Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
539,26 KB
File đính kèm
Tom tat cong thuc XSTK.rar
(451 KB)
Nội dung
Châu Minh Hồng Email : minhhoang12061993@gmail.com Tómtắtcơngthức Xác Suất - Thống Kê I Phần Xác Suất Xác suất cổ điển Côngthứccộng xác suất: P(A+B)=P(A)+P(B)-P(AB) A1, A2,…, An xung khắc đôi P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An) Ta có o A, B xung khắc P(A+B)=P(A)+P(B) o A, B, C xung khắc đôi P(A+B+C)=P(A)+P(B)+P(C) o P( A) 1 P( A) P( AB) P( AB) , P(B / A) Cơngthức xác suất có điều kiện: P( A / B) P(B) P( A) Côngthức nhân xác suất: P(AB)=P(A).P(B/A)=P(B).P(A/B) A1, A2,…, An độc lập với P(A1.A2.….An)=P(A1).P(A2).….P( An) Ta có o A, B độc lập P(AB)=P(A).P(B) o A, B, C độc lập với P(A.B.C)=P(A).P(B).P(C) Côngthức Bernoulli: B(k; n; p) Cnk pk qnk , với p=P(A): xác suất để biến cố A xảy phép thử q=1-p Côngthức xác suất đầy đủ - Côngthức Bayes o Hệ biến cố gồm n phần tử A1, A2,…, An gọi phép phân A A i j; i, j 1, n hoạch i j A1 A2 An o Côngthức xác suất đầy đủ: n P(B) P( Ai ).P(B / Ai ) P( A1).P(B / A1) P( A2 ).P(B / A2 ) P( An ).P(B / An ) i1 o Côngthức Bayes: P( Ai ).P(B / Ai ) P( A / B) i P(B) với P(B) P( A1).P(B / A1) P( A2 ).P(B / A2 ) P( An ).P(B / An ) Biến ngẫu nhiên a Biến ngẫu nhiên rời rạc Luật phân phối xác suất X x1 x2 … xn P p1 p2 … pn với pi P( X xi ), i 1, n Ta có: n pi i1 P{a f(X) b}= pi af(xi b Hàm phân phối xác suất FX (x) P(X x) pi xi x Mode ModX x0 p0 max{ pi : i 1, n} Median pi 0, P( X x ) 0, x x e MedX x i e e P( X xe ) 0, pi 0, xi xe Kỳ vọng n EX (xi pi ) x1 p1 x2 p2 xn pn i1 n E( ( X )) ( ( xi ) pi ) (x1) p1 (x2 ) p2 ( xn ) pn i1 Phương sai VarX E( X ) (EX )2 với E( X ) (x p ) x2 p x2 p x2 p n i i 1 2 n n i1 b Biến ngẫu nhiên liên tục f(x) hàm mật độ xác suất X f ( x)dx , b P{a X b} f ( x).dx a Hàm phân phối xác suất x FX (x) P( X x) f (t)dt Mode ModX x0 Hàm mật độ xác suất f(x) X đạt cực đại x0 Median xe MedX x F (x ) f (x)dx e X e 2 Kỳ vọng EX x f ( x)dx E( ( X )) ( x) f (x)dx Phương sai VarX E( X ) (EX )2 với EX2 x f ( x)dx c Tính chất - E(C) C, Var(C) , C số - E(kX ) kEX , Var(kX ) k 2VarX - E(aX bY ) aEX bEY - Nếu X, Y độc lập E( XY ) EX EY , Var(aX bY ) a2VarX b2VarY - ( X ) VarX : Độ lệch chuẩn X, có thứ nguyên với X EX Luật phân phối xác suất a Phân phối Chuẩn ( X ~ N (;2 )) X () , EX=ModX=MedX= , VarX Hàm mđxs f (x, f (x) e , ) x2 (Hàm P(a X b) ( b )2 ( x e Với 0, 1: Gauss) ) ( a x ) với (x) t2 e dt (Hàm Laplace) Cách sử dụng máy tính bỏ túi để tính giá trị hàm Laplace, hàm phân phối xác suất phân phối chuẩn chuẩn tắc Tác vụ Máy CASIO 570MS Máy CASIO 570ES Khởi động gói Thống kê Mode…(tìm)…SD Mode…(tìm)…STAT 1-Var Tính x (x) e t dt Shift x ) = Shift x ) = Shift x ) = Shift x ) = Mode Mode 2 x F (x) e t dt Thốt khỏi gói Thống kê Lưu ý: F (x) 0, (x) b Phân phối Poisson ( X ~ P()) X () , EXk VarX ModX=k -1 k , k P(X=k)=e k! c Phân phối Nhị thức ( X ~ B(n; p)) X () {0 n}, EX=np, VarX=npq, ModX=k (n 1) p 1 k (n 1) p P(X=k)=Ckn p k qnk , q p k n, k Nếu (n 30; 0,1 p 0, 9; np 5, nq 5) X ~ B(n; p) N (; 2 ) với n p, npq k P(X=k) f ( ), k n, k b a P(a X20n N p= A , q=1-p N n 30, np