Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
560 KB
Nội dung
ĐỊNHDẠNGVÀ GIẢNG DẠY LOẠI TOÁN TÌM ĐIỀU KIỆN TRONG HÌNHHỌC -------------------------------------------------------------------------------------------- A/Phần thứ nhât : I- LỜI NÓI ĐẦU I- lý do chọn đề tài : Trong trình trực tiếp giảng dạy bộ môn toán ổ trường T H C S Tôi nhận thấy hìnhhọc là phân cơ bản của môn toán đóng vai trò quan trọng trong việc phát triển tư duy ,khả năng suy luận lô rích giáo dục thẩm mỹ và dục nhân sinh quan ,thế giới quan duy vật biện chứng .Trong cácbàitoánhìnhhọc ở trường p.t.c.s thì loại toán tìm điều kiện của một hình thường là các câu nhỏ ë cuối mổi bài còng là các câu khó gi¶i nó được vận dụng kiến thức sau mổi bàihọc mới hay sau phần ôn tập chương 1- Loại toán này vì vậy không được đưa ra thành một bài riêng biệt và nó không được địnhdạng một cách tường minh trong suốt quá tr×nh học môn hìnhhọc trong trường THCS 2- Học sinh thường ngại ,thậm trí nhiều học sinh bất lực đối với loại toán này vì: -Chưa hiểu được cách thức làm loại toán này - Việc địnhdạng chưa tốt - Loại toán này ít được đưa vào chương trình sách giáo khoa 3-Vì vậy để chỉ ra thế nào là dạngtoán tìm điều kiện trong hình học. Cách giải thế nào ? gồm cácdạng nào? kiến thức nào phục cho nó và cách giải từng dạng thế nào? góp phần tích cực giảng dạy .học tạp bồi dưỡng học sinh khá giỏi môn toán ở cấp họcT.H.C.S - X uất phát từ ba lý do trên đay tôi chọn đề tài “ĐỊNH DẠNGVÀ GIẢNG DẠY LOẠI TOÁN TÌM ĐIỀU KIỆN TRONG HÌNHHỌC ” II- phạm vi nhiên cứu : Nghiên cứu cácbàitoán trong đó có các câu về loại toán tìm điều kiện của một hình ,định dạngvà phương pháp giải ở (sgk) hìnhhọc cấp PTCS và tài liệu tham khảo II - nhiệm vụ nghiên cứu đề tài : Nêu được khái niệm chung nhất của dạngtoán tìm điều kiện trong hìnhhọc - -đọc tập hợp .chọn lọc .và phân dạng chỉ ra phương pháp chung nhất để giải từng loại bài tập này -Đánh giá được thực tế của việc phân dạngvàgiải loại bài tập này III- phương pháp nghiên cứu -Tôi đã nghiên cứu đề tài và thực hiện trong quá trình : 1 1-Được học tập bộ môn :hình ơcil ở trong các trường sư phạm mà tôi đã được học tập, được trang bị kiến thưc về hìnhhọc 2-Thông qua 26 năm làm quản lý giáo dục và làm công tác giảng dạy môn toán ở trường :ptcs nhất là qua các kỳ bồi dưỡng học sinh giỏi các tuyến 3-Nghiên cứu qua trao đổi với bạn bè đồng nghiệp ,nhằm bổ xung ,phân dạng ,phân mạch kiến thức ,tham khảo cácbài tập ,hoàn chỉnh các phương pháp giải cơ bản nhất -tham khảo cácbàitoán tìm đièu kiện của môt hình mà bạn bè đồng nghiệp tìm tòi được 4-thông qua thực nhiệm giảng dạy rút ra được các tham số ,các cứ liệu để đi đến kết luận về tính khả thi của đè tài 5-thông qua các tài liệu tham khảo - -Tuy nhiên do khả năng có hạn và thời gian nghiên cứu chưa nhiều đặc biệt do đặc thù của đề tài :thuộc loại toán khó giành cho học sinh khá giỏi nên thời gian và kinh nghệm chưa nhiều:vìvậy khả năngđịnh dạngvà phương pháp giải có thể :chưa đủ chưa hết và có thể chưa chuẩn mực ,rất mong bạn bèđồng góp ý giúp đỡ để đề tài này hoàn thiện hơn V-Tóm tắt nội dung đề tài :(nội dung đề tài gồm 3phần ) A -Phần thứ nhất : I -lời nói đầu 1- cơ sở chọn đề tài 2- phạm vi nghiên cứu đề tài 3- nhiệm vụ nghiên cứu 4- phương pháp nghiên cứu đề tài II-Tóm tắt nội dung đề tài B- Phần thứ hai 1-chương1:N hững mạch kiến thức cơ bản 1- Dạngtoán tìm điều kiện của một hình là gì 2- cách giải loại toán tìm điều kiện trong hìnhhọc 3- các mạch kiến thức cơ bản 2-chương2 :các dạngtoán cơ bản tìm điều kiện trong hìnhhọc (Đ ây là nội chính của đề tài- gồm cácdạng sau ) : 1- dạng1 : Tìm điều kiện của một hình để hình tạo thành là một tam giác đặc biệt 2- dạng2: tìm điều kiện của một hình để hình tạo thành là một tứ giác đặc biệt ,hoặc có tinh chất đặc biệt dạng 3:Các dạng khác tìm điều kiện của một hình 3-Chương3 :Hướng dẫn hoặc lời giảibài tập :- 2 - nêu lời giải - hoặc nêu hướng giải - hoặc đưa đáp số của bàitoán 4-Chương4:Một số kết quả và ứng dụng cua đề tài : B PHẦN THỨ HAI : NỘI DUNG ĐỀ TÀI Chương 1:N hững mạch kiến thức cơ bản 1, D ạng toán tìm kiều kiện của một hình là gì ? Trong giaỉbài tập hìnhhọc thường gặp các câu dạngtoán tìm điều kiện trong hìnhhọc mà học sinh tỏ ra khá lúng túng khi trình bày lời giải đó là (Tìm điều kiện của hình H để xảy ra tinh chất T) . điều kiện ở đâycó thể là :vị trỉ ,hình dạng , điều kiện ràng buộc giữa các yếu tố …… 2,C ách giải một bàitoán tìm điều kiện trong hìnhhọc : -C ơ bản để giải loại toán này lời giải phải có hai phần sau : -Điều kiện cần :giả sử có tính chất T ta suy ra hình H có điều kiện K -Đ iều kiện đủ : khi hình H thoã mãn điều kiện K ta suy ra có tính chất T Thông thường ta sử dụng phép suy luận tương đương giữa tinh chất T vàhình H thoã mãn điều kiện K thay cho trình bày hai phần trên vẫn đảm bảo tính lô rích ,hợp lý của lời giải 3- Các mạch kiến thức cơ bản thường dùng phục vụ cho đề tài : -Vì theo quan điểm phân dạng loại hình H cần tìm nên để nó là hình H ,ta cần quan tâm đến các kiến thức sau : a-T am giác là tam giác vuông khi : -có một góc vuông -tổng hai ,trong ba góc bằng 90 độ b-Tam giác là tam giác cân khi : -có hai cạnh bên bằng nhau -có hai góc bằng nhau -có trung tuyến thuộc đỉnh vừa là đường cao c-tam giác đều : -là tam giác cân có một góc 60độ -có ba cạnh hoặc ba góc bằng nhau d- tam giác vuông cân : -vừa vuông và vừa cân e- hình thang :là tứ giác có một cặp cạnh song song g- một hình là hình thang cân khi :là hình thang có hai góc ở cùng một đáy bằng nhau -là hình thang có hai đường chéo bằng nhau -là hình thang có một trục đối xứng đi qua giao điểm của hai đườngchéo và vuông góc với cạnh đáy h- hình bình hành :-tứ giác là hìnhhình bình hành khi : 3 - có các cạnh đối song song - -------------------bằng nhau - có hai cạnh đối song song và bằng nhau - có các góc đối bằng nhau - có hai đườn cheo cắt nhau tại trung điểm của mổi đường k--dấu hiệu nhận ra hình thoi n---------------------hình chử nhật m---------------------------vuông CHƯƠNG II : CÁCDẠNGTOÁN CƠ BẢN TÌM ĐIỀU KIỆN TRONG HÌNHHỌC -Dạng 1:T ìm điều kiện của một hình để hình tạo thành là tam giác đặc biệt hoặc có tính chất đặc biệt : 1-Phương pháp giải : Đ ưa vào tính chất T của hình H cần tìm để tìm điều kiện K của hình ban đầu dựa trên cơ sở phân tích thuận nghịch ( tương đương ) 2- ví dụ :cho tam giác ABC lấy M là trung điểm của BC kẻ ME vuông gócvới AB ,kẻ MF vuông góc với AC a-T ìm điều kiện của tam giác ABC để tam giác MFElà tam giác vuông b- -----------------------------------------------------MFElà tam giác vuông cân c-----------------------------------ABC --------------MFElà tam giác đều GIẢI a- tam giác MFE là tam giác vuông khi và chỉ khi : ∠ M 1 + ∠ M 2 =90 0 mà ∠ M 2 + ∠ C = 90 0 → ∠ M 1 = C ∠ , M 1 + 90 =∠ B 0 2B ∠→ = M 2 Vậy tam giác MEF là tam giác vuông .mà ∠ B+ 90 =∠ C suy ra IVA =∠ hay tam giac ABC vuong tai A b- Để M FE vuông cân ∠⇔ EMF=IV IVA =∠⇔ (caua) ME=MF kÕt hîp MB=MC(gt) MCFMBE =⇔ Đ· có ABCFE ⇔∠=∠ vuông cân ( CB ∠=∠ ) c, Để MFE đều ⇔ MFE cân có M ∠ =6o 0 ⇔ ABC can taiA va OM 6 =∠ Theocâu a,thì: CM ∠=∠ 1 ,va BM ∠=∠ 2 ma )21(180 MMM +−=∠ Hay60 0 =180 0 -( ∠ M 1 + M ∠ 2 ) ∠ 12 MM +⇔ =12O 0 kết hợp với chứng minh trên 60 =∠=∠⇔ CB hay 60 =∠ A .Vậy đẻ MEF đều ABC ⇔ đều bài tập : bài1:C hotam giác DFE nội tiếp ABC .N ếu ba đỉnh của tam giác DFE nằm trên ba cạnh của tam giác ABC .T ìm tam giác nội tiếp tam giác nhọn ABC cho trước sao cho nó có chu vi nhỏ nhất 4 bài2:C ho tam giác ABC có các góc nhỏ hơn 120độ .T ìm điểm M nằm bên trong góc sao cho MA+MB +MC có giá trị nhỏ nhất bài3:T rong tất cả các tam có chung một cạnh và có chu vi bằng nhau thì tam giác nào có diện tích lớn nhất .H ãy chứng minh Dạngtoán 2:T ìm điều điện của một hình để hình tạo thành là tứ giác đặc biẹt 1, P hương pháp giải : H ình H đã được cho biết trước,dựa vào tính chất của hình H cần tìm để tìm điều kiện của hình ban đầu hoặc các yếu tố của hình ban đầu dựa trên bàitoán ngược (phân tích ngược ) Ví dụ :Cho tam giác ABC có M là trung điểm của BC từ M kẻ ME song song với AC ,MF song song với AB a, Tìm điều kiện của tam giác ABC để tứ giác FMAE là hình chử nhật b, --- --- -- -- -- -- -- -- -- ------ -- --- -- là hình vuông G iải a, X ét tứ giác FAEM có MB=MC(gt) vàME song song với AC (gt) ME ⇒ là đường trung bình của tam giác ABC ME ⇒ song song và bằng một nữa AC mà FA MEAC ⇒∈ song song với FA (1) .T ương tự FM là đường trung bình của tam giác ABC FM ⇒ song song và bằng một nữa AB ;AE FMsongsongAB ⇒∈ vớiAE (2) .Tứ (1) và (2) ⇒ tứ giác FAEM là hình bình hành . Đ ể tứ giác FEAM là hình chử nhật IVA =∠⇔ .hay ABC vuông ở A b, Để tứ giácFEAM .là hình vuông IVFME =∠⇔ và EM=FM IVFAE =∠⇔ vàAB=AC ABC ⇔ vuông cân tại A Bài tập ; Bài1:Cho ABCD ◊ gọi M.N.P.Q lần lượt là trung điểm của các cạnh AB ,BC CD và AD .Tìm điều kiện của ◊ ABCD để : a, MNPQ ◊ là hình chử nhật b, MNPQ ◊ là hình vuông Bài2 :C ho .ABC .gọi P,Q là chân đường vuông góc kẻ tứ A đến đường phân giác trong và phân giác ngoài của góc B . có R và S làn lượt là các đường vuông góc kẻ từ A đến các đường phân giác trong và ngoài đỉnh C tìm điều kiện của ABC để : a, APBQ ◊ là hình vuông b, --------và SRAClà cáchình chử nhật bằng nhau c, ----- -- -- -- --- đều là cáchình vuông B ài 3:cho các đường cao của tam giác ABC gặp nhau ở O các điểm M,N,P lần lượt là trung điểm của AB, BC, CA các điểm R,S.T thứ tự là trung điểm của các đoạn OA ,OB ,OC 5 a,C hứng minh các đoạn thẳng RN, MT ,PS bằng nhau và cắt nhau tại trung điểm của mổi đường b, với điều kiện nào của ABC thì các đoạn MR ,RP ,MS bằng nhau nhận xét : Hai dạngtoán nói trên để giải nó đều phải theo con duong suy luan -Để có hình H có tính chất T ⇔ hình ban đầu mà hình H phải phụ thuộc nó phải có điều kiện K -Trong quá trình giảng dạy T ôi cho học sinh ôn kỹ các đấu hiệu nhận biết cáchình đặc biệt (ở đây là hình H )từ đó dựa các dấu hiệu đó để phân tích sự phự thuộc giữa chúng để tìm ra điều kiện K của hình ban đầu bằng phép biến đổi tương đương theo mô hình sau : Hình H có tính chất P ⇔ Hình ban đầu co điều kiện K ⇔ Địnhdạnghình ban đầu -B an đầu chưa áp dụng đề tài còn lúng túng ,mò mẩm tim lời giảivà chưa biết được cách giải -Khi áp dụng đề tài :học sinh giảicácbàitoán của tìm điều kiện của một hình, một cách thành thạo với tốc độ cao Dạngtoán3: Cácdạng khác của tìm điều kiện của một hình (Thông thường là loại toán tìm cực trị của một hình ): Gồm hai loại :-loại toán tìm cực trị -loại toán chứng minh cực trị của một hình *N goài ra còn có :loại toán tìm điều kiện của một hình để : -Ba điểm thẳng hàng -Ba đường đồng quy -Hai đường song song , -Hai đường uông góc -Đướng thẳng đi qua điểm cố định …… Phưong pháp : 1,loại toán tìm cực trị của một hình :Vẽ hình có chứa các đại lượng hìnhhọc mà ta phải tìm cực trị thay vào các điều kiện bằng các đại lượng tương đương. Đôi khi phải một đại lượng nào đó làm ẩn số và dựa một quan hệ của nó với đại luong cho sẳn hoặc có thể làm suất hiện trong quá trình đi tìm lời giải của bàitoán .Tìm mối quan hệ của các đại l ưọng hìnhhọc ,cần tìm cực trị theo các đại lượng không đổi rồi dùng phương pháp suy luận tương đương để đua ra m ối li ên hệ giửa chúng , t ừ đ ó xác đ ịnh được các giá trị của các đại lượng cần tìm từ đó suy ra v ị trí của hình để đạt cưctrị 2,.Lo ại to án ch ứng minh c ực tr ị c ủa m ột h ình : 6 - Đ ưa ra m ột h ình theo y êu c ầu c ủa đ ề b ài r ồi ch ứng minh cho m ọi - hình khác có chứa yếu mà ta phải tìm cực trị ,lớn hơn hoặc bé hơn yếu tố tương ứng trong h inh đưa ra (áp dụng chứng minh khi hìnhdạng của hình có cực trị đã nói rỏ trong đề bài ) 3,các loại toán tìm điều kiện của một hình để: -Hai đường thẳng song song -Hai đường thẳng vuông góc -Bađường thẳng đồng quy -Ba điểm trhẳng hàng -Đi qua một điểm cố định - Phương pháp chung:Giải loại toán này là dùng phương pháp suy luận tương đương để tìm điều kiện K của hình H thoã mãn tính chất T . Tuỳ từng bàitoánvà yêu cầu cụ thể đẻ dùng phép biến đổi phù hợp để giảibàitoán 4Các ví dụ : a,ví dụ 1:Cho nữa đường tròn tâm 0 đường kính AB từ Avà B kẻ hai tiếp tuyến Ax,By,Qua điểm M thuộc nữa đường tròn đã cho kẻ tuyến thứ ba cắt các tuyến Ax và By lần lượt ở Cvà D .xác định điều ki ện c ủa đi ểm M trên nữa đường tròn đã cho sao cho tổng AC +BD cógiá trị nhỏ nhất (phát triển bài 30 trang 116 s.g.k toán 9 tập 1) Gi ải: C ách1: V ì CM;CA là hai tiếp tuyến kẻ từ C đến (O;AB) ⇒ CM=AM ( tính chất tiếp tuyến ).Tương tự ta có DM=DB DC=CM+MD=AC+BD t ừ C k ẻ CD / AC ⊥ (v ì AC//BD cùng ⊥ AB)theo t/chât về khoảng cách của hai đương thăng song song thì CD≥ CD ’ màCD’=AB ( ABCD ◊ ’là hìnhchử nhật ) AC//BDvì cùng vuông góc ABBDCA ≥=⇒ .Tứ giác ABCD là hình thang (CA//BD vì cùng vuông góc AB ) trong đó AB là bên vuông góc - - - - - - CD - - - - xiên . Để CD=CM+MD=AB ABCDABCD ◊⇔⇔ // là hình chử nhật Mặt khác CDlà tiếp tuyến của (o) tại M ABOMOMCD ⊥⇔⊥⇔ .mà OA=OB ⇔ cung AMbằng cungBM vậy M là điểm chính giữa của cung AB 7 Cách 2:Vì CM và CA là hai tiếp tuyến của (O) 2/AOMCOMAOC ∠=∠=∠⇒ (tính chất tiếp tuyến ) tương tự 2/MOBDOBMOD ∠=∠=∠ ( DMvà DB là hai tiếp tuyến của (0) tại điểm D =∠⇒ COM 2/AOMMOD ∠=∠ + 2/MOB ∠ = 902/ =∠ AOB 0 90 =∠⇒ COD 0 ⇒ ΔCODvuông tại Ocó OM CD ⊥ (CDlà tiếp tuyến của(o) tại M ) OM⇒ là đường cao.Ap dụng hệ thức lượmg trong tam giác vuông ta có OM 2 =CM.DM mà CM=ACvà MD=BD (tính chất của tiếp tuyến ) BDAC. ⇒ =R 2 không đổi BDAC +⇒ bé nhất ⇔ AC=BD (he qua bat dang thuc co si ) Vay tứ giác CABDlà hình chử nhật ABCD // ⇒ và MO BAMOCD ⊥⇒⊥ tại O M ⇔ là điểm chính giữa của cungAB b, ví dụ 2:Chođường tròn tâm O và 1điểm P ở trong đường tròn .C hứng minh rằng tromg tất cả các dây cung đi qua P thì dây vuông góc là dây ngắn nhất giải: P AB∈ ;E )(O ∈ ;EO AB ⊥ tại P lấy dây CDbất kỳ đi qua P và không vuông góc với EO tại P ta chứng minh cho CD AB 〉 .thật vậy OP là khoảng cách từ O đến AB.và OTlà khoảng cách từ O đến CD .ta có OT ⇒⊥ CD OT là đường vuông góc từ O đến CD , P CD ∈ vậy OP là đường xiên kẻ từ Ođến CD ⇔〉⇒ OTOP AB CD 〈 .Vì CD là dây bất kỳ qua P và CD AB 〉 .Vậy AB ngắn hơn mọi dây đi qua P không vu«ng góc với OP AB ⇒ là dây ngắn nhất di quaP -ví dụ 3:Cho tam giác nhọn ABC CB ∠=∠= γβ , .Trên tia đối của CA lấy D sao cho CD=CB Tren nữa mặt phẳng bờ là AB không chứa C ,vẻ tia Ax tạo với AB , BCABAx ∠=∠ Trên tia Ax lấy E sao cho AE=AB a, Tính EADtheoEBD ∠∠ , β b, Với giá trị nào của β thì E,B.Dthẳng hàng c, với giá trị nào của : β , γ .thì AB là trung tuyến của EDA giải: A, Theo bài ra ta có EA=BA ⇒ ABE cân tại A ∠⇒ AEB = =∠ ABE =∠=∠↑ ABEAEB 2 180 0 γ − .Theo bài ra ta có 8 BC =CD BCD ⇒ cân tại C 2 180 0 BCD CDBCBD ∠− =∠=∠⇒ = 2 )180(180 00 ACB ∠−− 2 ACB CDBCBD ∠ =∠=∠⇒ = 2 γ Mà 2 180 0 γ − =∠+∠+∠=∠ CBDABCEBAEBD + 2 γ β + =9O 0 - 2 γ + 2 γ β + =9O 0 + β Để BADEABEAD ∠+∠=∠ có )(180 0 γβγ +−=∠=∠ BADEAB βγβγ −=−−+=∠⇒ 00 1818 OOEAD b, Để E,B,D thẳng hàng ⇔=∠⇔ 0 18OEBD 90 00 18O =+ β 0 90 =⇔ β c, Từ A kẻ AT BDCKED ⊥⊥ , vìAE=AB(gt) AEB ⇒ cân tại A mà AT ATBE ⇒⊥ vừa là đường cao vừa là phân giáclà trung tuyến của AEB đỉnhA IVATEATB =∠=∠⇒ 22 γ = ∠ =∠=∠⇒ BAE BATEAT và TB=TE= 2 BE Tương tự CBD có CB=CD ⇒ ∆ ĐBCcân tại C,CK CKMD ⇒⊥ là trung tuyến KDBK =⇒ = 2 BD .Xét ∆ BCK và ∆ ABT có ∠ CBK= ∠ TAB(= 2 γ ) =∠ K T ∠ =IV BCK ∆⇒ ABT ∆∞ (g.g) BT CK AT BK =⇒ (*) mà BT BE = 2 ,BK= ⇒ 2 BD BE KC AT BD 2 2 = BEBD. ⇒ =4.CK.AT=2 2 .CK.AT. ĐểAB là trung tuyến của ⇒=⇔∆ DBBEEAD BE 2 =2 2 .AT.CK ⇔ CK=AT 2 BE ⇒ =(2AT) 2 AT ⇔ =BT 0 45 2 =⇔ γ =⇔ γ 90 0 vô lý vì 0 180 〈+ βα Không có giá trị nào của α và β chọn để E,B;D thẳng hàng bài tập : 1,Chohình thang ABCD (AB//CD) và AB CD 〈 phân giác của góc Avà gócB cắt nhau tại P .T ìm điều kiện của hình thang ABCD để điểm P thuộc dây CD 2,Từ điểm A ở ngoài đường tròn (O;R)vẽ hai tiếp tuyến AB;AC tối đường tròn qua B kẻ dây BD//AC ;ADcắt (O) tại K (khác P) .BKcắt AC tại I .T ìm điều kiện của A đểCK ⊥ AB 3,N gười ta dùng một đoạn dây căng thành ba đoạn thẳng tạo với bức tường thành một hình chữ nhật .H ãy chỉ ra cách căng dây để hình chữ nhật có diện tích lớn nhất chương III: HƯỚNG DẪN LỜI GIẢIBÀI TẬP (Nêu hướng dẫn giải hoặc đáp số của bàitoán ) Dạng 1: bài 1: Tam giác ABC có các tam giác nội tiếp thì tam giác có ba đỉnh là chân ba dường cao có chu vi nhỏ nhất bài 2;dùng phép quay tâm A góc quay 60 0 ngược chiều kim đồng hồ biến M / M → . C / C → → MA+MB +MC=MM / +MB+M / C / bằng độ dài đường gấp khúc bài3:Tam giác cân có diện tích lớn nhất Dạng 2: bài1:xét cho MQ//= AC 2 1 //=NP MN//=PQ( //= 2 BD ) → ◊ MNPQ là h.b.h 9 Để nó là h.c.n ⇔ MAQ ∠ =IV ⇔ AC ⊥ BD để ◊ MN ⊥ PQ là hình vuông ⇔ AC ⊥ BD và AC=BD Bài 2:a, Tacó ◊ APBCcó PBQ ∠=∠=∠ ◊⇒ APBQ là hình chử nhật để là hình vuông ⇔ AB là phângiác PBQ ∠ 0 45 =∠=∠⇔ APBABQ 0 90 =∠⇒ ABC Vậy điều kiện để ABPQ ◊ là hình vuông ABC ∆⇔ vuông tại B b, diều kiện ABC ∆ cân tại A c, không tồn tại ABC ∆ Bài3: a,chứng minh MPTS ◊ và MRTN ◊ là hình chử nhật suy ra các đoạn RN; MT; SP.bầng nhau và cắt nhau tại trung điểm của mổi đường b,Ta có MR= MSOB; 2 1 = AO 2 1 ;RP= OC 2 1 để Để MR=MS=RP thì OA=OB=OC vậy O vừa là giao điểm của ba đường cao của ∆ ABC vừa là giao điểm của ba đường cao của ∆ ABC vừa là giao điểm của các đường trung trực của tam giác đó ⇔ ∆ ABC phải là tam giác đều DẠNG3: bài1: điều kiệncần :Gĩa sử P ∈ CD suy ra : PC+PD=CD (1) do AB//CD nên: ∠ BAC= ∠ APD mặt khác ∠ BAP= DAP ∠ .suy ra DAPAPD ∠=∠ ∆ ADPcân tại D ⇒ AD=DP (2) Tương tự ta có CB =CP (3) từ (3),(2) ,(1) ⇒ CD=AD+BC Điều kiện đủ : N ếu hình thang ABCD có CD=AD+BC thì P thuộc CD Thật vậy :giả sử phân giác của ∠ BAD cắt CDtại P / tương tự như điều kiện cần ta chứng minh được AD=DP / mặt khác DP / +P / C=CD suy ra CP / =CD-DP / =CD- AD=CB ⇒ / CBP ∆ cân tại C ∠⇒ CBP / =CP / B ta có ∠ ABP / ∠= CP / B (so le trong ) suy ra ∠ CBP / = ∠ ABP / ⇒ BP / là phân giác ABC ∠ ⇒ P trùng với P / ⇒ P thuộc CD Bài2: Dễ thấy nếu A cách O một khoảng bằng hai lần bán kính lúc bấy giờ thì D trùng với E ∆⇒ ABC đều ⇒ cung KC bằng cung KB ⇒ CK vừa là phân giác vừa là đường cao Bài 3: Gọi a là chiều dài của dây 10 [...]... dụng giảivàđịnhdạng loại bài tập này tốt hơn ,giải thành thạo hơn Đối với dạy các lớp tự chọn vàhọc sinh giỏi : Do do đặc thù dối tượng học sinh ở các lớp này và được học theo một chuyên đề rõ ràng ,nên phương pháp giảivàđịnhdạng từng loại tốt hơn ,có hệ thống hơn kết quả : - học sinh đã nắm được kiến thức cơ bản tìm điều kiện của một hình tốt hơn -nắm được phương pháp giải ,cách trình bày bài toán. .. ra các bàitoán đó lại có phần gợi ý về đường lồi giải -Các bài tập ,các ví dụ được chắt lọc từ ví dụ ,bài tập điển hình lấy từ sách giáo khoa ở các lớp bậc t.h.c./s và tài liệu bồi dương học sinh giỏi toán 9và ôn thi vào lớp 10 p.t t h của sở giáo dục xuất bản năm học 1994-1995 *Từ các cơ sở trên của đề tài này : -Giúp học tự học tốt -Là tài liệu cầm tay của giáo viên khi dạy chuyên đề (Định dạng và. .. dạy :tìm điều kiện trong hìnhhọc *Trong quá trình thực hiện đề tài học sinh đã hiểu được : -Thế nào là bàitoán tìm điều kiện trong hìnhhọc -Đứng trước một bàitoán :tìm điều kiện trong hìnhhọc ,học sinh đã nhận biết được nó thuộc dạng nào cách ,giải ra sao ,và đã giải quyết tốt các bàitoán có nội tìm điều kiện của một hình -T uy nhiên do khả năng có hạn của bản thân tôi và do thời gian hạn chế có... và thực hiện đề tài này -Ở nội dung đề tài đưa đả đưa ra những khái niệm về (giải toán tìm điều kiện trong một hình )và cách giải chung nhất -Phân dạng cácbàitoán cơ bản và phương giải tương ứng phù hợp với yêu cầu của từng loại bài, sau mổi dạng lại có bài tập tương ứng 13 -Đề tài này được thể hiện ở nhiều năm ở nhiều kỳ ôn thi học sinh giỏi , ôn thi vào p.t.t.h có kết quả cao -Ở các ví dụ ,các bài. .. điều kiện trong hìnhhọc : Đo đặc điểm của đề tài :- đề tài đã nói rõ về giải bàitoán tìm điều kiện của một hình ,các cách giải loại toán này -Tìm tòi phân dạng loại toán này được trình bày mạch lạc ,mổi dạng có nêu rõ dạng tổng quát ,mổi dạng lại nêu rỏ phương pháp giảivà có ví dụ minh hoạ đa dạng Sau mổi phương pháp lại có bài tập tương ứng ,giúp cho giáo viên chuẩn bị bài tốt hơn ,học sinh có diều... trong cách trình bày -định dạngvà chỉ ra cách giải loại toán đó -ra bài tập về nhà luyện tập từng dạngbài Ví dụ : Ở tiết 23 p.p.c.t toán 8 - bài 84 khi ở câu a , đã chứng minh được ◊ FADE là hình A bình hành , để nó là hình thoi ⇔ AD là phân giác ∠ -Nếu ∆ABC vuông ⇒ ◊ FADE là hìnhhình chử nhật 3Đối với các tiết ôn tập chương : -V iệc áp dụng phương pháp suy luận tìm điều kiện của một hình giúp học. .. cao không những ở các tiết lý thuyết mà ở các tiết luyện tập , ôn tập chương Đặc biệt được sử dụng nhiềuở các kỳ thi chọn học sinh giỏi -B an dầu giao viên (Tôi) chưa đưa ra cách giải chung nhất của loại toán này và phương pháp giải ,thì thưòng hướng giải của học sinh rất lúng túng ,việc địnhdạngvàgiải từng dạngtoán khác nhau là khó khăn Vì vậy qua quá trình nhiên cứu ,viết và thể hiện đề tài... kiện trong hìnhhọc tốt hơn 12 -nắm được cácdạngvà phương pháp giải từng dạng tốt hơn -các lớp mà Tôi giảng dạy môn tự chọn ,học sinh giải loại toán này tương đối thành thạo -Đối với các đội tuyển tham gia bồi dưỡng đi thi học sinh giỏi môn toán tuyến thị, tuyến tỉnh mà tôi tham gia bồi dưỡng , đều có kết quả ,và làm thành thạo loại toán này II,Sử dụng đề tài này trong việc dạy học loại toán tìm điều... chăng lời giải không chuẩn mực lắm -Qua điều tra thấy rằng : -N guyên nhân : -học sinh chưa hiểu được phương pháp làm bàitoán tìm điều kiện trong hìnhhọc -học sinh biết loại toán này có những dạng nào ,phương pháp giải mổi dạng ra sao -học sinh chưa biết sử dụng kiến thức cơ bản nào để giải từng loại toán trên Biện pháp : -nhắc lại kiến thức cơ bản thường dùng -nhắc lại phương pháp giải loại toán này... ,các bàitoán Tôi đã cố gắng lựa chọn bài điẻn hình đa dạngvà cách giải tối ưu nhất Với hy vọng thêm một ý kiến và thêm một tài liệu tham khảo cho học sinh và bạn bè đồng nghiệp về (tìm điều kiện trong hìnhhọc ) -V ậy kính mong hội đồng khoa họccác cấp tận tình chỉ bảo hướng dẩn thêm và kính mong sự góp ý chân thành thiện trí của bạn bè đẻ tôi thêm một kinh nghiệm ,kịp thời bổ xung nội dung và hoàn . đưa ra cách giải chung nhất của loại toán này và phương pháp giải ,thì thưòng hướng giải của học sinh rất lúng túng ,việc định dạng và giải từng dạng toán. TRONG HÌNH HỌC ” II- phạm vi nhiên cứu : Nghiên cứu các bài toán trong đó có các câu về loại toán tìm điều kiện của một hình ,định dạng và phương pháp giải