Tuyển tập 102 bài ôn thi hh9 vao 10 Đây là 102 bàihìnhhọc ôn thi vào 10 toán 9 ban thân tôi thấy có nhiều bài tơng tự nhau . Nhìn chung đây là các bàihìnhhọchay đáng để các đồng nghiệp giữ làm tài liệu. Chúc các đồng chí dạy tốt Bài 1 .Cho hình vuông ABCD. Trên cạnh BC, CD lần lợt lấy điểm E, F sao cho ã 0 45EAF = . Biết BD cắt AE, AF theo thứ tự tại G, H. Chứng minh: a) ADFG, GHFE là các tứ giác nội tiếp b) CGH và tứ giác GHFE có diện tích bằng nhau n Bài 2. Cho ABC không cân, đờng cao AH, nội tiếp trong đờng tròn tâm O. Gọi E, F thứ tự là hình chiếu của B, C lên đờng kính AD của đờng tròn (O) và M, N thứ tự là trung điểm của BC, AB. Chứng minh: a) Bốn điểm A,B, H, E cùng nằm trên đờng tròn tâm N và HE// CD. b) M là tâm đờng tròn ngoại tiếp HEF. Bài 3. Cho nửa đờng tròn đờng kính AB. Gọi H là điểm chính giữa cung AB, gọi M là một điểm nằm trên cung AH; N là một điểm nằm trên dây cung BM sao cho BN = AM. Chứng minh: 1. AMH = BNH. 2. MHN là tam giác vuông cân. 3. Khi M chuyển động trên cung AH thì đờng vuông góc với BM kẻ từ N luôn đi qua một điểm cố định ở trên tiếp tuyến của nửa đờng tròn tại điểm B. Gợi ý : 3) Gọi đthẳng qua N vuông góc với MB cắt ttuyến tại B ở Q Chứng minh AMB = BNQ BQ = BA = const 1 I BT 3 : Hai pt đồng dạng với nhau khi và chỉ khi Hoặc 1 và 2 nhỏ hơn 0 Hoặc a a , = b b' = c c' a) Chứng minh góc EHM = góc HCD b) MN// AC, AC CD, CD // HE MN HE mà MN là đường kính của vòng tròng ngoại tiếp ABHE MH = ME Từ M kẻ đường thẳng // BE như hình vẽ + PJ là đường TB của hthang BECF PJ FE + Từ đó dễ thấy MF = ME P K J N M F E H D C A B N Q H O A B M Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 4.Cho (O) đờng kính AC. Trên đoạn OC lấy điểm B và vẽ đờng tròn (O / ) đờng kính BC. Gọi M là trung điểm đoạn AB. Từ M kẻ dây cung DEAB. Gọi I là giao của DC với (O / ) a) Chứng minh ADBE là hình thoi. b) BI// AD. c) I,B,E thẳng hàng . Gọi ý : c: Chứng minh qua B có 2 đờng thẳng: BE và BI Cùng song song với AD Bài 5. Trên đờng thẳng d lấy ba điểm A,B,C theo thứ tự đó. Trên nửa mặt phẳng bờ d kẻ hai tia Ax, By cùng vuông góc với dt. Trên tia Ax lấy I. Tia vuông góc với CI tại C cắt By tại K. Đờng tròn đờng kính IC cắt IK tại P. 1)Chứng minh tứ giác CBPK nội tiếp đợc đờng tròn 2)Chứng minh AI.BK = AC.CB 3)Giả sử A,B,I cố định hãy xác định vị trí điểm C sao cho diện tích hình thang vuông ABKI max. 2 I D E M O' A C B x y a/ Chứng minh KPC = KBC = 90 b/ Chứng minh AIC BCK P K A C B I Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 6. Từ một điểm S ở ngoài đờng tròn (O) vẽ hai tiếp tuyến SA, SB và cát tuyến SCD của đờng tròn đó. a) Gọi E là trung điểm của dây CD. Chứng minh 5 điểm S,A,E,O,B cùng thuộc một đờng tròn b) Nếu SA = AO thì SAOB là hình gì? tại sao? c) Chứmg minh rằng: . . . 2 AB CD AC BD BC DA = = b/ SAOB là hình vuông c/ Lấy E thuộc CD Sao cho ã ã CAE BAD= chứng minh CAE BAD AB.CE = AC. AD (1) CM AB.DE = AC. CB (2) Từ (1) và (2) AB.CD = AC .BD + AD.BC (3) Cminh SAC SDA SA SC SD SB = (4) , AC SA AD SD = (5) SCB SBD BC SC BD SD = (6) Từ 4, 5, 6 AC.BD = AD. BC (7) Từ 3, 7 Đfải CM Bài 7. Cho ABC vuông ở A. Nửa đờng tròn đờng kính AB cắt BC tại D. Trên cung AD lấy một điểm E. Nối BE và kéo dài cắt AC tại F. a) Chứng minh: CDEF là một tứ giác nội tiếp. b) Kéo dài DE cắt AC ở K. Tia phân giác của góc CKD cắt EF và CD tại M và N. Tia phân giác của góc CBF cắt DE và CF tại P và Q. Tứ giác MNPQ là hình gì? Tại sao? c) Gọi r, r 1 , r 2 là theo thứ tự là bán kính của đờng tròn nội tiếp các tam giác ABC, ADB, ADC. Chứng minh rằng 2 2 1 2 r r r = + . 3 E C B A O S D O D A C B E Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 8. Cho ABC có ba góc nhọn nội tiếp trong đờng tròn tâm O, bán kính R. Hạ các đ- ờng cao AD, BE của tam giác. Các tia AD, BE lần lợt cắt (O) tại các điểm thứ hai là M, N. Chứng minh rằng: 1. Bốn điểm A,E,D,B nằm trên một đờng tròn. Tìm tâm I của đờng tròn đó. 2. MN// DE 3. Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh rằng độ dài bán kính đờng tròn ngoại tiếp CDE không đổi. Y 3 / Dễ chứng minh đợc HC = 2 2 2 2 AK AB 4R AB const = = 4 r r 2 r 1 a/ CM góc C = góc DEB b/ Chứng minh AQB = QPK( cùng bằng 1/2 sđBD ) + Từ đó suy ra KN là đường trung trực của PQ, QPlà đường trung trực của MN + KL MNPQ là hình thoi c/ CM COB AO 2 B BO BO 2 = r r 2 r 2 r = AB BC ; tương tự tacó r 1 r = AB BC r 2 1 r 2 + r 2 2 r 2 = AB 2 + AC 2 CB 2 = 1 Đpcm O1 O2 D O P L M Q N K F D A B A B C E C D E M H A K B C Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 9. Cho nửa đờng tròn tâm O đờng kính AB. Lấy D trên cung AB (D khác A,B), lấy điểm C nằm giữa O và B. Trên nửa mặt phẳng bờ AB có chứa D kẻ các tia Ax và By vuông góc với AB. Đờng thẳng qua D vuông góc với DC cắt Ax và By lần lợt tại E và F . 1) CMR : Góc DFC bằng góc DBC 2) CMR : ECF vuông 3) Giả sử EC cắt AD tại M, BD cắt CF tại N. CMR : MN//AB 4)CMR: Đờng tròn ngoại tiếp EMD và đờng tròn ngoại tiếp DNF tiếp xúc nhau tại 4 a/ Sử dụng tc góc nội tiếp b/ Chng minh tổng 2 góc của ECF bằng 1 vuông c/ ã ã ã ã MCA MDE NDC NMC= = = (cùng phụ với góc MDC) Bài 10. Cho nửa đờng tròn (O) đờng kính AB = 2R. Trên nửa mặt phẳng bờ AB chứa nửa đòng tròn kẻ hai tia tiếp tuyến Ax và By. Qua điểm M thuộc nửa đờng tròn(M khác A và B) kẻ tiếp tuyến thứ ba cắt Ax và By ở C, D. 1. Chứng minh: a) CD = AC+BD b) AC.BD = R 2 2. Xác định vị trí điểm M để tứ giác ABDC có diện tích nhỏ nhất. 3. Cho R = 2 cm, diện tích tứ giác ABDC bằng 32cm 2 . Tính diện tích ABM 2 SABM nhỏ nhất khi CD nhỏ nhất CD nhỏ nhất khi CD song song với AB Khi đó M là điểm chính giữa cung AB 3 5 N d/ Lấy Q là trung điểm của MN khi đó DQ=QM=QN DEM = DAB = DMQ = MDQ DQ là tiếp tuyến của (O') O'DQ = 90 Tương tự O''DQ = 90 Từ đó suy ra điều cần chứng minh Chú ý: MN là tiếp tuyến chung của (O') và (O'') Q O'' O' M F E A B D C 2 Dễ thấy CD = 16; S COD = 16 COD AMB( theo tỉ số CD/ AB = 4) Từ đó rút ra diện tích AMB D C O A B M Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 11. Cho đờng tròn tâm O, đờng kính AB = 2R. Gọi I là trung điểm của AO. Qua I kẻ dây CD vuông góc với AB. 1) Chứng minh: a) Tứ giác ACOD là hình thoi. b) ã ã 1 2 CBD CAD= 2) Chứng minh rằng O là trực tâm của BCD. 3) Xác định vị trí điểm M trên cung nhỏ BC để tổng (MB+MC+MD) đạt giá trị lớn nhất. Bài 12. Cho ABC có 3 góc nhọn AC > BC nội tiếp (O) . Vẽ các tiếp tuyến với (O) tại A và B, các tiếp tuyến này cắt nhau tại M . Gọi H là hình chiếu vuông góc của O trên MC CMR a/MAOH là tứ giác nội tiếp b/ Tia HM là phân giác của góc AHB c/ Qua C kẻ đờng thẳng song song với AB cắt MA, MB lần lợt tại E, F. Nối EH cắt AC tại P, HF cắt BC tại Q. Chứng minh rằng QP // EF. Bài 13. Cho (O) đờng kính AB = 2R, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi K là điểm tuỳ ý trên cung nhỏ BM, H là giao điểm của AK và MM . a) CMR: BCHK là tứ giác nội tiếp. b) Tính AH.AK theo R. c) Xác định vị trí của điểm K để (KM+KN+KB) đạt giá trị lớn nhất và tính giá trị lớn nhất đó . Bài 14. Từ một điểm A ở ngoài đờng tròn (O) vẽ hai tiếp tuyến AB, AC và cát tuyến AMN của đờng tròn đó. Gọi I là trung điểm của dây MN, H là giao điểm của AO và BC. Chứng minh: a) Năm điểm A, B, I, O, C cùng nằm trên một đờng tròn. b) 2 AB AM AN= ì và ã ã AHM ANO= . Bài 15. Cho tam giác ABC không cân có ba góc nhọn nội tiếp trong đờng tròn tâm O. Hai đờng cao AI và BE cắt nhau tại H. 1/. Chứng minh CHI = CBA . 2/. Chứng minh EI CO. 6 Khai thác: 1/ CM AMON là hình thoi 2/ CM MNB đều 3/ CM KM+KB= KN Dễ thấy MNB đều Lấy E trên NK sao cho KM=KE +Dễ chứng minh được MK+KB = KN (do MEN= MKB) +KN AB; MK+KN+KB 2AB =4R "Dấu = khi K là điểm chính giữa cung MB" E H N M C O A B K Tuyển tập 102 bài ôn thi hh9 vao 10 3/. Cho góc ACB = 60 0 . Chứng minh CH = CO. Bài 16. Cho tứ giác ABCD có hai đỉnh B và C ở trên nửa đờng tròn đờng kính AD, tâm O. Hai đờng chéo AC và BD cắt nhau tại E. Gọi H là hình chiếu vuông góc của E xuống AD và I là trung điểm của DE. Chứng minh rằng: a) Các tứ giác ABEH, DCEH nội tiếp đợc; b) E là tâm đờng tròn nội tiếp tam giác BCH; c) Năm điểm B, C, I, O, H ở trên một đờng tròn. Bài 17.Cho nửa đờng tròn tâm O có đờng kính AB = 2R. Kẻ hai tia tiếp tuyến Ax và By của nửa đờng tròn (Ax, By và nửa đờng tròn cùng thuộc một nửa mặt phẳng bờ AB). Gọi M là điểm tùy ý thuộc nửa đờng tròn (khác A và B). Tiếp tuyến tại M của nửa đờng tròn cắt Ax tại D và cắt By tại E. a) Chứng minh rằng: DOE là tam giác vuông. b) Chứng minh rằng: 2 AD BE = Rì . c) Xác định vị trí của điểm M trên nửa đờng tròn (O) sao cho diện tích của tứ giác ADEB nhỏ nhất. Bài 18. Cho hai đờng tròn (O 1 ) và (O 2 )có bán kính bằng nhau và cắt nhau ở A và B . Vẽ cát tuyến qua B không vuông góc với AB, nó cắt hai đờng tròn ở E và F . (E (O 1 ); F(O 2 )). 1. Chứng minh AE = AF 2. Vẽ cát tuyến CBD vuông góc với AB (C (O 1 ); D(O 2 )).Gọi P là giao điểm của CE và FD . Chứng minh rằng: a. Các tứ giác AEPF và ACPD nội tiếp đợc đờng tròn . b. Gọi I là trung điểm của EF . Chứng minh ba điểm A, I, P thẳng hàng. 3. Khi EF quay quanh B thì I di chuyển trên đờng nào ? Bài 19. Cho nửa đờng tròn tâm O đờng kính AB bằng 2R. M là một điểm tuỳ ý trên nửa đờng tròn (M khác A và B). Kẻ hai tiếp tuyến Ax và By với nửa đờng tròn. Qua M kẻ tiếp tuyến thứ ba cắt hai tiếp tuyến Ax và By tại C và D. a) Chứng minh rằng: COD vuông . b) Chứng minh rằng: AC.BD = R 2 . c) Gọi E là giao của OC và AM; F là giao của OD và BM. Chứng minh rằng: EF = R d) Tìm vị trí M để S ABCD đạt giá trị bé nhất. Bài 20. Cho M là một điểm tuỳ ý trên nửa đờng tròn tâm O, đờng kính AB = 2R(M không trùng với A và B). Vẽ các tiếp tuyến Ax, By, Mz của nửa đờng tròn đó. Đờng Mz cắt Ax và By tại N và P. Đờng thẳng AM cắt By tại C và đờng thẳng BM cắt cắt Ax tại D. CMR: a) Tứ giác AOMN nội tiếp và NP = AN+BP b) N, P là trung điểm của AD và BC c) AD.BC = 4 R 2 d) Xác định vị trí điểm M để S ABCD có giá trị nhỏ nhất 7 . 102 bài ôn thi hh9 vao 10 Đây là 102 bài hình học ôn thi vào 10 toán 9 ban thân tôi thấy có nhiều bài tơng tự nhau . Nhìn chung đây là các bài hình học hay. Nhìn chung đây là các bài hình học hay đáng để các đồng nghiệp giữ làm tài liệu. Chúc các đồng chí dạy tốt Bài 1 .Cho hình vuông ABCD. Trên cạnh BC, CD lần