1. Trang chủ
  2. » Giáo án - Bài giảng

CASIO_BÀI 29_TÍNH NHANH CÁC PHÉP TOÁN CƠ BẢN SỐ PHỨC

9 142 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 184,6 KB

Nội dung

PHƯƠNG PHÁP CASIO – VINACAL BÀI 29 TÍNH NHANH CÁC PHÉP TOÁN CƠ BẢN SỐ PHỨC I) KIẾN THỨC NỀN TẢNG Các khái niệm thường gặp  Đơn vị ảo đại lượng kí hiệu i có tính chất i  1  Số phức biểu thức có dạng a  bi a , b số thực Trong a gọi phần thực b gọi số ảo  Số phức liên hợp số phức z  a  bi số phức z  a  bi 1  Số phức nghịch đảo số phức z  a  bi số phức z 1   z a  bi  Môdul số phức z  a  bi kí hiệu z có độ lớn z  a  b 2 Lệnh Caso  Để xử lý số phức ta sử dụng lệnh tính số phức MODE  Lệnh tính Mơđun số phức SHIFT HYP  Lệnh tính số phức liên hợp z SHIFT 2  Lệnh tính Acgument số phức SHIFT II) VÍ DỤ MINH HỌA VD1-[Đề minh họa THPT Quốc Gia lần năm 2017] Cho hai số phức z1   i z2   3i Tính Mơđun số phức z1  z2 A z1  z2  13   B z1  z2  C z1  z2  GIẢI D z1  z2  Đăng nhập lệnh số phức w2 (Khi máy tính hiển thị chữ CMPLX bắt đầu tính tốn số phức được) Để tính Mơđun số phức ta nhập biểu thức vào máy tính sử dụng lệnh SHIFT HYP 1+b+2p3b=qcM= Vậy z1  z2  13  Đáp số xác A VD2-[Thi thử báo Toán học tuổi trẻ lần năm 2017] 2 Số phức liên hợp với số phức z  1  i   1  2i  : A 9  10i  B  10i C  10i GIẢI Sử dụng máy tính Casio tính z D 9  10i Trang 1/48 (1+b)dp3(1+2b)d=  z   10i  Số phức liên hợp z  a  bi z  a  bi : Vậy z   10i  Đáp án B xác VD3-[Thi thử trung tâm Diệu Hiền – Cần thơ lần năm 2017] Cho số phức z  a  bi Số phức z có phần ảo : A a 2b B 2a 2b C 2ab D ab GIẢI  Vì đề cho dạng tổng quát nên ta tiến hành “cá biệt hóa” tốn cách chọn giá trị cho a , b (lưu ý nên chọn giá trị lẻ để tránh xảy trường hợp đặc biệt) Chọn a  1.25 b  2.1 ta có z  1.25  2.1i  Sử dụng máy tính Casio tính z 1.25+2.1b)d= Vậy phần ảo  21 Xem đáp số có giá trị 21 đáp án xác Ta có : 21  Đáp án C xác VD4-[Thi thử báo Tốn học tuổi trẻ lần năm 2017] Để số phức z  a   a  1 i ( a số thực) có z  : Vậy 2ab  A a    a  C  D a  1 a  GIẢI Để xử lý ta sử dụng phép thử, nhiên ta chọn a cho khéo léo để phép thử tìm đáp số nhanh Ta chọn a  trước, a  đáp án C D, a  sai C D sai Với a  Sử dụng máy tính Casio tính z 1+(1p1)b=qcM= B a  Trang 2/48 Vậy z   Đáp án C D  Thử với a  Sử dụng máy tính Casio tính z : 0+(0p1)b=qcM= Vậy z   Đáp án xác C VD5-[Thi thử THPT Phạm Văn Đồng – Đắc Nông lần năm 2017] 20 Số phức z   1  i   1  i    1  i  có giá trị : A 220  B 210   220  1 i C 210   210  1 i D 210  210 i GIẢI 20 Nếu ta nhập biểu thức  1  i   1  i    1  i  vào máy tính Casio được, nhiều thao tác tay Để rút ngắn công đoạn ta tiến hành rút gọn biểu thức Ta thấy số hạng biểu thức có chung quy luật “số hạng sau số hạng trước nhân với đại lượng  i “ cấp số nhân với công bội 1 i 21   1  i   1  i    1  i  20  1  i   qn  U1  11  1  i  21   1  i  Với z  Sử dụng máy tính Casio tính z  1  i  a1p(1+b)^21R1p(1+b)= Ta thấy z  1024  1025i  210   210  1 i  Đáp án xác B VD6-[Thi thử chuyên KHTN lần năm 2017] Nếu số phức z thỏa mãn z  phần thực A B  : 1 z D.Một giá trị khác C GIẢI Trang 3/48  Đặt số phức z  a  bi Mơđun số phức z z  a  b   Chọn a  0.5  0.52  b  Sử dụng chức dò nghiệm SHIFT SOLVE để tìm b w1s0.5d+Q)d$p1qr0.5= Lưu giá trị vào b qJx  : 1 z w2a1R1p(0.5+Qxb)= Trở lại chế độ CMPLX để tính giá trị  Đáp án xác A VD7-[Thi thử nhóm tốn Đồn Trí Dũng lần năm 2017] Tìm số phức z biết : 1  i  z  z  5  11i Vậy phần thực z A z   7i    B z   3i C z   3i D z   4i GIẢI Với z   7i số phức liên hợp z   7i Nếu đáp án A phương trình : 1  i   7i     7i   5  11i (1) Sử dụng máy tính Casio nhập vế trái (1) (1+b)(5p7b)p2(5+7b)= Vì  16i  5  11i nên đáp án A sai Tương tự với đáp án B (1+b)(2+3b)p2(2p3b)= Dễ thấy vế trái (1) = vế phải (1) = 5  11i  Đáp số xác B VD8-[Đề minh họa GD-ĐT lần năm 2017] Trang 4/48 Cho số phức z  a  bi thỏa mãn 1  i  z  z   2i Tính P  a  b A P   B P  C P  1 D P   GIẢI Phương trình  1  i  z  z   2i  (1) Khi nhập số phức liên hợp ta nhấn lệnh q22  Sử dụng máy tính Casio nhập vế trái (1) (1+b)Q)+2q22Q))p3p2b  X số phức nên có dạng X  a  bi Nhập X  1000  100i (có thể thay a; b số khác) r1000+100b= 2897  3.1000  100   3a  b  Vậy vế trái (1) 2897  898i Ta có :  898  1000  100   a  b  3a  b   3 Mặt khác muốn vế trái     a  ;b  2 a  b   Vậy a  b  1  Đáp số xác B  3i VD9-Số phức z  có Acgument :  2i    8 A B C D GIẢI  Thu gọn z dạng tối giản  z  1  3i a5+3bs3R1p2bs3=  Tìm Acgument z với lệnh SHIFT q21p1+s3$b)= Trang 5/48 Vậy z có Acgument 2 Tuy nhiên so sánh kết ta lại không thấy có giá 2 Khi ta nhớ đến tính chất “Nếu góc  Acgument góc   2 Acgument” 2 8  Đáp số xác D  2  III) BÀI TẬP TỰ LUYỆN Bài 1-[Thi thử chuyên Lam Sơn – Thanh Hóa lần năm 2017] Cho hai số phức z1   i, z   3i Tìm số phức w   z1  z2 trị A w   4i B w   4i C w  6  4i D w  6  4i Bài 2-[Thi thử THPT Phan Chu Trinh – Phú Yên lần năm 2017] Cho số phức z  a  bi Số phức z 1 có phần thực : a b A a  b B C D a  b a b a  b2 Bài 3-[Thi thử nhóm tốn Đồn Trí Dũng lần năm 2017] 1  Tìm mơđun số phức z   3i   3i  : 2  103 103 103 A B C D Đáp án khác 2 Bài 4-[Thi thử chuyên Khoa học tự nhiên lần năm 2017] 22 Cho số phức z  1  i   1  i    1  i  Phần thực số phức z : A 211 B 211  C 211  D 211 Bài 5-[Thi thử chuyên Khoa học tự nhiên lần năm 2017] Cho số phức z   3i Phần ảo số phức w  1  i  z    i  z : A 9i B 9 C 5 D 5i Bài 6-[Đề thi Đại học –Cao đẳng khối A năm 2009] Cho số phức z  a  bi thỏa mãn điều kiện   3i  z    i  z   1  3i  Tìm P  2a  b A B 1 C khác Bài 7-[Thi thử chuyên Lam Sơn – Thanh Hóa lần 2] Cho số phức z  a  bi thỏa mãn điều kiện   3i  z    i  z   1  3i  D Đáp án Tìm P  2a  b A khác D Đáp án B 1 C LỜI GIẢI BÀI TẬP TỰ LUYỆN Bài 1-[Thi thử chuyên Lam Sơn – Thanh Hóa lần năm 2017] Cho hai số phức z1   i, z   3i Tìm số phức w   z1  z2 A w   4i B w   4i C w  6  4i D w  6  4i GIẢI  Sử dụng máy tính Casio với chức MODE (CMPLX) Trang 6/48 (1+b)dO(2+3b)= Vậy w  6  4i ta chọn D đáp án xác Bài 2-[Thi thử THPT Phan Chu Trinh – Phú Yên lần năm 2017] Cho số phức z  a  bi Số phức z 1 có phần thực : a b A a  b B C D a  b a b a  b2 GIẢI  Vì đề mang tính chất tổng quát nên ta phải cá biệt hóa, ta chọn a  1; b  1.25  Với z 1  Sử dụng máy tính Casio z a1R1+1.25b= Ta thấy phần thực số phức z 1 : 16 giá trị dương Vì ta chọn b  a  nên ta 41 thấy đáp số C D sai 16 đáp số A sai  Đáp án xác B  41 Bài 3-[Thi thử nhóm tốn Đồn Trí Dũng lần năm 2017] 1  Tìm mơđun số phức z   3i   3i  : 2  103 103 103 A B C D Đáp án khác 2 GIẢI 1   Tính số phức z   3i   3i  2  2ps3$b(a1R2$+s3$b)= Thử đáp số A có a  b   1.25  i  Dùng lệnh SHIFT HYP tính Mơđun số phức z ta qc5pas3R2$b= Vậy z   Trang 7/48 103  Đáp số xác A Bài 4-[Thi thử chuyên Khoa học tự nhiên lần năm 2017] 22 Cho số phức z  1  i   1  i    1  i  Phần thực số phức z : Vậy z  A 211 B 211  C 211  D 211 GIẢI  Dãy số cấp số nhân với U1  1  i  , số số hạng 21 công bội  i Thu 21  qn  1  i  gọn z ta : z  U1  1  i  1 q  1  i   Sử dụng máy tính Casio tính z (1+b)dOa1p(1+b)^21R1p(1+b)= Vậy z  2050  2048i  Phần ảo số phức z 2050  211   Đáp số xác C Bài 5-[Thi thử chuyên Khoa học tự nhiên lần năm 2017] Cho số phức z   3i Phần ảo số phức w  1  i  z    i  z : A 9i B 9 D 5i C 5 GIẢI  Dãy số cấp số nhân với U1  1  i  , số số hạng 21 công bội  i Thu 21  qn  1  i  gọn z ta : z  U1  1  i  1 q  1  i   Sử dụng máy tính Casio tính z (1+b)dOa1p(1+b)^21R1p(1+b)= Vậy z  2050  2048i  Phần ảo số phức z 2048  211  Đáp số xác A Bài 6-[Đề thi Đại học –Cao đẳng khối A năm 2009] Cho số phức z  a  bi thỏa mãn điều kiện   3i  z    i  z   1  3i  Tìm P  2a  b A khác B 1  Phương trình    3i  z    i  z  1  3i  C D Đáp án GIẢI 0  Nhập vế trái vào máy tính Casio CALC với X  1000  100i (2p3b)Q)+(4+b)q22Q))+(1 +3b)dr1000+100b= Trang 8/48 6392  6.1000  4.100   6a  4b  Vậy vế trái  6392  2194i với  2194  2.1000  2.100   2a  2b  6a  4b    Để vế trái    a  2; b  2a  2b   Vậy z  2  5i  P  2a  b   Đáp số xác C Bài 7-[Thi thử chuyên Lam Sơn – Thanh Hóa lần 2] Cho số phức z  a  bi thỏa mãn điều kiện   3i  z    i  z   1  3i  Tìm P  2a  b A khác B 1  Phương trình    3i  z    i  z  1  3i  C D Đáp án GIẢI 0  Nhập vế trái vào máy tính Casio CALC với X  1000  100i (2p3b)Q)+(4+b)q22Q))+(1 +3b)dr1000+100b= 6392  6.1000  4.100   6a  4b  Vậy vế trái  6392  2194i với  2194  2.1000  2.100   2a  2b  Trang 9/48 ... Cho số phức z  1  i   1  i    1  i  Phần thực số phức z : A 211 B 211  C 211  D 211 Bài 5-[Thi thử chuyên Khoa học tự nhiên lần năm 2017] Cho số phức z   3i Phần ảo số phức. .. năm 2017] 22 Cho số phức z  1  i   1  i    1  i  Phần thực số phức z : Vậy z  A 211 B 211  C 211  D 211 GIẢI  Dãy số cấp số nhân với U1  1  i  , số số hạng 21 công bội... Vậy z  2050  2048i  Phần ảo số phức z 2050  211   Đáp số xác C Bài 5-[Thi thử chuyên Khoa học tự nhiên lần năm 2017] Cho số phức z   3i Phần ảo số phức w  1  i  z    i  z

Ngày đăng: 07/01/2018, 22:32

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w