Lecture 3 work and energy 2015

13 85 0
Lecture 3 work and energy 2015

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Mô tả: Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp Tìa liệu biên soạn dựa trên chuẩn vật lí Châu Âu, sử dụng kí hiệu phổ biến tư trường đại học Paris technique Description: Document prestigieux compilé par la faculté de technologie de lUniversité de Ho Chi Minh Ville, propice à la séquence détude, recherche avancée en physique avancée, physique, matériaux de zéro à avancé , compléter les connaissances dexcellents étudiants en physique, recherche, formule avec notes de bas de page, joindre des documents en anglais, français La compilation est basée sur les standards de physique européens, en utilisant la technique commune de lUniversité de Paris Description: Prestigious document compiled by Ho Chi Minh City University of Technology faculty, conducive to the study sequence, advanced research in advanced physics, physics, materials from scratch to advanced , supplement the knowledge of excellent students in physics, research, formula with footnotes, attach documents in English, French The compilation is based on European physics standards, using the Paris University common technique

Lecture WORK and ENERGY OUTLINE • • • • Work and Kinetic Energy The Work-Kinetic Energy Theorem Power Conservative Force-Nonconservative Force • Potential Energy • Mechanical Energy • Conservation of Mechanical Energy 4.1 Work and Kinetic Energy The work done by a constant force F on the object when it moves a straight distance s is: F=const  W  Fs cos  F s   s In general case, the work is not constant, the path is a curve The work done by force F when the object moves a very small displacement ds (we can consider F constant and ds a straigh  linet:  F  ds (1) (2)   dv dW  F ds  m ds  mv dv dt The work done by force F when the object moves from position (1) to (2) is:  v2      W   F ds   mv dv  mv22  mv12  2 v1 We define: Kinetic Energy: K mv The total work done on a particle is equal to the change in its kinetic energy 1 W  K  mv22  mv12 Work-Kinetic Energy Theorem 2 4.2 Power work _ done Power  per _ unit _ of _ time  dW F ds   P   F v dt dt t2 W   dW   Pdt t1 if P  const  W  Pt 2 W  mv2  mv1 2 2 mv2  mv1 W 2 t   P P Conservative Nonconservative Force Definition: A force is Conservative if the work done by the force is independent on the path, it is dependent only on the initial and final position - Gravity and spring force are conservative forces,while kinetic friction is not Work done by Gravitation Force: (1) r1 Fgrv dr  m ds Work done by the grav force F on object m when it moves a displacement ds:  Mm dW  F ds   F ds cos    G dr    r dr (2)Work done by the grav force F on object m when it moves from (1) to (2) r r2 M G  6.67 10 11 N m2 / kg Mm Mm Mm W    G dr  G G r r2 r1 r1 Universal Graviattional Cconstant + Work done is independent of the path, but of the initial and final position gravitation force is conservative + we define a scalar quantity called gravitational potential energy of two object sseparated by a distance r : Mm U ( r )  G r C If we choose U=0 when r=, we have C=0, If we choose U=0 on the surface of Earth: C=GMm/R We can write: W  U1  U  U Conservative Forces The work done by a conservative force on a particle moving between any two points is independent of the path taken by the particle The work done by a conservative force on a particle moving through any closed path is zero (A closed path is one in which the beginning and end points are identical.) the work Wc done by a conservative force on an object as the object moves from one position to another is equal to the initial value of the potential energy minus the final value (2) (a)  W12   Fc .ds  (1a ) F (b) (1) ds (1)(2)   Fc ds  U1  U  U (1b )  W   Fc .ds  (C ) Mechanical Energy    ma  Fc  Fnc • If an object is exerted by Conservative Force Fc and Nonconservative Force Fnc, • from the Work-Kinetic Energy Theorem : • Fc is conservative: WFc  U  U1  U (2) • From (1) and (2): K  K1  U1  U  WFnc K  K  K1  WFc  WFnc (1) ( K  U )  ( K1  U1 )  WFnc • Mechanical Energy: E=K+U E  E2  E1  WFnc Conservation of Mechanical Energy The change in Mechnaical energy of an object is equal to the work done by nonconservative force on the object as it takes a path form position (1) to (2) E  E2  E1  WFnc If Fnc= or WFnc =0 =>E=0: E=const Conservation of Mechanical Energy Conservative Force & Potential Energy        F  Fx i  Fy j  Fz k ds  dxi  dyj  dzk  dW  Fc ds  Fx dx  Fy dy  Fz dz (1) F _ is _ conservative  U U U  dW  dU   dx  dy  dz (2) y z   x U U U Fx   ; Fy   ; Fz   x y z  F   gradU Gradient Operator       grad  i  j k x y z Lực bảo tòan   p   p   p  F   grad p  ( ex  ey  ez ) x y z Dao động xung quanh vị trí cân bền Khai triển Taylor hàm xung quanh vị trí cân bằng:  p  p  p ( x)   p ( xe )  ( x  xe )  ( x  xe ) x x  x x x  x e     e 0 vị trí cân  p ( x)   p ( xe )  k ( x  xe ) 2 Fx   p / x  k ( x  xe ) mx  k ( x  xe ) k bền k>0 ko bền k

Ngày đăng: 06/01/2018, 13:54

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan