Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 90 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
90
Dung lượng
371,37 KB
Nội dung
LỜI CẢM ƠN Trước tiên, lòng biết ơn sâu sắc, em xin chân thành cảm ơn thầy giáo GS TSKH Đào Vọng Đức – người hướng dẫn bảo tận tình cho em suốt thời gian học tập, nghiên cứu hồn thành khóa luận Em xin gửi lời cảm ơn sâu sắc tới thầy khoa Vật Lí – Trường Đại học Sư phạm Hà Nội tạo điều kiện tốt để giúp em hồn thành khóa luận Cuối cùng, em xin gửi lời cảm ơn tới tất bạn bè, người giúp đỡ, động viên em suốt q trình nghiên cứu để hồn thiện khóa luận Em xin chân thành cảm ơn! Hà Nội, tháng 05 năm 2013 Sinh viên Nguyễn Thị Thu Hường LỜI CAM ĐOAN Trong q trình nghiên cứu khóa luận: “Biểu diễndaođộngtửđạisố SU(3)” em thực cố gắng tìm hiểu, học tập nghiên cứu đề tài để hồn thành khóa luận Em xin cam đoan khóa luận khơng trùng lặp với đề tài khác, hoàn thành nỗ lực thân em với hướng dẫn bảo tận tình GS TSKH Đào Vọng Đức Hà Nội, tháng 05 năm 2013 Sinh viên Nguyễn Thị Thu Hường LỜI CẢM ƠN LỜI CAM ĐOAN MỞ ĐẦU MỤC LỤC Lý chọn đề tài Mục đích nghiên cứu Đối tượng nghiên cứu Nhiệm vụ nghiên cứu Phương pháp nghiên cứu CHƯƠNG 1: DAOĐỘNGTỬ 1.1 Daođộngtử điều hòa 1.1 Biểudiễndaođộngtử vi tử SU(2) 1.2 Thống kê daođộngtử điều hòa CHƯƠNG 2: BIỂUDIỄNDAOĐỘNGTỬCỦAĐAISỐSU(3) 2.1 ĐạisốSU(3) 2.2 BiểudiễndaođộngtửđạisốSU(3) CHƯƠNG 3: SỰ GẦN ĐÚNG CỦA NHÓM ĐỐI XỨNG SU(3) 3.1 Đa tuyến nhóm SU(3) 3.2 Hệ thức khối lượng hạt KẾT LUẬN TÀI LIỆU THAM KHẢO MỞ ĐẦU Lý chọn đề tài Trong năm gần đây, việc nghiên cứu Vật lí vi mơ nói chung lí thuyết hạt nói riêng tạo nên sở giới quan Vật lí để lý giải chất hạt vi mô mặt cấu trúc tính chất chúng Cùng với phát triển lịch sử lồi người, Vật lí học trải qua nhiều giai đoạn phát triển đạt nhiều thành tựu quan trọng Ngày nay, Vật lí học đại với khuynh hướng thâm nhập sâu vào cấu trúc vi mơ vật chất, người ta thấy ngồi quy luật tìm Vật lí cổ điển xuất quy luật Nghiên cứu Vật lí hạt cho phép hiểu nguyên lí tự nhiên hình thành phát triển vũ trụ Hạt thực thể Vật lí nhỏ tạo nên dạng thực thể Vật lí khác theo lí thuyết hành Các hạt tìm thấy e, p, n, photon Ngày nay, người ta biết 200 loại hạt số tiếp tục tăng lên Khi sâu vào nghiên cứu hạt bản, người ta thấy hạt chưa phải “thực bản” mà cấu tạo từ hạt quark Cho đến quark coi viên gạch xây dựng nên giới vật chất Sau hình thành mẫu quark, hiểu biết nhóm Lie trở thành cần thiết cho việc nghiên cứu Lí thuyết hạt Nhóm Lie trở thành cơng cụ chủ yếu Vật lí lí thuyết đại giải tích phức, phương trình vi phân riêng, lí thuyết nhóm vơ hạn,… Đạisố Lie xuất lâu song gần đòi hỏi ứng dụng nghiên cứu Vật lí mà V.I.Drinfeld lượng tử hóa đạisố nhóm Lie, làm nảy sinh cấu trúc đạisố biến dạng hay gọi đạisố lượng tử Đề tài “Biểu diễndaođộngtửđạisố SU(3)” nằm hướng nghiên cứu này, với hy vọng góp phần hiểu biết đầy đủ giới xung quanh, đặc biệt giới hạt vi mơ Mục đích nghiên cứu Nghiên cứu daođộng tử, đạisốSU(3)biểudiễndaođộngtửđạisốSU(3) Đối tượng nghiên cứu Lí thuyết đối xứng, biểudiễndaođộngtửđạisốSU(3) Nhiệm vụ nghiên cứu Nghiên cứu daođộng tử, biểu diễn, tính thống kê daođộngtử Nghiên cứu nhóm đối xứng SU(3), gần lí thuyết đối xứng SU(3), đạisốSU(3)biểudiễndaođộngtửđạisốSU(3) Phương pháp nghiên cứu - Phương pháp Vật lí lí thuyết - Phương pháp lí thuyết nhóm đối xứng CHƯƠNG DAOĐỘNGTỬ 1.1 Daođộngtử điều hòa Trước hết làm rõ định nghĩa toán tử a , a, N hệ tốn tử Boson Trong khơng gian Hilbert ta định nghĩa toán tử a thỏa mãn: a, a Ta xây dựng toán tử N: (1.1) Na a N có tính chất : ● N N ● Xác định dương N , a a N aa N , a a (1.2) Gọi n véctơ riêng tốn tử N với trị riêng n khơng gian Hilbert: Ta có: N n nn Na n 1 a n n Na n n 1 a n Trong đó: a tốn tử hủy + a toán tử sinh N toán tửsố hạt 2 Vậy: a ,a ,a ,n ,a n n n n , dãy véctơ riêng toán tử N tương ứng với giá trị riêng: n 2, n 1, n, n 1, n 2, Vì N tốn tử xác định dương (các trị riêng phải khơng âm) nên dãy có kết thúc cận Giá trị riêng cận n Vì ta định nghĩa vecto đặc biệt khơng gian Hilbert có tính chất sau: a0 0 00 1 trạng thái chân không Ta có: N nên véctơ riêng N với trị riêng không + Dãy tốn tử a tác dụng lên chân khơng , a , a 2 , a , (1.3) n Dãy (1.3) dãy véctơ riêng N ứng với trị riêng: 0, 1, 2, n,… + Mỗi lần tác động toán tử a hay a lên dãy (1.3) ta lại phần tử khác dãy Có thể chuẩn hóa dãy (1.3) thành dãy véctơ riêng sau: a n n! n n nn (1.4) n + Tóm lại lấy khơng gian tác dụng tốn tử boson a a khơng gian Hilbert số chiều gồm véctơ trực chuẩn (1.4) Các véctơ véctơ riêng toán tửsố hạt N Tương tự, ta định nghĩa hệ toán tử boson: , ai i 1, N thỏa mãn: , a j ij Định nghĩa toán tửsố hạt: Na a ; ; , a j Ni , N j i Chân không: 0, 0, ; i i n n1, n2 , , Véctơ riêng trực chuẩn: nN a n1 .a nN i n1 ! nN ! N i n ni n 1.2 Biểudiễndaođộngtử vi tử SU(2) Bây xét xem biểudiễnđạisố Lie qua toán tử Boson khơng? Muốn ta giả sử có toán tử boson (i=1, 2) i i a , a , a j j ij ThN eoa địn a h; ng hĩa : i i n Cáriêng: , n c toán vé ctơ (1.5) N i , N j 3 21 8 M , , i j M if if j1 8j2 j 0 0. Siêu tích hạt Σ Vậy giá trị hình chiếu Spin đồng vị siêu tích Σ phù hợp với thực nghiệm Tính tốn hồn tồn tương tự ta thấy giá trị hình chiếu Spin đồng vị siêu tích hạt lại phù hợp với thực nghiệm Vì hàm sóng gán cho lậ J hạt p p hoàn toàn phù th hợp àn Baryon h biểudiễn quy nhóm SU(3) i 1 ; i p J , , K□ , , , 0 ; : K, K 8 ,K Cá c Hàm trường hệ cho Meson số gán đứ sau: ng trư ớc K ; 6 tìm i đư K ợc từ điế u i kiệ n ch uẩ n hóa K 4 K□ ; i5 3.1.2 Biể u diễ n8 Me so n ● Đối với hạt K : K là: Hàm trường mô tả trạng thái sinh hạt * T a c ó : M 6 M , 3 , K i K0 M i , i M i , j F 7 j F 6 j j 3j6 7 i f i f if i j i j 6 3j7 if 376 367 1 i 78 7 i 1 6 i 1 ã đồng M8 với toán tử siêu tích tìm hệ thức s a u Y : Ta có: 2K V ậy hì K nh ch iế u S pi n đồ ng vị củ a hạ t * T ín h si ê u tí c h: Y , M , 8 K K M 6, i 3 3 M , , i M 21 j 2Ở j if8 j if8 j t r ê n t a đ 79 7 if 2 876 6 if 867 3 i 6 2 213 2 K K bằn S g iê u tí c h c ủ a h ạt 1. Vậy giá trị K hình chiếu Spin đồng phù vị siêu tích hạt hợp với thực nghiệm ● Đối với hạt π : Hàm trường mô tả trạng thái sinh của11 hạt π là: i 2 *Ta có: 80 i2 M M , , M , i *Tính tích: M, Y 3 i , , 2 if 321 i 1 312 if i 1 1. i1 2 j 8 21 2 , M , j j i M j1 21 23 i f j Vậy hình chiếu Spin đồng vị π M j F 1 i j F 2 iêu tích hạt π 3 S 81 Vậy giá trị I3, Y π phù hợp với thực nghiệm Tính tốn tương tự ta thấy giá trị I3, Y hạt lại phù hợp với thực nghiệm Vì hàm sóng gán cho hạt phù hợp Meson J p 0 lập thành biểudiễn quy nhóm SU(3) 3.2 Hệ thức khối lượng hạt 3.2.1 Sự phá vỡ đối xứng SU(3) Nếu đối xứng SU(3) xác hạt đa tuyến Nếu gọi tốn tử khối lượng, ta có: Ma , a 1,8 Nhưng thực tế hạt đa tuyến có khối lượng khác nhau, điều có nghĩa đối xứng SU(3) khơng hồn tồn xác Lúc đối xứng SU(3) bị phá vỡ Khi đó: inv Trong thành phần khối lượng vi phạm đối xứng 3.2.2 Hệ thức khối lượng lý thuyết đối xứng SU(3) Giả sử đối xứng SU(3) bị phá vỡ tối thiểu đối xứng SU(2) đúng, siêu tích bảo tồn Nghĩa là: SU(3) → SU(2)× UY (1) Lúc thỏa mãn điều kiện nhóm SU(3) tức là: Mi , M8 , 1,3 (3.5) (3.6) Muốn phải tỷ lệ với thành phần thứ bát tuyến a Bát tuyến biểudiễn quy SU(3): Ma , b i fabc c ; 82 a,b,c 1,8 (3.7) Cách viết hàm trường thành ma trận: a Sp a (3.8) p Xét khối lượng hạt đa tuyến Baryon J Ta có hàm trường mô tả hạt đại lượng sau vô hướng: Sp a ; biến đổi ; a (3.9) biến đổi a Với a 1,8 Sp a Từ (3.7) (3.9) suy ra: (3.10) M a , Sp b i fabc Sp c M a , Sp b i fabc Sp c (3.11) Vì thỏa mãn hệ thức (3.5), (3.6), (3.7),(3.10), (3.11) nên tỉ lệ với thành phần thứ bát tuyến, tỉ lệ với Sp Dạng bất biến toán tử khối lượng thỏa mãn SU(3): C0 Sp C1.Sp 8 C2.Sp 8 (3.12) Ta có: 0 0 2 0 0 0 0 0 0 1 8 Do đó: l k Sp lm k l 8 m Sp 3 m 83 m k l k m (3.13) Tương tự: Sp 8 Sp 3 3 m (3.14) m Thay (3.13), (3.14) vào (3.12) ta được: C C1 m m 3C2 p C 3 m m C1 C2 Đ ặt : m C 0 3C1 m1 3C2 m2 84 m m (3.15) m m1 m m 3 m Khối lượng Baryon: ● Khối lượng protron: K h ố i l ợ n g c ủ a p r o t o n l m ợng notron: m0 m0 m 31 m2 3 m m ●K h ố i l m 3 m2 3 2 m Khối lượng notron mn m0 m2 Nhận m điệntừ Hàm trường notron p Hàm trường proton tương xét: Khối lượng proton notron xét tương tác mạnh nên khối lượng chúng Khối lượng khác 85 tác ● Khối lượng : 1 2 1 Hàm trường là: 1 2 2 0 0 m 2 1 m m 2 2 1 1 2 2 1 2 (S d ụ n g tí n h c h ất tr ự c 86 gia o hà m) Từ việc so sánh bảng thực nghiệm số lượng khối Khối lượng m lượng m Meson ta thấy có 0 m m m m tích cặp K ; hợp hiểu tốn tử bình phương khối lượng (vì khối lượng nhỏ ; K□ 0và K p ; K n ; Meson Meson đồng vị siêu 3 Khối lượng Meson Trường hình chiếu Spin m m m m m m m tượng ứng m p mn m0 m2 Baryon Tương tự ta tìm khối lượng hạt lại: tử khối lượng Baryon) 87 Hàm trường hạt Meson viết dạng ma trận: 1 K 1 K K□ K Từ nhận xét ta suy hệ thức khối lượng cho Meson : m m0 Sp m1 m3 m (3.16) m2 m Làm tương tự Baryon ta thu hệ thức khối lượng cho Meson sau: 2 mK2 mK2 m0 m 2 m m m2 m2 m 2 m□2 mK m0 m K 2 2 2 m m m m 3 m 88 m m KẾT LUẬN Sau thời gian nghiên cứu hồn thành khóa luận hướng dẫn tận tình thầy giáo GS TSKH Đào Vọng Đức, em thu số kết nghiên cứu sau đây: ● Viết tổng quan daođộngtử ● Nghiên cứu biểudiễndaođộngtửđạisốSU(3) ● Nghiên cứu phá vỡ đối xứng lý thuyết nhóm SU(3) để đưa hệ thức khối lượng hạt Baryon hạt Meson Qua nghiên cứu em hiểu rõ công cụ nghiên cứu tương tác mạnh hạt 89 TÀI LIỆU THAM KHẢO Tạ Quang Bửu (1987), Hạt - Nxb Giáo dục Đào Vọng Đức (2011), Bài giảng lý thuyết hạt - Nxb Khoa học kĩ thuật Đặng Xuân Hải (1987), Bài giảng vật lý hạt nhân hạt Lê Chấn Hùng – Vũ Thanh Khiết (1989), Vật lý nguyên tử hạt nhân - Nxb Giáo dục Phạm Thúc Tuyền, Hạt - Nxb ĐHQG Hà Nội 50 ... cứu dao động tử, đại số SU(3) biểu diễn dao động tử đại số SU(3) Đối tượng nghiên cứu Lí thuyết đối xứng, biểu diễn dao động tử đại số SU(3) Nhiệm vụ nghiên cứu Nghiên cứu dao động tử, biểu diễn, ... 1: DAO ĐỘNG TỬ 1.1 Dao động tử điều hòa 1.1 Biểu diễn dao động tử vi tử SU(2) 1.2 Thống kê dao động tử điều hòa CHƯƠNG 2: BIỂU DIỄN DAO ĐỘNG TỬ CỦA ĐAI SỐ SU(3) 2.1 Đại số SU(3). .. dao động tử, biểu diễn, tính thống kê dao động tử Nghiên cứu nhóm đối xứng SU(3), gần lí thuyết đối xứng SU(3), đại số SU(3) biểu diễn dao động tử đại số SU(3) Phương pháp nghiên cứu - Phương