1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi học sinh giỏi môn toán 9 tỉnh hưng yên năm học 2017 2018 có đáp án

5 1,5K 90

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 235,56 KB

Nội dung

Đề thi học sinh giỏi môn toán 9 tỉnh hưng yên năm học 2017 2018 có đáp án

HƯỚNG DẪN Câu 1 1 1 1        a  2018 a b 2018 a 2018 b 2018 a) với a, b số dương ta tương tự b > 2018 1    ab  2018a  2018b  ab  2018a  2018b  20182  20182 a b 2018  a  b  2018  2018  b  2018  20182   a  2018 b  2018  20182 mà  a  2018  b  2018   2018   a  2018  b  2018   2.2018  a  2018   a  2018  b  2018   b  2018  a  b    a  2018  b  2018   a  b  a  2018  b  2018  a  b b) với a nghiệm dương pt 6x  3x    6a  3a    6a  1  a   36a   a  2a  1  36a  36a  72  3a  30a  75  36  a  a     a    a  a   3a  Mặt khác ta a2 A= a  a   a   a  2  a4  a   a2 a2  a4  a   a2  6A  a  a   6a  6A  3a   6a  6a  3a     A  Câu a) ĐK: x  pt trở thành: x  2x x 1 1 x * ta thấy x = nghiệm pt Xét x khác 0, chia hai vế cho x ta được:  2x  1  x  1 1 x 1 1 x Đặt  x  a  a   x  a    x Ta pt a   a   a    a  1  a  a  1   a 1   a 1  a2  a 1   a 1    a   a  a   *) a    a    x   x  1(t / m) * a   a  a    a   a  a   a   (vô nghiệm) Vậy pt cho nghiệm x = 0; x = b) y  6y3  11y  6y   y  3y    y  3y  Đặt y  3y  a pt trở thành:  x  2018   a  1 2  1   x  2018  a  1 x  2018  a  1  1  x  2018  a    x  2018  a   1   x  2018  a   1  x  2018  a    x  2018  x  2018  a   2x  2.2018  x  2018 *)      x  2018  a   1  x  2018  a   a   y  3y  =>   x  2018    x; y    2018;0  ;  x; y    2018;3   y   y    x  2018  x  2018  a   1  x  2018  x  2018     x  2018  a    x  2018  a   1 a  2  y  3y  2 *)   x  2018     y    x; y    2018;1 ;  x; y    2018;2   y   Vậy cặp số nguyên(x;y) thỏa mãn đề là:  2018;0  ;  2018;3 ;  2018;1 ;  2018;2  Câu 1 Từ pt  3x  2y  y  1   x  3xy  3x  2y  2y  x   a) x; y   x  x  y  1  2y  x  y  1   x  y  1    x  y  1 x  2y    1 => x  2y   nên x  y  =  y = – x thay vào pt (1) ta 2 2x  1  4x  4x  2x    2x   2x    2x  2 1  x  Đặt 2x    2x = t > => ĐKXĐ: 2 Do x; y   t2   t2  t    2x  1  2x   4x  4x    4x  4x       2 4x  4x  t  8t   Do ta pt: t  8t t  t  8t  8t   t  t    t  2t    Vì t > => t = t = 1  1 1 *) Với t = ta pt: 2x    2x   x1  ; x   y1  ; y  2 2 * Với t = 1  => 2x    2x    4x  4x     (vô lý)  1   1  Vậy hệ pt cho nghiệm  ;  ;  ;  2   2 b) ta có: 3yz 4zx 5xy  yz zx   2yz 2xy   3zx 3xy            2z  4y  6x x y z x y x z y z           4  x Mà 2z  4y  6x  2z  2x  4y  4x  xz  xy  x y  z  x  Do 3yz 4zx 5xy   4 x y z Dấu ‘=’ xảy  x = y = z = Câu B D K A M J I O N E C a) Chứng minh: AK.AI = AE.AC ta tứ giác BDEC nội tiếp => góc B = góc AED mà góc B = góc AIC (góc nội tiếp chắn cung AC) => góc AED= góc AIC => tg AKE đồng dạng với tg ACI => AK/AC = AE/AI => AK.AI = AE.AC b) Tính AK theo R Trong (O) cát tuyến ACE nên hệ thức : AC.AE = OA2 – R2 = 4R2 – R2 = 3R2 (đều bình phương tiếp tuyến vẽ từ A tới (O)) Mặt khác Dễ thấy tg AOB đồng dạng tg COI => OA/OC = OB/OI => OA.OI = OB.OC = R2 (1) => OI = R2/OA = R2/2R = R/2 => AI = OA + OI = 2R + R/2 = 5R/2 => AK = AC.AE/AI = 3R2/(5R/2) = 6R/5 c) Tâm đường tròn ngoại tiếp tam giác ADE thuộc đường thẳng cố định OA cắt (O) M, N (M nằm A K) => MK = AK - AM = 6R/5 - R = R/5 NK = AN - AK = 3R - 6R/5 = 9R/5 Vì EMDN nội tiếp (O) nên tương tự (1) ta : DK.EK = MK.NK = 9R2/25 Mặt khác gọi J giao đường tròn ngoại tiếp tam giác AED AO ta có: AK.KJ = EK.DK =>JK = ED.EK/AK = (9R2/25)/( 6R/5) = 3R/10 => J cố định => tâm đường tròn ngoại tiếp tam giác ADE ln chạy đường thẳng trung trực đoạn AJ cố định Câu Ta chia thành nhóm Nhóm từ đến 312, nhóm từ 313 đến 625 Giả sử khơng số phương 312 số chọn Giả sử ta chọn k số nhóm Để ý số nhóm ln tồn số nhóm cho tổng chúng 625 nhóm ta chọn thêm 312 - k số ( tổng cặp khơng 625 ) Do số 92 nhóm số 122 nhóm tổng 125 nên ta lại cách chọn số nhóm Vậy tóm lại số cách chọn nhóm 311 - k nên tổng số số nhóm 311 - k +k =311 ( vơ lí ) => đpcm Cách khác: Ta chia 625 số thành 313 tập hợp {1;624},{2;623}, ,{625} Giả sử 312 số ta chọn khơng số phương, 312 số phải thuộc 312 tập hợp {1;624},{2;623}, {312;313} 625 số phương, đồng thời khơng số thuộc 312 tập hợp có, số tổng 625, số ta chọn nằm tập hợp khác 312 tập trên, số thuộc tập {225;400} mà số SCP=>đpcm Hết - ... a  2018 a b 2018 a 2018 b 2018 a) với a, b số dương ta có tương tự b > 2018 1    ab  2018a  2018b  ab  2018a  2018b  20182  20182 a b 2018  a  b  2018  2018  b  2018  20182 ...   a  2018  b  2018  20182 mà  a  2018  b  2018   2018   a  2018  b  2018   2 .2018  a  2018   a  2018  b  2018   b  2018  a  b    a  2018  b  2018  ... 2018  a    x  2018  a   1   x  2018  a   1  x  2018  a    x  2018  x  2018  a   2x  2 .2018  x  2018 *)      x  2018  a   1  x  2018  a   a 

Ngày đăng: 04/03/2018, 21:50

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w