Nghiêncứu,thiếtkếmôcảmbiếnvilỏngcócấutrúcSAWđứngvậtliệuAIN Bùi Thu Hằng Đại học Công nghệ Ngành: Kỹ thuật điện tử; Mã số: 60 52 70 Người hướng dẫn: TS Vũ Huy Thông, MBA Hà Nguyên Năm bảo vệ: 2013 Abstract: Trình bày thành phần đặc tính truyền sóng SAW hoạt động mơi trường lỏng điều kiện truyền hai môi trường Nghiên cứu tính chất điện SAW đế áp điện phổ biến nay, LiNO3, vậtliệu CMOS, AlN, có tác động chất lỏng mật độ, độ nhớt chuyển động kênh cảmbiếnBộcảmbiếnSAW cho ứng dụngvilỏng Khả tích hợp ứng dụngcảmbiến mực Keywords: Bộcảmbiếnvi lỏng; Kỹ thuật điện tử Content Microfluidic Sensor based on AlN Vertical SAW structure: Investigation, Design and Simulation TABLE OF CONTENT GLOSSARY ACKOWNLEDGEMENTS LISTS OF TABLES LISTS OF FIGURES Chapter Introduction 1.1 Motivation and Objectives 1.2 Organization of Thesis Chapter Theoretical Analysis of the AlN-based Microfluidic Sensor 12 2.1 Introduction 12 2.2 Surface Acoustic Waves 13 2.2.1 Shear Horizontal Surface Acoustic Waves (SH-SAWs) 13 2.2.2 Rayleigh Surface Acoustic Waves (R-SAWs) 14 2.3 Propagation of Acoustic Waves in contact with a Liquid Medium 16 2.3.1 Boundary Conditions 19 2.3.2 Standing and Linear Motion Medium 19 2.3.3 Moving Liquid Medium 20 2.4 Equivalent Circuit Model of SAW Devices 21 2.4.1 Model Implementation 21 2.4.2 Frequency Response 22 2.4.3 Attenuation 22 2.5 Conclusion 23 Chapter 3-D Design of AlN-based Microfluidic Sensor 24 3.1 General Description 24 3.2 Design Principles 25 3.3 FEM Simulation for AlN-based Microfluidic Sensor 29 3.3.1 General Configuration 29 3.3.2 Lithium Niobate 30 3.3.3 Aluminium Nitride 33 Bui Thu Hang Page Microfluidic Sensor based on AlN Vertical SAW structure: Investigation, Design and Simulation 3.4 Masks designed 35 Chapter Results and Discussion 38 4.1 General Description 38 4.2 Density and viscosity 38 4.2.1 Lithium Niobate Crystal 38 4.2.2 Aluminium Nitride Crystal 43 4.3 Sensing Liquid Status 45 4.3.1 Constant Velocity 45 4.3.2 Non-constant Velocity 49 4.4 Conclusion 53 Chapter Conclusions and Future Work 54 5.1 Conclusions 54 5.2 Future work 54 Reference 56 Appendix: Material Parameters for Piezoelectric Substrate 59 A Lithium Niobate 59 B Aluminium Nitride 59 Bui Thu Hang Page Microfluidic Sensor based on AlN Vertical SAW structure: Investigation, Design and Simulation eference [1] Leslie Y Y and James R F., “Ultrafast microfluidics using surface acoustic waves”, Biomicrofluidics, 2009, 3(1): 012002 [2] Subhas C M., Gourab S G., Yueh-Min R H., “Recent Advances in Sensing Technology”, Springer 2009, ISBN 978-3-642-00577-0 [3] Aisha Q., James R F and Leslie Y Y., “Investigation of SAW Atomization”, 2009 IEEE International Ultrasonics Symposium Proceedings, pp 787-790 [4] Rohan V R., James R F and Leslie Y Yeo, “Particle concentration via acoustically driven microcentrifugation: microPIV flow visualization and numerical modelling studies”, Microfluid Nanofluid (2010) 8:73–84 [5] Aisha Q., Leslie Y Y and James R F., “Interfacial destabilization and atomization driven by surface acoustic waves”, Physics of Fluids 20, 074103 [6] D Morgan, “Surface Acoustic Wave Filters”, Elsevier, New York (1985) [7] D S Ballantine, R M White, S J Martin, A J Ricco and E T Zellers, G C Frye and H Wohltjen, “Acoustic wave sensors – Theory, Design and Physico – Chemical Applications”, Academic Press, 1997 [8] Cleland A.N., “Foundations of Nanomechanics From Solid-State Theory to Device Applications”, Springer 2002, ISBN 3540436618 [9] Ferrari V and Lucklum R , “Piezoelectric Transducers and Applications”, Ed A Arnau Vives, ISBN: 978-3-540-77507-2, 2008, Chapter [10] Tung B D., Thu-Hang B., Dat N T and Trinh C D., “R-SAW Analysis on Single-Crystal AlN Substrate for Liquid Sensors”, ICEMA 2012, pp 13-18 [11] Ying C., “Piezoelectricity in zinc oxide-based multilayer structures for sensor applications”, New Brunswisk, New Jersey, Doctoral thesis 2008 [12] Thu-Hang B., Tung B D., Dat N T and Trinh C D., “Attenuation Coefficient for Surface Acoustic Waves in Fluid Region”, VJM2012, Vol 34, No 4, pp 225-236 [13] Gavignet E., Ballandras S and Bigler E., “Theoretical analysis of surface transverse waves propagating on a piezoelectric substrate under shallow groove Bui Thu Hang Page 56 Microfluidic Sensor based on AlN Vertical SAW structure: Investigation, Design and Simulation or thin metal strip gratings”, Journal of Applied Physics, Vol 7, pp 6228 - 6233 [14] Thu-Hang B., Dat N T., Tung B D and Trinh C D., “3-D Finite Element Modeling of SAW sensing system for liquids”, The 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp 782-787 [15] Shiokawa S and Kondoh J., “Surface acoustic wave sensor for liquid-phase application”, 1999 IEEE ULTRASONICS SYMPOSIUM, pp 445-452 [16] Thomas H H., Chapter Surface Waves [17] Campell J J and Jones W R., “A method for estimating optimal crystal cuts and propagation directions for excitation of piezoelectric substrate waves”, IEEE Trans on Sonics and Ultrasonics, vol SU-15, No 4, 1968 [18] Wilson W C and Atkinson G M., “Rapid SAW sensor development tools” [19] W Richard Smith, H M Gerard, J H Collins and T M Reeder, “Analysis of Interdigital surface acoustic wave transducers by use of an equivalent circuit model”, IEEE Tran on Microwave theory and Techniques, vol MIT-17, No 11, 1969 [20] H Trang, “Design and realization of SAW pressure sensor using Aluminum Nitride”, thesis 2009, Uni Joseph Fourier-Grenoble I Sciences Technologie Sante [21] A Takayanagi, K Yamanouchi and K Shibayama, “Piezoelectric leaky surface wave in LiNbO3”, Appl Phys Lett., Vol 17, No 5, 225-227(1970) [22] K Yamanouchi and M Takeuchi, “Application for piezoelectric leaky surface waves”, Ultrasonics Symposium, pp 11-18(1990) [23] S Tonami, A Nishikata and Y Shimizu, “Characteristics of leaky surface acoustic waves propagating on LiNbO3 and LiTaO3 substrates”, Jpn J Appl Phys., Part 1, Vol 34, No 5B, 2664-2667(1995) [24] J Semmlow, “Signals and systems for bioengineers”, Elsevier Inc ISBN: 978-0-12-384982-3, http://www.elsevierdirect.com, 2nd Edition, 2011 Bui Thu Hang Page 57 Microfluidic Sensor based on AlN Vertical SAW structure: Investigation, Design and Simulation [25] K Shin and J K Hammond, “Fundamentals of signal processing for sound and vibration engineers”, John Wiley & Sons Ltd, ISBN-13 978-0470-51188-6, 2008 [26] G Zhang, “Orientation of Piezoelectric Crystals and Acoustic Wave Propagation”, 2012 COMSOL Conference [27] J G Gualtiei, J A Kosinski and A Ballato, “Piezoelectric materials for acoustic wave applications”, IEEE Tran on Ultrasonics, Ferroelectrics and Frequency control, vol 41, No 1, 1994 [28] G Bu, D Ciplys and M S Shur, L J Schowalter and S B Schujman, “Leaky Surface Acoustic Waves in single-Crystal AlN Substrate”, International J of High Speed Electronics and Sys., Vol 14, No 3, pp 837-846, 2004 Bui Thu Hang Page 58 ... Y., “Investigation of SAW Atomization”, 2009 IEEE International Ultrasonics Symposium Proceedings, pp 787-790 [4] Rohan V R., James R F and Leslie Y Yeo, “Particle concentration via acoustically... 19 2.3.3 Moving Liquid Medium 20 2.4 Equivalent Circuit Model of SAW Devices 21 2.4.1 Model Implementation 21 2.4.2 Frequency Response 22 2.4.3 Attenuation ... microcentrifugation: microPIV flow visualization and numerical modelling studies”, Microfluid Nanofluid (2010) 8:73–84 [5] Aisha Q., Leslie Y Y and James R F., “Interfacial destabilization and atomization