1. Trang chủ
  2. » Thể loại khác

Đề kiểm tra một tiết giới hạn

5 155 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 234 KB

Nội dung

TRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIANTRẮC NGHIỆM VECTO TRONG KHÔNG GIAN

TRƯỜNG THPT BỐ HẠ ĐỀ KIỂM TRA TỔ TOÁN - TIN Thời gian làm bài: 45 phút Họ tên học sinh: Điểm……………… Lớp: 11A1 I TRẮC NGHIỆM KHÁCH QUAN Câu 1: Tìm lim Câu 2: Tìm lim 3n2 − n + 10 ta được: −8n2 + 2n − 9n2 − n + + n − n2 + 4n − + 2n A ta được: A +∞ B -10 C − B C D D 10 n  2  2 1+ +  ÷ + +  ÷  5  5 Câu 3: Tìm lim n ta được:  3  3 1+ +  ÷ + +  ÷  4  4 A x + x + 14 Câu 4: Tìm lim ta được: A +∞ x →2 x+2 x2 − x + − Câu 5: Tìm lim = a , 4a+1= A -2 x →−1 x + 3x + a−1 x − (a + 1) x + a ; ta Câu 6: Tìm lim A 3 x →a x −a 3a2 B 12 B 9/ B -3 a+ 3a2 B −5/ B C C C 1/4 C a −1 3a D −3 20 D D −1/ D +∞ ( x − x − − x − ) ta được: A 5/ Câu 7: Tìm xlim C −3/ D →+∞ Câu 8: Phương trình x3 + 3x + mx − = có nghiệm khoảng (-1;1) khi: A −3 < m< −1; B −3 < m< 1; C m-1 D −3 < m< 3; mx + mx + neu x ≥ f ( x ) = Câu 9: Cho hàm số: để f(x) liên tục x=1 m bằng?  − x + x + neu x < A 1/2 B -1 1 C D 1 Câu 10: Cho un = 1.3 + 3.5 + 5.7 + + (2n− 1)(2n+ 1) Khi limun : A C 3/4 D 1/3 II TỰ LUẬN Bài 1(1 điểm) Tính giới hạn dãy số sau: a) L = lim a) B 1/2 4n − n + n + ; −3n3 + 4n b) L = lim( n + 3n + n + 1); b) Bài 2(3đ) Tính giới h¹n sau: x − x + 12 ; x − 3x + x+6 −2 ( x + 3x + + x − ) ; c) L = xlim ; →−∞ x −4 3 x + 2( x3 − x + 1) − x+7 − x +3 d) L = lim e) L = lim ; ; x →2 x →1 x2 − x −1  x3 − x2 + x + vớ i x ⇔ m < hoac m>2 (*)  x1 + x2 = 2( m + ) (2)  x1 x2 = 5m − 0,5đ Khi ta có  x12 + x22 + 2( x1 + x2 ) = 22 ⇔ ( x1 + x2 )2 − x1 x2 + 2( x1 + x2 ) = 22( )  m = −2 kết hợp đk đc m= -2 m = / 2 Thay (2) vào (3) 2( 2m + m − ) = ⇔  PT f (x) = có hai nghiệm phân biệt lớn 2c 0,5đ 1,0đ  ∆' > m − 3m + > 2 < m ⇔ 3m − >  S m + > m >   >1 2 0,5đ TRẮC NGHIỆM: 432 D B C C B B D B A 10 A D B A A D B C 10 C TRẮC NGHIỆM: 567 B B TỰ LUẬN: Câu Hướng dẫn Điểm 0,5đ 0,5đ 2a f (x) = x2 + 2(m− 2)x + m+ 10 ≥ 0,∀x∈ ¡ ∆ ' ≤ ⇔ ⇔ −1 ≤ m ≤ a = > 0,5đ 2b PT f (x) = x2 + 2(m− 2)x + m+ 10 = có hai nghiệm phân biệt khi: ∆ ' = ( m − )2 − ( m + 10 ) = m − 5m − > ⇔ m < −1 hoac m>6 (*)  x1 + x2 = −2( m − ) (2)  x1 x2 = m + 10 0,5đ Khi ta có  x12 + x22 + x1 + x2 + 16 = ⇔ ( x1 + x2 )2 − x1 x2 + x1 + x2 + 16 = 0( ) 0,5đ m = kết hợp đk đc m=1 m = Thay (2) vào (3) 4( m − 5m + ) = ⇔  2c PT f (x) = có hai nghiệm phân biệt lớn -1 1,0đ  ∆' > m − 5m − >   ⇔ m < −1 :  af ( −1 ) > ⇔ 14 − m > S   −( m − ) > −1  > −1 2 0,5đ

Ngày đăng: 31/01/2018, 13:02

TỪ KHÓA LIÊN QUAN

w