiờn cú 7 ch s sao cho: S 2 cú mt 2ln, s 3 cú mt 3 ln, cỏc s cũn li khụng quỏ mt ln. 12. Cho a giỏc u A 1 , A 2 , A 2n ni tip ng trũn tõm O, bit rng s tam giỏc cú cỏc nh l 3 trong 2n im A 1 , A 2 , A 2n gp 20 ln s hỡnh ch nht cú nh l 4 trong 2n im.Tỡm n. 13. T cỏc s 1,2, .,6. Lp bao nhiờu s cú 3 ch s khỏc nhau v chia ht cho 3. 14. Cú bao nhiờu s t nhiờn chn gm 5 ch s khỏc nhau v khụng bt u bng 123. Nhị thức Newton I. áp dụng công thức khai triển . 1. Tìm hệ số của số hạng thứ t trong khai triển 10 1 + x x 2. Tìm hệ số của số hạng thứ 31 trong khai triển 40 2 1 + x x 3. Tìm hạng tử chứa x 2 của khai triển: ( ) 7 3 2 xx + 4. Tìm hạng tử không chứa x trong các khai triển sau: a. 12 3 3 + x x b. 7 4 3 1 + x x 5. Tìm hệ số của x 12 y 13 trong khai triển của (2x-3y) 25 6. Tìm hạng tử đứng giữa trong khai triển 10 3 5 1 + x x 7. trong khai triển 21 3 3 + a b b a tìm hệ số của số hạng chứa a và b có số mũ bằng nhau?? II. Khai triển với giả thiết có điều kiện . 1/ Biết khai triển n x x + 1 2 . Tổng các hệ số của số hạng thứ nhất, hai, ba là 46. Tìm số hạng không chứa x? 2/Cho biết tổng ba hệ số của ba số hạng đầu tiên trong khai triển = n x x 2 2 là 97. Tìm hạng tử của khai triển chứa x 4. 3/ Cho khai triển n n n nn n n n n CxCxCx 3 1 )1 .( 3 1 3 1 110 += . Biết hệ số của số hạng thứ ba trong khai triểnlà 5. Tìm số hạng chính giữa?? 4/ Cho khai triển nn n n n n x CxC x x ) 2 ( )() 2 ( 2 30 2 3 ++=+ . Biết tổng ba hệ số đầu là 33.Tìm hệ số của x 2 . 5/ Tìm số hạng chứa x 8 trong khai triển n x x + 5 3 1 . Biết rằng )3(7 3 1 4 += + + + nCC n n n n . 6/ Tìm hệ số của x 7 trong khai triển (2-3x) n trong đó n thoả mãn hệ thức sau 1024 . 12 12 3 12 1 12 =+++ + +++ n nnn CCC 7/ Giải phơng trình sau 12 20072 2 4 2 2 2 =+++ n nnn CCC 8/ Tìm hệ số của số hạng chứa x 26 trong khai triển n x x 7 4 1 biết n thoả mãn hệ thức 4 12 . 2012 12 3 12 2 12 1 12 −=++++ + ++++ n nnnn CCCC . 9/ T×m hƯ sè cđa sè h¹ng chøa x 10 khi khai triĨn (2+x) n biÕt 2048)1( 333 22110 =−+++− −− n n n n n n n n n CCCC 10/Cho 1 2 79 n n n n n n C C C − − + + = Trong khai triển nhò thức 28 3 15 n x x x −   +  ÷   hãy tìm số hạng không phụ thuộc vào x. 11/Tìm hệ số của số hạng chứa 26 x trong khai triển nhò thức Niutơn của 7 4 1 n x x   +  ÷   , biết rằng 1 2 20 2 1 2 1 2 1 . 2 1 + + + + + + = − n n n n C C C 12/.Tìm hệ số của 4 x trong khai triển biểu thức ( ) 2 1 3 n A x x= − − thành đa thức. Trong đó n là số nguyên dương thỏa mãn: ( ) 2 2 2 2 2 2 3 4 1 2 . 3 n n C C C C A + + + + + = 13/ Tìm hệ số của số hạng chứa x 10 trong khai triển nhò Niu tơn của (2+x) n biết: ( ) 0 1 1 2 2 3 3 3 3 3 3 . 1 2048 n n n n n n n n n n n C C C C C − − − − + − + + − = 14.Quy tắc tổng quát :Tổng các hệ số trong biểu diễn chính tắc của đa thức f(x) chính là f(1) Cho ( ) 100 1 2 100 0 1 2 100 2 . − = + + + + x a a x a x a x a)Tính 97 a b) 0 1 2 100 .S a a a a= + + + + c)M= 1 2 100 1. 2. . 100.a a a+ + + III. Chøng minh hc tÝnh tỉng biĨu thøc tỉ hỵp: 1/ Khai triĨn (3x-1) 16 . Tõ ®ã chøng minh 1616 16 1 16 150 16 16 2 33 =++− CCC 2/ Chøng minh: a. nn nnnn CCCC 2 . 210 =++++ b. n nnn n nnn CCCCCC 2 2 2 2 0 2 12 2 3 2 1 2 . +++=+++ − 3/ Chøng minh r»ng: nn n n nnn n CCCC 4 3 1 3 1 3 1 3 2 3 10 =       ++++ 4/ TÝnh tỉng a. S= n nnn CCC 2 2 2 2 0 2 +++ b. S = 12 2 3 2 1 2 . − +++ n nnn CCC 5/ Chøng minh r»ng: a. 10022004 2004 2 2004 0 2004 2 =+++ CCC b. 2 13 2 .22 2004 2004 2004 20044 2004 42 2004 20 2004 + =+++ CCCC 6/Chứng minh rằng : 1 1000 1001 2001 2001 2001 2001 , 0 k 2000 k k C C C C + + ≤ + ∀ ≤ ≤ 7/Chứng minh rằng: ( ) 2 2 2 2 . , 0, n n n n k n k n C C C k n − + ≤ ∀ = 8/Chứng minh rằng : 1 0 1 1 1 2 1 . 2 1 1 n n n C C n n + − + + + = + + 9/Chứng minh rằng: ( ) 1 2 2 . 1 0 n n n n n C C nC− + + − = 5 10/k và n là hai số tự nhiên sao cho 4 k n≤ ≤ chứng minh rằng: 1 2 3 4 4 4 6 4 k k k k k k n n n n n n C C C C C C − − − − + + + + + = 11/ CMR: ( ) 0 2 1 3 2 2n 2n 2n 1 2n 2n 2n 2n 2n C 3 C 3 C . 3 C 2 2 1 − + + + + = + 12/ CMR: ( ) 0 2 2 4 2 2000 2000 2000 2001 2001 2001 2001 2001 3 3 . 3 2 2 1+ + + + = −C C C C 13/ Chứng minh rằng: 1 1 1 . k k k k k k k m k m C C C C + + + − + + + + = .Từ đó suy ra đẳng thức sau: 0 1 2 1 1 1 2 1 . m m k k k k m k m C C C C C − − + + + − + + + + + = IV. Khai triĨn nhiỊu h¹ng tư: 1/ T×m hƯ sè cđa x 6 trong khai triĨn (1+x 2 (1+x)) 7 thµnh ®a thøc. 2/ T×m hƯ sè cđa sè h¹ng chøa x 4 khi khai triĨn (1+2x+3x 2 ) 10 . 3/ T×m hƯ sè chøa x 10 khi khai triĨn P(x) = (1+x) + 2(1+x) 2 +3(1+x) 3 + +15(1+x) 15 . 4/ T×m hƯ sè cđa x 5 trong khai triĨn thµnh ®a thøc cđa x(1-2x) 5 + x 2 (1+3x) 10 5/.Tìm số hạng khơng chứa x khi khai triển P(x) = 9 2 1 21       −+ x x 6/.Tìm hệ số của số hạng chứa 3 1 x khi khai triển P(x) = 7 3 2 1 21         +− x x V Sư dơng ®¹o hµm hc tÝch ph©n 1/ Chóng minh hƯ thøc sau a. 1321 2 32 − =++++ nn nnnn nnCCCC b. 1 12 1 1 . 3 1 2 1 1 210 + − = + ++++ + n C n CCC n n nnnn 2/ TÝnh tỉng a. S = 14 14 3 14 2 14 1 14 14 .32 CCCC −++− b. S = 2008 2008 2 2008 1 2008 0 2008 2009 32 CCCC ++++ 3/ Chøng minh r»ng 12 12 2 1 6 1 4 1 2 1 2 12 2 5 2 3 2 1 2 + − =++++ − n C n CCC n n nnnn 4/ T×m n nguyªn d¬ng sao cho: 2007.2).12( .2.42.32.2 12 12 24 12 33 12 22 12 1 12 =+++−+− + +++++ n n n nnnn CnCCCC 5/ TÝnh tỉng: S = n n n nnn C n CCC 1 12 . 3 12 2 12 1 2 3 1 2 0 + − ++ − + − + + 6/ Chøng minh r»ng: 0 1 2 2000 2000 2000 2000 2000 2000 2 3 . 2001 1001.2C C C C+ + + + = 7/ Chøng minh r»ng: ( ) ( ) ( ) 0 1 2 1 1 1 1 1 . 2 4 6 2 1 2 1 n n n n n n C C C C n n − − + + = + + 8/ Xác đònh số lớn nhất trong các số: 0 1 2 , , , ., , ., k n n n n n n C C C C C 9/ CMR: n 1 1 n 2 2 n 3 3 n 4 n n 1 n n n n 2 C 2 C 3.2 C 4.2 . nC n.3 − − − − − + + + + + = 10. CMR: . ( ) ( ) n 1 n 1 0 n 2 1 n 1 1 2 n 1 n n n n n n n n.4 C n 1 4 C . 1 C C 4C .n.2 C − − − − − − − + − = + + 6 . cỏc s t nhi n ú. 9.Cú bao nhi u s t nhi n gm 5 ch s sao cho: Ch s 0 cú mt hai ln, s 1 cú mt 1 ln, 2 s cũn li phõn bit 3 10. Cú bao nhi u s t nhi n cú. Hỏi có bao nhi u cách lập một đoàn nh trên? 2. Từ các số 1,2,3,4,5,6,7,8. a. Có bao nhi u số tự nhi n gồm 6 chữ số đôi một khác nhau? b. Có bao nhi u số

Ngày đăng: 02/08/2013, 01:27

TỪ KHÓA LIÊN QUAN

w