1. Trang chủ
  2. » Giáo Dục - Đào Tạo

giải bài tập xác suất thống kê

26 329 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 289,06 KB

Nội dung

BÀI GIẢI XÁC SUẤT THỐNG KÊ (GV: Trần Ngọc Hội – 2009) CHƯƠNG LÝ THUYẾT XÁC SUẤT Bài 1.1: Có ba súng I, II III bắn độc lập vào mục tiêu Mỗi bắn viên Xác suất bắn trúng mục tiêu cuả ba I, II III 0,7; 0,8 0,5 Tính xác suất để a) có bắn trúng b) có bắn trúng c) có bắn trúng d) bắn trúng e) thứ bắn trúng biết có trúng Lời giải I 0,7 IIù 0,8 P(A1 A A ) = P(A )P(A 32 )P(A ) = 0, 3.0, 2.0, = 0, 03 Suy P(A) = 0,22 b) Gọi B biến cố có trúng Ta có Tính toán tương tự câu a) ta P(B) = 0,47 c) Gọi C biến cố có trúng Ta có C = A1A A Tính toán tương tự câu a) ta P(C) = 0,28 d) Gọi D biến cố có trúng Ta có D = A + B + C Chú ý A, B, C xung khắc đôi, nên theo công thức Cộng xác suất ta có: P(D) = P(A) + P(B) + P(C) = 0,22 + 0,47 + 0,28 = 0,97 e) Gỉa sử có trúng Khi biến cố B xảy Do xác suất để thứ trúng trường hợp xác suất có điều kiện P(A2/B) Theo công thức Nhân xác suất ta có: P(A2B) = P(B)P(A2/B) Suy P(A /B) = III 0,5 Goïi Aj (j = 1, 2, 3) biến cố thứ j bắn trúng Khi A1, A2, A3 độc lập giả thiết cho ta: P(A1 ) = 0, 7; P(A1 ) = 0, 3; P(A ) = 0, 8; P(A ) = 0, 2; P(A ) = 0, 5; P(A ) = 0, a) Gọi A biến cố có trúng Ta coù A = A1 A A + A1 A A + A1 A A Vì biến cố P(A1 A A ) = P(A )P(A )P(A ) = 0, 3.0, 8.0, = 0,12; B = A1A A + A1A A + A1 A A NHỮNG ĐỊNH LÝ CƠ BẢN TRONG Tóm tắt: Khẩu súng Xác suất trúng P(A1 A A ) = P(A )P(A )P(A ) = 0, 7.0, 2.0, = 0, 07; A1 A A , A1 A A , A1 A A xung khắc đôi, nên theo công thức Cộng xác suất ta có P(A) = P(A A A + A A A + A1 A A ) = P(A A A ) + P(A A A ) + P(A1 A A ) Maø A 2B = A A A + A A A neân lý luận tương tự ta Suy P(A2/B) =0,851 P(A2B)=0,4 Bài 1.2: Có hai hộp I II hộp chứa 10 bi, hộp I gồm bi đỏ, bi trắng; hộp II gồm bi đỏ, bi trắng Lấy ngẫu nhiên từ hộp bi a) Tính xác suất để bi đỏ b) Tính xác suất để bi đỏ bi trắng c) Tính xác suất để bi đỏ bi trắng d) Giả sử lấy bi đỏ bi trắng Hãy tìm xác suất để bi trắng có hộp I Vì biến cố A1, A2, A3 độc lập nên theo công thức Nhân xác suất ta coù Printed with FinePrint trial version - purchase at www.fineprint.com P(A 2B) P(B) Lời giải Gọi Ai , Bi (i = 0, 1, 2) biến cố có i bi đỏ (2 - i) bi trắng có bi chọn từ hộp I, hộp II Khi - A0, A1, A2 xung khắc đôi ta có: P(A ) = 0; CC C )=CC C P(A ) = 1 = ; 45 = 36 45 10 P(A 2 10 c) Gọi C biến cố chọn bi đỏ bi trắng Ta có: C = A1B2 + A2B1 Lý luận tương tự ta P(C) = P(A1)P(B2 ) + P(A2)P(B1) = 0,4933 d) Giả sử chọn bi đỏ bi trắng Khi biến cố C xảy Do xác suất để bi trắng có thuộc hộp I trường hợp xác suất có điều kiện P(A1/C) Theo Công thức nhân xác suất , ta có P(A 1C) = P(C)P(A /C) - B0, B1, B2 xung khắc đôi ta có: CC C P(B ) = C C C P(B ) = C C C P(B0 ) = 2 = ; 45 = 24 ; 45 = 15 45 10 1 10 2 10 - Ai Bj độc lập - Tổng số bi đỏ có bi chọn phụ thuộc vào biến cố Ai Bj theo bảng sau: B0 B1 B2 A0 A1 A2 a) Gọi A biến cố chọn bi đỏ Ta có: A = A2 B2 Từ đây, tính độc lập , Công thức nhân xác suất thứ cho ta: P(A) = b) Gọi B biến cố 36 15 P(A )P(B2 ) = = 0, 2667 45 45 chọn bi đỏ bi trắng Ta coù: Printed with FinePrint trial version - purchase at www.fineprint.com B = A0B2 + A1B1 + A2B0 Do tính xung khắc đôi biến cố A0B2 , A1B1 , A2B0, công thức Cộng xác suất cho ta: P(B) = P(A0B2 + A1B1 + A2B0) = P(A0B2 ) + P(A1B1) + P(A2B0) Từ đây, tính độc lập , Công thức nhân xác suất thứ cho ta: P(B) = P(A0)P(B2 ) + P(A1)P(B1) + P(A2)P(B0) = 0,2133 Suy P(A /C) = Maø P(A 1C) P(C) A1C = A1B2 neân P(A 1C) = P(A 1B2 ) = P(A )P(B2 ) = vaø Do xác suất cần tìm là: P(A1/C) = 0,1352 15 = 0, 0667 45 45 Bài 1.3: Một lô hàng chứa 10 sản phẩm gồm sản phẩm tốt sản phẩm xấu Khách hàng kiểm tra cách lấy sản phẩm sản phẩm tốt dừng lại a) Tính xác suất để khách hàng dừng lại lần kiểm tra thứ b) Tính xác suất để khách hàng dừng lại lần kiểm tra thứ b) Giả sử khách hàng dừng lại lần kiểm tra thứ Tính xác suất để lần kiểm tra thứ khách hàng gặp sản phẩm xấu Lời giải Gọi Ti, Xi biến cố chọn sản phẩm tốt, xấu lần kiểm tra thứ i a) Gọi A biến cố khách hàng dừng lại lần kiểm tra thứ Ta có: A = T1T2T3 Suy Lời giải P(A) = P(T1T2T3) = P(T1) P(T2/T1) P(T3/ T1T2) = (6/10)(5/9)(4/8) = 0,1667 b) Gọi B biến cố khách hàng dừng lại lần kiểm tra thứ Ta có: Gọi Di, Ti, Xi biến cố chọn bi đỏ, bi trắng, bi xanh lần rút thứ i a) Gọi A biến cố rút bi trắng, bi xanh bi đỏ Ta có: ⎡T − T − X − D A xảy ⇔ Rút ⎢ T − X − T − D ⎢ ⎢⎣ X − T − T − D B = X1T2T3T4 + T1X2T3T4 + T1T2X3T4 Suy P(B) = P(X1T2T3T4 ) + P(T1X2T3T4 ) + P(T1T2X3T4 ) = P(X1) P(T2/X1) P(T3/X1T2) P(T4/X1T2T3) + P(T1) P(X2/T1) P(T3/T1X2) P(T4/T1X2T3) + P(T1) P(T2/T1) P(X3/ T1T2) P(T4/ T1T2 X3) = (4/10)(6/9)(5/8)(4/7) + (6/10)(4/9)(5/8)(4/7)+(6/10)(5/9)(4/8)(4/7) = 3(4/10)(6/9)(5/8)(4/7) = 0,2857 c) Giả sử khách hàng dừng lại lần kiểm tra thứ Khi biến cố B xảy Do xác suất để lần kiểm tra thứ khách hàng gặp sản phẩm xấu trường hợp xác suất có điều kiện P(X3/B) Theo Công thức nhân xác suất , ta có P(X 3B) = P(B)P(X /B) Suy P(X /B) = Mà P(X 3B) P(B) X3B = T1T2X3T4 nên P(X3B) = P(T1T2X3T4 ) = P(T1) P(T2/T1) P(X3/ T1T2) P(T4/ T1T2 X3) = (6/10)(5/9)(4/8)(4/7) = 0,0952 Suy A = T1T2X3D4 + T1X2T3D4 + X1T2T3D4 Từ đây, tính xung khắc đôi biến cố thành phần, ta có: P(A) = P(T1T2X3D4)+ P(T1X2T3D4) + P(X1T2T3D4 ) Theo Công thức Nhân xác suất, ta có P(T1T2X3D4) = P(T1)P(T2/T1)P(X3/T1T2)P(D4/T1T2X3) = (4/12)(3/11)(3/10)(5/9) = 1/66; P(T1X2T3D4) = P(T1)P(X2/T1)P(T3/T1X2)P(D4/T1X2T3) = (4/12)(3/11)(3/10)(5/9) = 1/66; P(X1T2T3D4) = P(X1)P(T2/X1)P(T3/X1T2)P(D4/X1T2T3) = (3/12)(4/11)(3/10)(5/9) = 1/66 Suy P(A) = 3/66 = 1/22 = 0,0455 b) Gọi B biến cố bi trắng rút Ta có: ⎡D ⎢X − D B xảy ⇔ Rút ⎢ ⎢X − X − D ⎢ ⎣X − X − X − D Suy P(X3/B) = 0,3333 Bài 1.4: Một hộp bi gồm bi đỏ, bi trắng bi xanh có cỡ Từ hộp ta rút ngẫu nhiên không hòan lại bi bi đỏ dừng lại Tính xác suất để a) bi trắng, bi xanh bi đỏ b) bi trắng rút Suy B = D1 + X1D2 + X1X2D3+ X1X2X3 D4 Từ đây, tính xung khắc đôi biến cố thành phần, ta coù: P(B) = P(D1)+ P(X1D2) + P(X1X2D3 ) + P(X1X2X3 D4) Theo Công thức Nhân xác suất, ta có Printed with FinePrint trial version - purchase at www.fineprint.com P(B) = P(D1) + P(X1)P(D2/X1) + P(X1)P(X2/X1)P(D3/X1X2) + P(X1)P(X2/X1)P(X3/X1X2)P(D4/X1X2X3) = 5/12+ (3/12)(5/11) + (3/12)(2/11)(5/10) + (3/12)(2/11)(1/10)(5/9) = 5/9 Baøi 1.5: Sản phẩm X bán thò trường nhà máy gồm ba phân xưởng I, II III sản xuất, phân xưởng I chiếm 30%; phân xưởng II chiếm 45% phân xưởng III chiếm 25% Tỉ lệ sản phẩm loại A ba phân xưởng I, II III sản xuất 70%, 50% 90% a) Tính tỉ lệ sản phẩm lọai A nói chung nhà máy sản xuất b) Chọn mua ngẫu nhiên sản phẩm X thò trường Giả sử mua sản phẩm loại A Theo bạn, sản phẩm có khả phân xưởng sản xuất nhiều nhất? c) Chọn mua ngẫu nhiên 121 sản phẩm X (trong nhiều sản phẩm X) thò trường 1) Tính xác suất để có 80 sản phẩm loại A 2) Tính xác suất để có từ 80 đến 85 sản phẩm loại A Lời giải Tóm tắt: Phân xưởng Tỉ lệ sản lượng Tỉ lệ loại A I II III 30% 45% 25% 70% 50% 90% a) Để tính tỉ lệ sản phẩm loại A nói chung nhà máy sản xuất ta chọn mua ngẫu nhiên sản phẩm thò trường Khi tỉ lệ sản phẩm loại A xác suất để sản phẩm thuộc loại A Gọi B biến cố sản phẩm chọn mua thuộc loại A A1, A2, A3 biến cố sản phẩm phân xưởng I, II, III sản xuất Khi A1, A2, A3 hệ đầy đủ, xung khắc đôi P(A1) = 30% = 0,3; P(A2) = 45% = 0,45; P(A3) = 25% = 0,25 Theo công thức xác suất đầy đủ, ta có: P(B) = P(A1)P(B/A1) + P(A2)P(B/A2) + P(A3)P(B/A3) Theo giả thiết, P(B/A1) = 70% = 0,7; P(B/A2) = 50% = 0,5; P(B/A3) = 90% = 0,9 Printed with FinePrint trial version - purchase at www.fineprint.com Suy P(B) = 0,66 = 66% Vậy tỉ lệ sản phẩm loại A nói chung nhà máy sản xuất 66% b) Chọn mua ngẫu nhiên sản phẩm X thò trường Giả sử mua sản phẩm loại A Theo bạn, sản phẩm có khả phân xưởng sản xuất nhiều nhất? Giả sử mua sản phẩm loại A Khi biến cố B xảy Do đó, để biết sản phẩm loại A có khả phân xưởng sản xuất nhiều ta cần so sánh xác suất có điều kiện P(A1/B), P(A2/B) P(A3/B) Nếu P(Ai/B) lớn sản phẩm có khả phân xưởng thứ i sản xuất nhiều Theo công thức Bayes ta có: P(A1 /B) = P(A /B) = P(A /B) = P(A1 )P(B/A1 ) 0, 3.0, 21 ; = = P(B) 0, 66 66 P(A )P(B/A ) 0, 45.0, 22, = = ; P(B) 0, 66 66 P(A )P(B/A ) 0, 25.0, 22, = = P(B) 0, 66 66 Vì P(A2/B) = P(A3/B) > P(A1/B) nên sản phẩm loại A có khả phân xưởng II III sản xuất nhiều c) Chọn mua ngẫu nhiên 121 sản phẩm X (trong nhiều sản phẩm X) thò trường 1) Tính xác suất để có 80 sản phẩm loại A 2) Tính xác suất để có từ 80 đến 85 sản phẩm loại A p dụng công thức Bernoulli với n = 121, p = 0,66, ta có: 1) Xác suất để có 80 sản phẩm loại A 80 80 P121 (80) = C121 p 80q 41 = C121 (0, 66)80 (0, 34) 41 = 0, 076 2) Xác suất để có từ 80 đến 85 sản phẩm loại A 85 ∑P k = 80 121 (k) = 85 ∑C k = 80 k 121 p k q121− k = 85 ∑C k = 80 k 121 (0, 66) k (0, 34)121− k = 0, 3925 Bài 1.6: Có ba cửa hàng I, II III kinh doanh sản phẩm Y Tỉ lệ sản phẩm loại A ba cửa hàng I, II III 70%, 75% 50% Một khách hàng chọn nhẫu nhiên cửa hàng từ mua sản phẩm a) Tính xác suất để khách hàng mua sản phẩm loại A b) Giả sử mua sản phẩm loại A Theo bạn, khả người khách hàng chọn cửa hàng nhiều nhất? Lời giải I II III 70% 75% 50% P(A /B) = P(A1 )P(B/A1 ) (1 / 3).0, 70 ; = = P(B) 0, 65 195 P(A )P(B/A ) (1 / 3).0, 75 75 = = ; P(B) 0, 65 195 P(A )P(B/A ) (1 / 3).0, 50 = = P(B) 0, 65 195 Vì P(A2/B) > P(A1/B) > P(A3/B) nên cửa hàng II có nhiều khả chọn Chọn nhẫu nhiên cửa hàng từ mua sản phẩm a) Tính xác suất để khách hàng mua sản phẩm loại A Gọi B biến cố sản phẩm chọn mua thuộc loại A A1, A2, A3 biến cố chọn cửa hàng I, II, III Khi A1, A2, A3 hệ đầy đủ, xung khắc đôi Bài 1.7: Có hai hộp I II hộp chứa 12 bi, hộp I gồm bi đỏ, bi trắng; hộp II gồm bi đỏ, bi trắng Lấy ngẫu nhiên từ hộp I ba bi bỏ sang hộp II; sau lấy ngẫu nhiên từ hộp II bốn bi a) Tính xác suất để lấy ba bi đỏ bi trắng từ hộp II b) Giả sử lấy ba bi đỏ bi trắng từ hộp II Tìm xác suất để ba bi lấy từ hộp I có hai bi đỏ bi trắng Lời giải P(A1) = P(A2) = P(A3) = 1/3 Theo công thức xác suất đầy đủ, ta có: P(B) = P(A1)P(B/A1) + P(A2)P(B/ A2)+ P(A3)P(B/A3) Theo giả thiết, P(B/A1) = 70% = 0,7; P(B/A2) = 75% = 0,75; P(B/A3 = 50% = 0,5 Gọi A biến cố chọn bi đỏ bi trắng từ hộp II Ai (i = 0, 1, 2, 3) biến cố có i bi đỏ (3-i) bi trắng có bi chọn từ hộp I Khi A0, A1, A2, A3 hệ đầy đủ, xung khắc đôi ta coù: CC C P(A ) = C C C P(A ) = C C C P(A ) = C C C P(A ) = Suy P(B) = 0,65 = 65% Vậy xác suất để khách hàng mua sản phẩm loại A 65% b) Giả sử mua sản phẩm loại A Theo bạn, khả khách hàng chọn cửa hàng nhiều nhất? P(A1 /B) = P(A /B) = Tóm tắt: Cửa hàng Tỉ lệ loại A P(A2/B) P(A3/B) Nếu P(Ai/B) lớn cửa hàng thứ i có nhiều khả chọn Theo công thức Bayes ta có: người 3 = ; 220 = 48 ; 220 = 112 ; 220 = 56 220 12 1 12 12 Giả sử mua sản phẩm loại A Khi biến cố B xảy Do đó, để biết sản phẩm loại A có khả khách hàng chọn cửa hàng nhiều ta cần so sánh xác suất có điều kiện P(A1/B), 3 12 a) Tính xác suất để lấy bi đỏ bi trắng từ hộp II Printed with FinePrint trial version - purchase at www.fineprint.com 10 Theo công thức xác suất đầy đủ, ta có: P(A)=P(A0)P(A/A0)+P(A1)P(A/A1)+P(A2)P(A/A2)+P(A3)P(A/A3) Theo công thức tính xác suất lựa chọn, ta có P(A / A ) = C C C P(A / A ) = C C C P(A / A ) = C C C P(A / A ) = C C C 10 15 100 ; = 1365 = 180 ; 1365 = 280 ; 1365 = 392 1365 15 15 3 15 Suy xác suất cần tìm P(A) = 0,2076 b) Giả sử lấy bi đỏ bi trắng từ hộp II Tìm xác suất để bi lấy từ hộp I có bi đỏ bi trắng Giả sử lấy bi đỏ bi trắng từ hộp II Khi biến cố A xảy Do dó xác suất để bi lấy từ hộp I có bi đỏ bi trắng trường hợp xác suất có điều kiện P(A2/A) p dụng công thức Bayes, ta coù: P(A /A) = 112 280 P(A )P(A/A ) 220 1365 = = 0, 5030 P(A) 0, 2076 Vậy xác suất cần tìm P(A2/A) = 0,5030 Bài 1.8: Có ba hộp hộp đựng viên bi hộp thứ có bi trắng, bi đen; hộp thứ hai có bi trắng, bi đen; hộp thứ ba có bi trắng, bi đen a) Lấy ngẫu nhiên từ hộp bi 1) Tính xác suất để bi trắng 2) Tính xác suất bi đen, bi trắng 3) Giả sử viên lấy có bi trắng.Tính xác suất để bi trắng hộp thứ b) Chọn ngẫu nhiên hộp từ hộp lấy ngẫu nhiên bi Tính xác suất bi ñen 11 Printed with FinePrint trial version - purchase at www.fineprint.com Lời giải a) Gọi Aj (j = 1, 2, 3) biến cố lấy bi trắng từ hộp thứ j Khi A1, A2, A3 độc lập vaø ; P(A ) = P(A ) = ; P(A ) = P(A ) = ; P(A ) = P(A1 ) = ; ; 1) Gọi A biến cố lấy bi trắng Ta có A = A1 A A Suy P(A) = P(A1) P(A2) P(A3) = 0,048 2) Gọi B biến cố lấy bi đen, bi trắng Ta có B = A1 A A + A1A A + A1 A A Suy P(B) =0,464 3) Giả sử viên lấy có bi trắng Khi biến cố B xảy Do xác suất để bi trắng hộp thứ trường hợp xác suất có điều kiện P(A1/B) Theo công thức Nhân xác suất ta có: P(A1B) = P(B)P(A1/B) Suy P(A /B) = P(A1B) P(B) Maø A 1B = A A A nên lý luận tương tự ta P(A1B) = 0,048 Suy P(A1/B) =0,1034 b) Chọn ngẫu nhiên hộp từ hộp lấy ngẫu nhiên bi Tính xác suất bi đen Gọi A biến cố lấy bi đen A1, A2, A3 biến cố chọn hộp I, II, III Khi A1, A2, A3 hệ đầy đủ, xung khắc đôi P(A1) = P(A2) = P(A3) = 1/3 Theo công thức xác suất đầy đủ, ta có: P(A) = P(A1)P(A/A1) + P(A2)P(A/ A2)+ P(A3)P(A/A3) Theo công thức xác suất lựa chọn, ta coù: 12 P(A/A1 ) = C10C34 C53 C 0C = ; P(A/A ) = 3 = ; P(A/A ) =0 10 10 C5 p dụng Công thức Bayes sử dụng kết vừa tìm câu a) ta có P(A /A) = Suy P(A) = 0,1667 Bài 1.9: Có 20 hộp sản phẩm lọai, hộp chứa nhiều sản phẩm, có 10 hộp xí nghiệp I, hộp xí nghiệp II hộp xí nghiệp III Tỉ lệ sản phẩm tốt xí nghiệp 50%, 65% 75% Lấy ngẫu nhiên hộp chọn ngẫu nhiên sản phẩm từ hộp a) Tính xác suất để sản phẩm chọn có sản phẩm tốt b) Giả sử sản phẩm chọn có sản phẩåm tốt Tính xác suất để sản phẩm tốt xí nghiệp I Lời giải Gọi A biến cố sản phẩm chọn có sản phẩm tốt Aj (j = 1, 2, 3) biến cố chọn hộp xí nghiệp thứ j Khi A1, A2, A3 đầy đủ, xung khắc đôi ta có: C C )= C C )= C C P(A ) = 10 = 10 ; 20 = ; 20 = 20 20 P(A 20 P(A 20 Mặt khác, từ giả thiết, theo công thức Bernoulli, ta có P(A / A1 ) = C32 (0, 5)2 (1 − 0, 5) = 0, 375 P(A / A ) = C23 (0, 65)2 (1 − 0, 65) = 0, 443625 P(A / A ) = C23 (0,75)2 (1 − 0, 25) = 0, 421875 Theo công thức xác suất đầy đủ, ta coù P(A) = P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3) = (10/20).0,375 + (6/20) 0,443625 + (4/20) 0,421875 = 0,4050 b) Giaû sử sản phẩm chọn có sản phẩåm tốt Khi đó, biến cố A xảy Do đó, xác suất để sản phẩm tốt xí nghiệp I xác suất có điều kiện P(A1/A) 13 Printed with FinePrint trial version - purchase at www.fineprint.com P(A )P(A/A1 ) (10/20).0,375 = = 0, 4630 P(A) 0,4050 Bài 1.10: Có 10 sinh viên thi, có thuộc loại giỏi, trung bình Trong số 20 câu hỏi thi qui đònh sinh viên lọai giỏi trả lời tất cả, sinh viên trả lời 16 câu sinh viên trung bình 10 câu Gọi ngẫu nhiên sinh viên phát phiếu thi gồm câu hỏi trả lời câu hỏi Tính xác suất để sinh viên thuộc loại Lời giải Tóm tắt: Xếp loại sinh viên Số lượng Số câu trả lời được/20 Giỏi Khá Trung bình 20 16 10 Gọi A biến cố sinh viên trả lời câu hỏi A1, A2, A3 biến cố sinh viên thuộc loại Trung bình Giỏi, Khá; Yêu cầu toán tính xác suất có điều kiện P(A2/A) Các biến cố A1, A2, A3 hệ đầy đủ, xung khắc đôi, ta coù: P(A1) = 3/10; P(A2) = 4/10; P(A3) = 3/10 Theo công thức Bayes, ta có P(A /A) = P(A )P(A/A ) P(A) Mặt khác, theo công thức xác suất đầy đủ, ta có P(A) = P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3) Theo công thức tính xác suất lựa chọn, ta có: P(A / A ) = C420 = 1; C420 P(A / A ) = C16 C40 1820 = ; C20 4845 P(A / A ) = C10 C10 210 = C20 4845 14 Suy P(A2/A) = 0,3243 Bài 1.11: Có hai hộp I II, hộp I chứa 10 bi trắng bi đen; hộp II chứa bi trắng bi đen Từ hộp rút ngẫu nhiên bi bỏ đi, sau bỏ tất bi lại hai hộp vào hộp III (rỗng) Lấy ngẫu nhiên bi từ hộp III Tính xác suất để bi lấy từ hộp III có trắng, đen - Bi Cj độc lập - Tổng số bi trắng có bi chọn phụ thuộc vào biến cố Bi Cj theo bảng sau: B0 B1 B2 Lời giải Gọi A biến cố bi lấy trắng, đen Aj (j = 0, 1, 2, 3, 4) biến cố có j bi trắng (4-j) bi đen có bi bỏ (từ hai hộp I II) Khi A0, A1, A2 , A3, A4 hệ đầy đủ, xung khắc đôi Theo công thức xác suất đầy đủ, ta có P(A) = P(A0)P(A/A0) + P(A1)P(A/A1) + P(A2)P(A/A2)+ P(A3)P(A/A3) + P(A4)P(A/A4) P(A/A ) = C118C110 10 (Vì A0 xảy hộp III có 28 bi gồm 21 = C228 18 trắng , 10 đen) Tương tự, P(A/A1 ) = P(A/A ) = C117C111 C228 C115C113 C228 C1 C1 65 14 ; P(A/A ) = 142 14 = 126 27 C28 Bây ta tính P(A0); P(A1); P(A2); P(A3); P(A4) Goïi Bi , Ci (i = 0, 1, 2) biến cố có i bi trắng (2 - i) bi đen có bi chọn từ hộp I, hộp II Khi - B0, B1, B2 xung khắc ta coù: P(B0 ) = C C C 10 = 18 28 ; P(B1 ) = 153 C C C 1 10 = 18 80 ; P(B2 ) = 153 C C C 10 18 = 17 - C0, C1, C2 xung khắc ta có: CC C P(C0 ) = 14 = 15 ; P(C1 ) = 91 CC C 14 = 48 ; P(C ) = 91 CC C C1 C2 ⇒ P(A0) = P(B0)P(C0) = 20/663 A0 = B0C0 ⇒ P(A1) = P(B0)P(C1 ) + P(B1)P(C0) = 848/4641 A1 = B0C1 + B1C0 A2 = B0C2 + B1C1 + B2C0 ⇒ P(A2) = P(B0)P(C2)+P(B1)P(C1)+P(B2)P(C0) =757/1989 ⇒ P(A3) = P(B1)P(C2)+P(B2)P(C1) = 4400/13923 A3 = B1C2 + B2C1 ⇒ P(A4) = P(B2)P(C2) = 20/221 A4 = B2C2 Từ suy P(A) = 0,5080 Bài 1.12: Có hai hộp cỡ Hộp thứ chứa bi trắng bi xanh, hộp thứ hai chứa bi trắng bi xanh Chọn ngẫu nhiên hộp từ hộp lấy bi bi trắng Tính xác suất để viên bi lấy từ hộp lại bi trắng C1 C1 187 32 = ; P(A/A ) = 162 12 = ; 378 63 C28 = C0 vaø 14 = 28 91 15 Printed with FinePrint trial version - purchase at www.fineprint.com Lời giải Gọi A1 biến cố bi lấy bi trắng A2 biến cố bi lấy lần sau bi trắng Bài tóan yêu cầu tính P(A2/A1) Theo công thức nhân xác suất, ta coù P(A1A2) = P(A1) P(A2/A1) Suy P(A / A1 ) = P(A1 A ) P(A1 ) Bây ta tính xác suất P(A1) P(A1A2) Gọi B1, B2 biến cố chọn hộp I, hộp II Khi B1, B2 hệ đầy đủ, xung khắc đôi ta có: P(B1) = P(B2) = 0,5 Theo công thức xác suất đầy đủ, ta có P(A1) = P(B1) P(A1/ B1) + P(B2) P(A1/ B2) 16 Maø CC C /B )= C C C P(A / B1 ) = = ; 45 = 10 66 10 P(A 2 12 nên P(A1) = 47/330 Theo công thức xác suất đầy đủ, ta có P(A1A2) = P(B1) P(A1A2/ B1) + P(B2) P(A1A2/ B2) Maø = ; 45 30 10 P(A A / B2 ) = P(A / B2 )P(A / A 1B2 ) = = 66 10 22 a a −1 a −1 + + b −1 a b a = P(A1 / A) = a a −1 b a + b −1 a + a + b a + b −1 a + b a + b −1 Bài 1.14: Có hộp phấn, hộp I chứa 15 viên tốt viên xấu, hộp II chứa 10 viên tốt viên xấu, hộp III chứa 20 viên tốt 10 viên xấu Ta gieo xúc xắc cân đối Nếu thấy xuất mặt chấm ta chọn hộp I; xuất mặt chấm chọn hộp II, xuất mặt lại chọn hộp III Từ hộp chọn lấy ngẫu nhiên viên phấn Tìm xác suất để lấy viên tốt P(A A / B1 ) = P(A / B1 )P(A / A 1B1 ) = Lời giải nên P(A1A2) = 13/330 Suy xác suất cần tìm P(A2/A1) =13/47= 0,2766 Bài 1.13: Một lô hàng gồm a sản phẩm loại I b sản phẩm loại II đóng gới để gửi cho khách hàng Nơi nhận kiểm tra lại thấy thất lạc sản phẩm Chọn ngẫu nhiên sản phẩm thấy sản phẩm loại I Tính xác suất để sản phẩm thất lạc thuộc loại I Lời giải Gọi A biến cố sản phẩm chọn thuộc lọai I A1, A2 biến cố sản phẩm thất lạc thuộc loại I, loại II Yêu cầu toán tính xác suất có điều kiện P(A1/A) Ta thấy A1, A2 hệ đầy đủ, xung khắc đôi P(A1 ) = C1a C0b a = ; C1a + b a+b P(A ) = Ca0 C1b b = C1a + b a+b Theo công thức Bayes, ta có P(A / A) = - Theo công thức xác suất đầy đủ, ta có P(A) = P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3) Từ giả thiết ta có: P(A / A ) = C15 C52 C15 C15 C15 C50 4690 ; + + = 4 C420 C20 C20 4845 P(A / A ) = C10 C42 C10 C14 C10 C04 960 + + = ; 4 C14 C14 C14 1001 P(A / A ) = C220C10 C3 C1 C4 C0 24795 + 20 10 + 204 10 = C30 C30 C30 27405 P(A )P(A / A ) P(A )P(A / A1 ) = P(A) P(A1 )P(A / A1 ) + P(A )P(A / A ) Suy P(A) =0,9334 C C a −1 = ; C a + b −1 Bài 1.15: Có hai kiện hàng I II Kiện thứ chứa 10 sản phẩm, có sản phẩm loại A Kiện thứ hai chứa 20 sản phẩm, có sản phẩm loại A Lấy từ kiện sản phẩm Sau đó, sản phẩm thu chọn ngẫu nhiên sản phẩm Tính xác suất để sản phẩm chọn sau có sản phẩm loại A Mà P(A / A ) = - Gọi A biến cố chọn viên phấn tốt Aj (j =1,2, 3) biến cố chọn hộp thứ j Khi A1, A2, A3 hệ đầy đủ, xung khắc đôi ta có: A1 xảy thảy xúc xắc, xuất mặt chấm, P(A1) = 1/6 P(A3) = 3/6 Tương tự, P(A2) = 2/6; a −1 b a + b −1 P(A / A ) = CC C a b −1 a + b −1 = a a + b−1 nên Lời giải 17 Printed with FinePrint trial version - purchase at www.fineprint.com 18 CC C P(C ) = C C C P(C ) = C C C P(C0 ) = Goïi C biến cố sản phẩm chọn sau có sản phẩm loại A Aj (j = 0, 1, 2, 3, ) biến cố có j sản phẩm lọai A (4-j) sản phẩm lọai B có sản phẩm lấy từ hai kiện I II Khi A0, A1, A2, A3, A4 hệ đầy đủ, xung khắc đôi Theo công thức xác suất đầy đủ, ta có 2 16 = 120 ; 190 = 64 ; 190 = ; 190 20 1 16 20 2 16 20 P(C) = P(A0)P(C/A0) + P(A1)P(C/A1) + P(A2)P(C/A2) + P(A3)P(C/A3) + P(A4)P(C/A4) - Bi Ta có: - Tổng số sp A có sp chọn phụ thuộc vào biến cố Bi Cj theo bảng sau: P(C/A ) = 0; P(C/A1 ) = P(C/A ) P(C/A ) C11C13 C24 C1 C1 = 222 C4 C1 C1 = 321 C4 = = = = 1 16 = ; 45 10 10 2 ; 45 2 10 C1 vaø C2 Ta coù: P(C/A ) =0 CC C P(B ) = C C C P(B ) = C C C độc lập C0 B0 B1 B2 Bây ta tính P(A1); P(A2); P(A3) Gọi Bi , Ci (i = 0, 1, 2) biến cố có i sp A (2 - i) sp B có sp chọn từ kiện I, kiện II Khi - B0, B1, B2 xung khắc đôi ta có: P(B0 ) = Cj = 28 45 - C0, C1, C2 xung khắc đôi ta có: A1 = B0C1 + B1C0 A2 = B0C2 + B1C1 + B2C0 A3 = B1C2 + B2C1 Từ đây, nhờ công thưcù cộng nhân xác suất ta tính được: P(A1) = 0,2320 ; P(A2) = 0,5135 ; P(A3) = Suy xác suất cần tìm P(C) = 0,5687 Bài 1.16: Một xạ thủ bắn 10 viên đạn vào mục tiêu Xác suất để viên đạn bắn trúng mục tiêu 0,8 Biết rằng: Nếu có 10 viên trúng mục tiêu chắn bò diệt Nếu có từ đến viên trúng mục tiêu bò diệt vơiù xác suất 80% Nếu có viên trúng mục tiêu bò diệt với xác suất 20% a) Tính xác suất để mục tiêu bò diệt b) Giả sử mục tiêu bò diệt Tính xác suất có 10 viên trúng Lời giải Tóm tắt: - 19 Printed with FinePrint trial version - purchase at www.fineprint.com 0,2208 Số viên bắn ra: 10 viên Xác suất trúng viên: 0,8 20 b) Gọi D biến cố có sản phẩm loại A sản phẩm có Giả sử sản phẩm có sản phẩm loại A Khi biến cố D xảy Do đó, xác suất để sản phẩm loại A máy sản xuất xác suất có điều kiện P(A2/D) Theo công thức nhân xác suất ta có: P(A 2D) P(D) P(A /D) = a) Gọi A biến cố lấy 1sp tốt, 1sp xấu từ lô I Theo công thức xác suất đầy đủ, ta có: P(A) = P(A0)P(A/A0) + P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3) Từ giả thiết ta suy lô I có 15.60% = sp tốt sp xấu Do theo công thức tính xác suất lựa chọn, ta có: Nhận xét tổng số sản phẩm loại A có sản phẩm thu phụ thuộc vào biến cố Ai Bj theo bảng sau: A0 A1 A2 Suy D = A0 B2 + A1B1 + A2B0 B0 B1 B2 vaø B3 A2D = A2B0 Từ đây, ta tính P(D) = 0,236 ; P(A2D) = 0,012 Suy xác suất cần tìm P(A2/D) = 0,0508 Bài 1.18: Có hai lô hàng, lô chứa 60% sản phẩm tốt, lô I chứa 15 sản phẩm, lô II chứa nhiều sản phẩm Từ lô II lấy sản phẩm bỏ vào lô I, sau từ lô I lấy sản phẩm a) Tính xác suất lấy 1sp tốt, 1sp xấu từ lô I b) Tính xác suất lấy 1sp tốt, 1sp xấu từ lô I, sp tốt có lô I từ trước c) Giả sử lấy 1sp tốt, 1sp xấu từ lô I Tính xác suất lấy 2sp tốt, 1sp xấu từ lô II Lời giải Gọi Aj (j = 0,1, 2, 3) biến cố có j sản phẩm tốt (3-j) sản phẩm xấu có sản phẩm chọn từ lô II Khi A0, A1, A2, A3 hệ đầy đủ, xung khắc đôi Theo công thức Bernoulli ta có: P(A ) = C03p0 q3 = (0, 4)3 = 0, 064; P(A1 ) = C13p1q2 P(A / A ) = C19C19 81 ; = C18 153 P(A / A1 ) = C110C18 80 ; = C18 153 P(A / A ) = C111C17 77 = ; C18 153 P(A / A ) = C112C16 72 = C18 153 Suy xác suất cần tìm là: P(A) = 0,5035 b) Gọi B biến cố lấy 1sp tốt, 1sp xấu từ lô I, sp tốt có lô I từ trước Theo công thức xác suất đầy đủ, ta coù: P(B) = P(A0)P(B/A0) + P(A1)P(B/A1) + P(A2)P(B/A2) + P(A3)P(B/A3) Ta coù: P(B / A ) = C19C19 81 ; = C18 153 P(B / A1 ) = C19C18 72 = ; C18 153 P(B / A ) = C19C17 63 = ; C18 153 P(B / A ) = C19C16 54 = C18 153 Suy xác suất cần tìm laø: P(B) = 0,4235 = 3(0, 6) (0, 4) = 0, 288; P(A ) = C23p2 q1 = 3(0, 6)2 (0, 4)1 = 0, 432; P(A ) = C33p3q0 = (0, 6)3 = 0, 216 23 Printed with FinePrint trial version - purchase at www.fineprint.com c) Giaû sử lấy 1sp tốt, 1sp xấu từ lô I Khi biến cố A xảy Do xác suất lấy 2sp tốt, 1sp xấu từ lô II trường hợp XS có điều kiện P(A2/A) Theo công thức Bayes, ta có: 24 P(A )P(A / A ) P(A / A) = = P(A) * 77 153 = 0, 4318 0, 5035 0, 432 - 25 Printed with FinePrint trial version - purchase at www.fineprint.com BÀI GIẢI a) Xác suất có chai bia Sài Gòn bò bể XÁC SUẤT THỐNG KÊ P(X ≥ 1) = − P(X = 0) = − (GV: Trần Ngọc Hội – 2009) CHƯƠNG ĐẠI LƯNG NGẪU NHIÊN VÀ PHÂN PHỐI XÁC SUẤT Bài 2.1: Nước giải khát chở từ Sài Gòn Vũng Tàu Mỗi xe chở 1000 chai bia Sài Gòn, 2000 chai coca 800 chai nước trái Xác suất để chai loại bò bể đường tương ứng 0,2%; 0,11% 0,3% Nếu không chai bò bể lái xe thưởng a) Tính xác suất có chai bia Sài Gòn bò bể b) Tính xác suất để lái xe thưởng c) Lái xe phải chở chuyến để xác suất có chuyến thưởng không nhỏ 0,9? Lời giải Tóm tắt: Loại Bia Sài Coca Nước trái Gòn Số lượng/chuyến 1000 2000 800 Xác suất chai 0,2% 0,11% 0,3% bể - - Gọi X1 ĐLNN số chai bia SG bò bể chuyến Khi đó, X1 có phân phối nhò thức X1 ∼ B(n1,p1) với n1 = 1000 p1 = 0,2% = 0,002 Vì n1 lớn p1 bé nên ta xem X1 có phân phân phối Poisson: X1 ∼ P(a1) với a1 = n1p1 = 1000.0,002 = 2, nghóa X1 ∼ P(2) Tương tự, gọi X2 , X3 ĐLNN số chai bia coca, chai nước trái bò bể chuyến Khi đó, X2 , X3 có phân phối Poisson: X2 ∼ P(2000.0,0011) = P(2,2); X3 ∼ P(800.0,003) = P(2,4) Printed with FinePrint trial version - purchase at www.fineprint.com e −2 = − e−2 = 0, 8647 0! b) Tính xác suất để lái xe thưởng Theo giả thiết, lái xe thưởng có không chai bò bể, nghóa X1 + X2 + X3 ≤ Vì X1 ∼ P(2);X2 ∼ P(2,2); X3 ∼ P(2,4) neân X1 + X2 + X3 ∼ P(2+2,2 + 2,4) = P(6,6) Suy xác suất lái xe thưởng là: P(X1 + X2 + X3 ≤ 1) = P[(X1 + X2 + X3 =0) + P(X1 + X2 + X3 = 1)]= e − , (6 , ) e − , (6 , ) = 0,0103 + 0! 1! c) Lái xe phải chở chuyến để xác suất có chuyến thưởng không nhỏ 0,9? Gọi n số chuyến xe cần thực A biến cố có chuyến thưởng Yêu cầu toán xác đònh n nhỏ cho P(A) ≥ 0,9 Biến cố đối lập A là: A chuyến thưởng Theo câu b), xác suất để lái xe thưởng chuyến p = 0,0103 Do theo công thức Bernoulli ta có: P(A) = − P(A) = − q n = − (1 − 0, 0103)n = − (0, 9897)n Suy P(A) ≥ 0, ⇔ − (0, 9897)n ≥ 0, ⇔ (0, 9897)n ≤ 0,1 ⇔ n ln(0, 9897) ≤ ln 0,1 ln 0,1 ≈ 222, 3987 ln(0, 9897) ⇔ n ≥ 223 ⇔n≥ Vậy lái xe phải chở 223 chuyến Bài 2.2: Một máy tính gồm 1000 linh kiện A, 800 linh kiện B 2000 linh kiện C Xácsuất hỏng ba linh kiện 0,02%; 0,0125% 0,005% Máy tính ngưng hoạt động số linh kiện hỏng nhiều Các linh kiện hỏng độc lập với a) Tính xácsuất để có linh kiện B bò hỏng b) Tính xác suất để máy tính ngưng hoạt động c) Giả sử máy có linh kiện hỏng Tính xác suất để máy tính ngưng hoạt động Lời giải - A 1000 0,02% B C 800 2000 0,0125% 0,005% Gọi X1 ĐLNN số linh kiện A bò hỏng máy tính Khi đó, X1 có phân phối nhò thức X1 ∼ B(n1,p1) với n1 = 1000 p1 = 0,02% = 0,0002 Vì n1 lớn p1 bé nên ta xem X1 có phân phân phối Poisson: X1 ∼ P(a1) với a1 = n1p1 = 1000.0,0002 =0,2, nghóa X1 ∼ P(0,2) - Tương tự, gọi X2, X3 ĐLNN số linh kiện B, C bò hỏng máy tính Khi đó, X2 , X3 có phân phối Poisson sau: X2 ∼ P(800.0,0125%) = P(0,1); X3 ∼ P(2000.0,005%) = P(0,1) a) Xác suất có linh linh kiện B bò hỏng là: P(X ≥ 1) = − P(X = 0) = − Vì X1 ∼ P(0,2);X2 ∼ P(0,1); X3 ∼ P(0,1) neân X1 + X2 + X3 ∼ P(0,2+0,1 + 0,1) = P(0,4) Suy xác suất để máy tính ngưng hoạt động là: P(X1 + X2 + X3 > 1) = - P(X1 + X2 + X3 ≤ 1) = 1- [P(X1 + X2 + X3 = 0) + P(X1 + X2 + X3 = 1)] = 1− Tóm tắt: Loại linh kiện Số lượng/1máy Xác suất 1linh kiện hỏng Theo giả thiết, máy tính ngưng hoạt động số linh kiện hỏng nhiều 1, nghóa X1 + X2 + X3 > e−0,1 (0,1)0 = − e−0,1 = 0, 0952 0! b) Tính xác suất để máy tính ngưng hoạt động Printed with FinePrint trial version - purchase at www.fineprint.com e−0,4 (0, 4)0 e−0,4 (0, 4)1 − 0! 1! = 1-1,4.e-0,4 = 0,0615 = 6,15% c) Giả sử máy có linh kiện hỏng Khi máy tính ngưng hoạt động có thêm linh kiện hỏng nữa, nghóa X1 + X2 + X3 ≥ Suy xác suất để máy tính ngưng hoạt động trường hợp là: P(X1 + X2 + X3 ≥ 1) = - P(X1 + X2 + X3 < 1) = 1- P(X1 + X2 + X3 = 0) = 1− e−0,4 (0, 4)0 = 1-e-0,4 = 0,3297 = 32,97% 0! Bài 2.3: Trọng lượng loại sản phẩm quan sát đại lượng ngẫu nhiên có phân phối chuẩn với trung bình 50kg phương sai 100kg2 Những sản phẩm có trọng lượng từ 45kg đến 70kg xếp vào loại A Chọn ngẫu nhiên 100 sản phẩm (trong nhiều sản phẩm) Tính xác suất để a) có 70 sản phẩm loại A b) có không 60 sản phẩm loại A c) có 65 sản phẩm loại A Lời giải Trước hết ta tìm xác suất để sản phẩm thuộc loại A Gọi X0 trọng lượng loại sản phẩm cho Từ giả thiết X0 có phân phối chuẩn X0 ∼ N(μ0, σ02) với μ0 = 50, σ02 = 100 Vì sản phẩm xếp vào loại A có trọng lượng từ 70kg nên xác suất để sản phẩm thuộc loại A P(45 ≤ X0 ≤ ta suy (σ0 = 10) 45kg đến 70) c) Xác suất để có 65 sản phẩm loại A là: 100 − μ 65 − μ 100 − 66, 87 65 − 66, 87 ) − ϕ( ) = ϕ( ) − ϕ( ) σ σ 4,7068 4,7068 = ϕ(7, 0388) − ϕ(−0, 40) = ϕ(5) + ϕ(0, 4) = 0, + 0,1554 = 0, 6554 = 65, 54% P (65 ≤ X ≤ 100) = ϕ( (Tra bảng giá trò hàm Laplace ta ϕ (7,7068)≈ ϕ (5) = 0,5; ϕ(0,4) = 0,1554) Ta coù P(45 ≤ X ≤ 70) = ϕ( 70 − μ 45 − μ 70 − 50 45 − 50 ) − ϕ( ) = ϕ( ) − ϕ( ) σ0 σ0 10 10 = ϕ(2) − ϕ(−0, 5) = ϕ(2) + ϕ(0, 5) = 0, 4772 + 0,1915 = 0, 6687 (Tra bảng giá trò hàm Laplace ta ϕ (2) = 0,4772; ϕ (0,5) = 0,1915) Vậy xác suất để sản phẩm thuộc loại A p =0,6687 Bây giờ, kiểm tra 100 sản phẩm Gọi X số sản phẩm loại A có 100 sản phẩm kiểm tra, X có phân phối nhò thức X ∼ B(n,p) với n = 100, p = 0,6687 Vì n = 100 lớn p = 0,6687 không gần không gần nên ta xem X có phân phối chuẩn sau: X ∼ N(μ, σ2) với μ = np = 100.0,6687 = 66,87; σ = npq = 100.0, 6687.(1 − 0, 6687) = 4, 7068 a) Xác suất để có 70 sản phẩm loại A làø: 70 − μ 70 − 66, 87 f( )= f( ) 4, 7068 4, 7068 σ σ 0, 3209 = f (0, 66) = = 0, 0681 = 6, 81% 4, 7068 4, 7068 P (X = 70) = (Tra bảng giá trò hàm Gauss ta f(0,66) = 0,3209) b) Xác suất để có không 60 sản phẩm loại A laø: 60 − μ 0−μ 60 − 66, 87 − 66, 87 ) − ϕ( ) = ϕ( ) − ϕ( ) σ σ 4,7068 4,7068 = ϕ(−1, 46) − ϕ(−14, 21) = −ϕ(1, 46) + ϕ(14, 21) = −ϕ(1, 46) + ϕ(5) P (0 ≤ X ≤ 60) = ϕ( = −0, 4279 + 0, = 0, 0721 = 7, 21% (Tra bảng giá trò hàm Laplace ta ϕ (14,21) = ϕ (5) = 0,5; ϕ(1,46) = 0,4279) Printed with FinePrint trial version - purchase at www.fineprint.com Bài 2.4: Sản phẩm nhà máy đóng thành kiện, kiện gồm 14 sản phẩm có sản phẩm loại A sản phẩm loại B Khách hàng chọn cách kiểm tra sau: từ kiện lấy sản phẩm; thấy số sản phẩm thuộc loại A nhiều số sản phẩm thuộc loại B nhận kiện đó; ngược lại loại kiện Kiểm tra 100 kiện (trong nhiều kiện) Tính xác suất để a) có 42 kiện nhận b) có từ 40 đến 45 kiện nhận c) có 42 kiện nhận Lời giải Trước hết ta tìm xác suất để kiện nhận Theo giả thiết, kiện chứa 14 sản phẩm gồm 8A 6B Từ kiện lấy sản phẩm; thấy số sản phẩm A nhiều số sản phẩm B, nghóa 3A,1B 4A, nhận kiện Do xác suất để kiện nhận là: P4 (3 ≤ k ≤ 4) = P4 (3) + P4 (4) = C38C16 C48C06 + = 0, 4056 C14 C14 Vậy xác suất để kiện nhận p = 0,4056 Bây giờ, kiểm tra 100 kiện Gọi X số kiện nhận 100 kiện kiểm tra, X có phân phối nhò thức X ∼ B(n,p) với n = 100, p = 0,4056 Vì n = 100 lớn p = 0,4056 không gần không gần nên ta xem X có phân phối chuẩn sau: X ∼ N(μ, σ2) với μ = np = 100.0,4056 = 40,56; σ = npq = 100.0, 4056.(1 − 0, 4056) = 4, 9101 a) Xác suất để có 42 kiện nhận làø: P (X = 42) = = 42 − μ 42 − 40, 56 f( )= f( )= f (0, 29) 4, 9101 4, 9101 4, 9101 σ σ 0, 3825 = 0, 0779 = 7, 79% 4, 9101 (Tra baûng giá trò hàm Gauss ta f(0,29) = 0,3825) b) Xác suất để có từ 40 đến 45 kiện nhận làø 45 − μ 40 − μ 45 − 40, 56 40 − 40, 56 ) − ϕ( ) = ϕ( ) − ϕ( ) σ σ 4, 9101 4, 9101 = ϕ(0, 90) − ϕ(−0,11) = ϕ(0, 90) + ϕ(0,11) = 0, 3159 + 0, 0438 = 0, 3597 = 35, 97% P (40 ≤ X ≤ 45) = ϕ( (Tra bảng giá trò hàm Laplace ta 0,0438) ϕ (0,9) = 0,3519; ϕ (0,11) = Lời giải Trước hết ta tìm xác suất p để kiện nhận Gọi C biến cố kiện hàng nhận Ta cần tìm p = P(C) Từ giả thiết ta suy có hai loại kiện hàng: Loại I: gồm 6A, 4B chiếm 0,9 = 90% Loại II: gồm 8A, 2B chiếm 0,1 = 10% Gọi A1, A2 biến cố kiện hàng thuộc loại I, II Khi A1, A2 hệ đầy đủ, xung khắc đôi ta có P(A1) = 0,9; P(A2) = 0,1 Theo công thức xác suất đầy đủ ta coù: P(C) = P(A1) P(C/A1) + P(A2) P(C/A2) Theo giả thiết, từ kiện lấy sản phẩm; sản phẩm thuộc loại A nhận kiện Do đó: c) Xác suất để có 42 kiện nhận làø 100 − μ 42 − μ 100 − 40, 56 42 − 40, 56 P (42 ≤ X ≤ 100) = ϕ( ) − ϕ( ) = ϕ( ) − ϕ( ) σ σ 4, 9101 4, 9101 = ϕ(12) − ϕ(0, 29) = 0, 50 − 0,1141 = 0, 3859 = 38, 59% (Tra bảng giá trò hàm Laplace ta 0,1141) ϕ(12) = ϕ(5) = 0,5; ϕ(0,29) = Bài 2.5: Sản phẩm nhà máy đóng thành kiện, kiện gồm 10 sản phẩm Số sản phẩm loại A hộp X có phân phối sau: X P 0,9 0,1 Khách hàng chọn cách kiểm tra sau: từ kiện lấy sản phẩm; thấy sản phẩm loại A nhận kiện đó; ngược lại loại kiện Kiểm tra 144 kiện (trong nhiều kiện) a) Tính xác suất để có 53 kiện nhận b) Tính xác suất để có từ 52 đến 56 kiện nhận c) Phải kiểm tra kiện để xác suất có kiện nhận không nhỏ 95%? Printed with FinePrint trial version - purchase at www.fineprint.com P(C / A ) = P2 (2) = C26C04 = ; C10 P(C / A ) = P2 (2) = C28C02 28 = C10 45 Suy P(C) = 0,9 (1/3) + 0,1.(28/45) = 0,3622 Vaäy xác suất để kiện nhận p = 0,3622 Bây giờ, kiểm tra 144 kiện Gọi X số kiện nhận 144 kiện kiểm tra, X có phân phối nhò thức X ∼ B(n,p) với n = 144, p = 0,3622 Vì n = 144 lớn p = 0,3622 không gần không gần nên ta xem X có phân phối chuẩn sau: X ∼ N(μ, σ2) với μ = np = 144.0,3622 = 52,1568; σ = npq = 144.0, 3622.(1 − 0, 3622) = 5, 7676 a) Xác suất để có 53 kiện nhận P(X=53) = 6,84% (Tương tự Bài 21) b) Xác suất để có từ 52 đến 56 kiện nhận P(52 ≤ X ≤ 56) = 26,05% (Tương tự Bài 21) c) Phải kiểm tra kiện để xác suất có kiện nhận không nhỏ 95%? Gọi n số kiện cần kiểm tra D biến cố có kiện nhận Yêu cầu toán xác đònh n nhỏ cho P(D) ≥ 0,95 Biến cố đối lập D D : kiện nhận Theo chứng minh trên, xác suất để kiện nhận p = 0,3622 Do Theo công thức Bernoulli ta có: • X1 có phân phối nhò thức X1 ∼ B(n1,p1) với n1 = 100, p1 = 80% = 0,8 Vì n1 = 100 lớn p1 = 0,8 không gần không gần nên ta xem X1 có phân phối chuẩn sau: X1 ∼ N(μ1, σ12) với μ1 = n1p1 = 100.0,8 = 80; Suy • X2 có phân phối nhò thức X2 ∼ B(n2,p2) với n2 = 100, p2 = 60% = 0,60 Vì n2 = 100 lớn p2 = 0,60 không gần không gần nên ta xem X2 có phân phối chuẩn sau: X2 ∼ N(μ2, σ22) với μ2 = n2p2 = 100.0,60 = 60; P(D) = − P(D) = − q n = − (1 − 0, 3622)n = − (0, 6378)n P(D) ≥ 0, 95 ⇔ − (0, 6378)n ≥ 0, 95 ⇔ (0, 6378)n ≤ 0, 05 ⇔ n ln(0, 6378) ≤ ln 0, 05 ln 0, 05 ≈ 6, 6612 ln(0, 6378) ⇔ n ≥ ⇔n≥ σ1 = n1p1q1 = 100.0, 8.0, = σ2 = n 2p 2q = 100.0, 60.0, 40 = 4, 8990 a) Xác suất để có 70 sản phẩm đạt tiêu chuẩn là: 1 1 70 − μ1 1 70 − μ P(X1 =70)+ P(X =70) = f( )+ f( ) 2 σ1 σ1 σ2 σ2 1 70 − 80 1 70 − 60 1 1 = f( )+ f( )= f (−2, 5) + f (2, 04) 4 4, 8990 4, 8990 4, 8990 1 1 = 0, 0175 + 0, 0498 = 0, 000727 4, 8990 P(X = 80) = Vậy phải kiểm tra kiện Bài 2.6: Một máy sản xuất sản phẩm với tỉ lệ sản phẩm đạt tiêu chuẩn 80% máy khác sản xuất loại sản phẩm với tỉ lệ sản phẩm đạt tiêu chuẩn 60% Chọn ngẫu nhiên máy cho sản xuất 100 sản phẩm Tính xác suất để a) có 70 sản phẩm đạt tiêu chuẩn b) có từ 70 đến 90 sản phẩm đạt tiêu chuẩn c) có không 70 sản phẩm đạt tiêu chuẩn Lời giải Gọi X ĐLNN số sản phẩm đạt tiêu chuẩn 100 sản phẩm A1, A2 biến cố chọn máy 1, máy Khi A1, A2 hệ đầy đủ, xung khắc đôi ta có: P(A1) = P(A2) = 0,5 Theo công thức xác xuất đầy đủ, với ≤ k ≤ 100, ta coù: P(X = k) = P(A1 )P(X=k/A ) + P(A )P(X= k/A ) (1) 1 = P(X=k/A1 )+ P(X=k/A ) 2 Như vậy, gọi X1, X2 ĐLNN số sản phẩm đạt tiêu chuẩn trường hợp chọn máy 1, máy Khi đó: 1 • (1) cho ta P(X = k) = P(X1 =k)+ P(X =k) 2 Printed with FinePrint trial version - purchase at www.fineprint.com b) Xác suất để có từ 70 đến 90 sản phẩm đạt tiêu chuẩn là: 1 P(70 ≤ X ≤ 90) = P(70 ≤ X1 ≤ 90)+ P(70 ≤ X ≤ 90) 2 90 − μ1 70 − μ1 90 − μ 70 − μ 1 = [ϕ( ) − ϕ( )] + [ϕ( ) − ϕ( )] σ1 σ1 σ2 σ2 90 − 80 70 − 80 90 − 60 70 − 60 = [ϕ( ) − ϕ( )] + [ϕ( ) − ϕ( )] 4 4, 899 4, 899 = [ϕ(2, 5) − ϕ(−2, 5) + ϕ(6,12) − ϕ(2, 04)] = (0, 49379 + 0, 49379 + 0, − 0, 47932) = 0, 50413 c) Xác suất có không 70 sản phẩm đạt tiêu chuẩn P(70 ≤ X ≤ 100) =0,5072 (Tương tự câu b) Bài 2.7: Một máy sản xuất sản phẩm với tỉ lệ phế phẩm 1% máy khác sản xuất loại sản phẩm với tỉ lệ phế phẩm 2% 10 Chọn ngẫu nhiên máy cho sản xuất 1000 sản phẩm Tính xác suất để a) có 14 phế phẩm b) có từ 14 đến 20 phế phẩm Lời giải Gọi X ĐLNN số phế phẩm 1000 sản phẩm A1, A2 biến cố chọn máy 1, máy Khi A1, A2 hệ đầy đủ, xung khắc đôi ta có: P(A1) = P(A2) = 0,5 Theo công thức xác xuất đầy đủ, với ≤ k ≤ 100, ta có: P(X = k) = P(A1 )P(X=k/A ) + P(A )P(X= k/A ) (1) 1 = P(X=k/A1 )+ P(X=k/A ) 2 Như vậy, gọi X1, X2 ĐLNN số phế phẩm trường hợp chọn máy 1, máy Khi đó: 1 • (1) cho ta P(X = k) = P(X1 =k)+ P(X =k) 2 • X1 có phân phối nhò thức X1 ∼ B(n1,p1) với n1 = 1000 p1 = 1% = 0,001 Vì n1 lớn p1 bé nên ta xem X1 có phân phân phối Poisson: X1 ∼ P(a1) với a1 = n1p1 = 1000.0,01 = 10, nghóa X2 ∼ P(10) • X2 có phân phối nhò thức X2 ∼ B(n2,p2) với n2 = 1000 p2 = 2% = 0,002 Vì n2 lớn p2 bé nên ta xem X2 có phân phân phối Poisson: X1 ∼ P(a2) với a2 = n2p2 = 1000.0,02 = 20, nghóa X2 ∼ P(20) a) Xác suất để có 14 phế phẩm là: 1 e−10 1014 e−20 2014 + = 0, 0454 P(X = 14) = P(X1 =14)+ P(X =14) = 2 14 ! 14 ! b) Xác suất để có từ 14 đến 20 phế phẩm là: 1 P(14 ≤ X ≤ 20) = P(14 ≤ X ≤ 20)+ P(14 ≤ X ≤ 20) 2 = 20 ∑ k =14 e−10 10k + k! 20 ∑ k =14 e−20 20k = 31, 35% k! Bài 2.8: Một xí nghiệp có hai máy I II Trong ngày hội thi, công nhân dự thi phân máy với máy sản xuất 100 sản phẩm Nếu số sản phẩm loại A không 70 công nhân thưởng Giả sử công nhân X, xác suất sản xuất sản phẩm loại A với máy I II 0,6 0,7 a) Tính xác suất để công nhân X thưởng b) Giả sử công nhân X dự thi 50 lần Số lần thưởng tin bao nhiêu? Lời giải Gọi Y ĐLNN số sản phẩm loại A có 100 sản phẩm sản xuất A1, A2 biến cố chọn máy I, máy II Khi A1, A2 hệ đầy đủ, xung khắc đôi ta có: P(A1) = P(A2) = 0,5 Theo công thức xác xuất đầy đủ, với ≤ k ≤ 100, ta coù: P(Y = k) = P(A1 )P(Y=k/A ) + P(A )P(Y= k/A ) (1) 1 = P(Y=k/A1 )+ P(Y=k/A ) 2 Nhö vậy, gọi X1, X2 ĐLNN số sản phẩm loại A có 100 sản phẩm sản xuất trường hợp chọn máy I, máy II Khi đó: 1 P(Y = k) = P(X1 =k)+ P(X =k) • (1) cho ta 2 • X1 có phân phối nhò thức X1 ∼ B(n1,p1) với n1 = 100, p1 = 0,6 Vì n1 = 100 lớn p1 = 0,6 không gần không gần nên ta xem X1 có phân phối chuẩn sau: X1 ∼ N(μ1, σ12) với μ1 = n1p1 = 100.0,6 = 60; σ1 = n1p1q1 = 100.0, 6.0, = 4, 8990 • X2 có phân phối nhò thức X2 ∼ B(n2,p2) với n2 = 100, p2 = 0,7 Vì n2 = 100 lớn p2 = 0,7 không gần không gần nên ta xem X2 có phân phối chuẩn sau: X2 ∼ N(μ2, σ22) với μ1 = n2p2 = 100.0,7 = 70; σ2 = n2p2q = 100.0, 7.0, = 4, 5826 a) Xác suất để công nhân X thưởng là: 11 Printed with FinePrint trial version - purchase at www.fineprint.com 12 1 P(70 ≤ X1 ≤ 100)+ P(70 ≤ X ≤ 100) 2 100 − μ1 70 − μ1 100 − μ 70 − μ = [ϕ( ) − ϕ( )] + [ϕ( ) − ϕ( )] 2 σ1 σ1 σ2 σ2 P(70 ≤ Y ≤ 100) = 100 − 60 70 − 60 100 − 70 70 − 70 = [ϕ( ) − ϕ( )] + [ϕ( ) − ϕ( )] 4, 899 4, 899 4, 5826 4, 5826 1 = [ϕ(8,16) − ϕ(2, 04) + ϕ(6, 55) − ϕ(0)]= (0, − 0, 47932 + 0, 5) = 0, 2603 2 b) Giả sử công nhân X dự thi 50 lần Số lần thưởng tin bao nhiêu? Gọi Z ĐLNN số lần công nhân X thưởng Khi Z có phân phối nhò thức Z ∼ B(n,p) với n = 50, p = 0,2603 Số lần thưởng tin Mod(Z) Ta coù: Mod(Z) = k ⇔ np − q ≤ k ≤ np − q + ⇔ 50.0, 2603 − 0, 7397 ≤ k ≤ 50.0, 2603 − 0, 7397 + ⇔ 12, 2753 ≤ k ≤ 13, 2753 ⇔ k = 13 Vậy số lần thưởng tin công nhân X 13 lần Bài 2.9: Trong ngày hội thi, chiến só chọn ngẫu nhiên hai loại súng với súng chọn bắn 100viên đạn Nếu có từ 65 viên trở lên trúng bia thưởng Giả sử chiến só A, xác suất bắn viên trúng bia súng loại I 60% súng loại II 50% a) Tính xác suất để chiến só A thưởng b) Giả sử chiến só A dự thi 10 lần Hỏi số lần thưởng tin bao nhiêu? c) Chiến só A phải tham gia hội thi lần để xác suất có lần thưởng không nhỏ 98%? Lời giải Gọi X ĐLNN số viên trúng 100 viên bắn Gọi A1, A2 biến cố chọn súng loại I, II Khi A1, A2 hệ đầy đủ, xung khắc đôi ta có: P(A1) = P(A2) = 0,5 Theo công thức xác xuất đầy đủ, với ≤ k ≤ 100, ta coù: 13 Printed with FinePrint trial version - purchase at www.fineprint.com P(X = k) = P(A1 )P(X=k/A ) + P(A )P(X= k/A ) Như viên • • (1) 1 = P(X=k/A1 )+ P(X=k/A ) 2 vậy, gọi X1, X2 ĐLNN số viên trúng 100 bắn trường hợp chọn loại I, II Khi đó: 1 P(X = k) = P(X1 =k)+ P(X =k) (1) cho ta 2 X1 có phân phối nhò thức X1 ∼ B(n1,p1) với n1 = 100, p1 = 0,6 Vì n1 = 100 lớn p1 = 0,6 không gần không gần nên ta xem X1 có phân phối chuẩn sau: X1 ∼ N(μ1, σ12) với μ1 = n1p1 = 100.0,6 = 60; σ1 = n1p1q1 = 100.0, 6.0, = 4, 8990 • X2 có phân phối nhò thức X2 ∼ B(n2,p2) với n2 = 100, p2 = 0,5 Vì n2 = 100 lớn p2 = 0,5 không gần không gần nên ta xem X2 có phân phối chuẩn sau: X2 ∼ N(μ2, σ22) với μ1 = n2p2 = 100.0,5 = 50; σ2 = n2p2q = 100.0, 5.0, = a) Xác suất để chiến só A thưởng là: 1 P(65 ≤ X1 ≤ 100)+ P(65 ≤ X ≤ 100) 2 100 − μ1 65 − μ1 100 − μ 65 − μ = [ϕ( ) − ϕ( )] + [ϕ( ) − ϕ( )] σ1 σ1 σ2 σ2 2 P(65 ≤ X ≤ 100) = 100 − 60 65 − 60 100 − 50 65 − 50 = [ϕ( ) − ϕ( )] + [ϕ( ) − ϕ( )] 4, 899 4, 899 5 1 = [ϕ(8,16) − ϕ(1, 02) + ϕ(10) − ϕ(3)]= (0, − 0, 34614 + 0, − 0, 49865) = 0, 0776 2 b) Giả sử chiến só A dự thi 10 lần Số lần thưởng tin bao nhiêu? Gọi Y ĐLNN số lần chiến só A thưởng Khi Y có phân phối nhò thức Y ∼ B(n,p) với n = 10, p = 0,0776 Số lần thưởng tin mod(Y) Ta có: mod(Y) = k ⇔ np − q ≤ k ≤ np − q + ⇔ 10.0, 0776 − 0, 9224 ≤ k ≤ 10.0, 0776 − 0, 9224 + ⇔ −0,1464 ≤ k ≤ 0, 8536 ⇔ k = 14 Theo công thức Bernoulli ta có: P(X = 0) = C 4(0, 8)0 (0, 2)4 = 0, 0016; Vaäy số lần thưởng tin chiến só A lần, nói cách khác, thường chiến só A không thưởng lần 10 lần tham gia P(X = 1) = C 4(0, 8)1 (0, 2)3 = 0, 0256; P(X = 2) = C 4(0, 8)2 (0, 2)2 = 0,1536; c) Chieán só A phải tham gia hội thi lần để xác suất có lần thưởng không nhỏ 98%? P(X = 3) = C 4(0, 8)3 (0, 2)1 = 0, 4096; P(X = 4) = C 4(0, 8)4 (0, 2)0 = 0, 4096 Gọi n số lần tham gia hội thi D biến cố có lần thưởng Yêu cầu toán xác đònh n nhỏ cho P(D) ≥ 0,98 Biến cố đối lập D D : lần thưởng Theo chứng minh trên, xác suất để lần thưởng p = 0,0776 Do Theo công thức Bernoulli ta có: P(D) = − P(D) = − q n = − (1 − 0, 0776)n = − (0, 9224)n Suy P(D) ≥ 0, 98 ⇔ − (0, 9224)n ≥ 0, 98 ⇔ (0, 9224)n ≤ 0, 02 ⇔ n ln 0, 9224 ≤ ln 0, 02 ln 0, 02 ≈ 48, 43 ln 0, 9224 ⇔ n ≥ 49 ⇔n≥ Vậy chiến só A phải tham gia hội thi 49 lần Bài 2.10: Một người thợ săn bắn viên đạn Biết xác suất trúng đích viên đạn bắn 0,8 Gọi X đại lượng ngẫu nhiên số viên đạn trúng đích a) Tìm luật phân phối X b) Tìm kỳ vọng phương sai X Lời giải a) Ta thấy X có phân phối nhò thức X∼ B(n,p) với n = 4, p = 0,8 X ĐLNN rời rạc nhận giá trò: 0, 1, 2, , Luật phân phối X có dạng: X P p0 p1 p2 p3 p4 15 Printed with FinePrint trial version - purchase at www.fineprint.com Vậy luật phân phối X là: X P 0,0016 0,0256 0,1536 0,4096 0,4096 b) Tìm kỳ vọng phương sai X - Kỳ vọng: M(X) = np = 3,2 - Phương sai: D(X) = npq = 0,64 Bài 2.11: Có hai lô hàng I II, lô chứa nhiều sản phẩm Tỉ lệ sản phẩm loại A có hai lô I II 70% 80% Lấy ngẫu nhiên từ lô sản phẩm a) Tính xác suất để số sản phẩm loại A lấy từ lô I lớn số sản phẩm loại A lấy từ lô II b) Gọi X số sản phẩm loại A có sản phẩm lấy Tìm kỳ vọng phương sai X Lời giải Gọi X1, X2 ĐLNN số sp loại A có sp chọn từ lô I, II Khi • X1 có phân phối nhò thức X1 ∼ B(n1, p1); n1 = 2; p1 = 70% = 0,7 với xác suất đònh bởi: P(X = k) = C (0, 7)k (0, 3)2 − k k Cụ thể X1 P 0,09 0,42 0,49 • X2 có phân phối nhò thức X2 ∼ B(n2, p2); n2 = 2; p2 = 80% = 0,8 với xác suất đònh bởi: P(X = k) = C (0, 8) k (0, 2)2 − k k Cụ thể X2 P 0,04 16 0,32 0,64 a) Xaùc suất để số sản phẩm loại A lấy từ lô I lớn số sản phẩm loại A lấy từ lô II là: P(X1 ≥ X2) = P[(X1 =2)(X2 =0)+ (X1 =2)(X2 =1)+ (X1 =1)(X2 =0)] = P(X1 =2)P(X2 =0)+ P(X1 =2)P(X2 =1)+ P(X1 =1)P(X2 =0) = 0,1932 b) Goïi X số sp loại A có sp chọn Khi X = X1 + X2 Vì X1 , X2 độc lập nên ta có: - Kỳ vọng X M(X) = M(X1) + M(X2) = n1p1 + n2p2 = - Phương sai X laø D(X) = D(X1) + D(X2) = n1p1q1 + n2p2q2 = 0,74 Bài 2.12: Cho hai hộp I II, hộp có 10 bi; hộp I gồm bi đỏ, bi trắng hộp II gồm bi đỏ, bi trắng Rút ngẫu nhiên từ hộp hai bi a) Tính xác suất để hai bi đỏ hai bi trắng b) Gọi X đại lượng ngẫu nhiên số bi đỏ có bi rút Tìm luật phân phối X Lời giải Gọi X1, X2 ĐLNN số bi đỏ có bi chọn từ hộp I, hộp II Khi - X1 có phân phối siêu bội X1 ∼ H(N1, N1A, n1); N1 = 10; N1A= 6; n1 = với xác suất đònh bởi: P(X = k) = CC C k 2− k 10 Cụ thể X1 P 6/45 24/45 15/45 - X2 có phân phối siêu bội X2 ∼ H(N2, N2A, n2); N2 = 10; N2A = 7; n2 =2 với xác suất đònh bởi: P(X = k) = C C C k 2−k X2 P 3/45 21/45 21/45 Gọi X đại lượng ngẫu nhiên số bi đỏ có bi rút Khi X = X1 + X2 Bảng giá trò X dựa vào X1, X2 sau: X X2 X1 2 1 2 3 a) Xác suất để bi đỏ bi trắng là: P(X = 2) = P[(X1=0) (X2=2)+ (X1=1) (X2=1)+ (X1=2) (X2=0)] = P(X1=0) P(X2=2)+ P(X1=1)P(X2=1)+ P(X1=2)P(X2=0)] = (6/45)(21/45) + (24/45)(21/45) + (15/45)(3/45) = 1/3 b) Luật phân phối X có dạng: X P đó: p0 = P(X = p1 = P(X = p2 = P(X = p3 = P(X = p4 = P(X = 0)= P(X1 1)= P(X1 2) = 1/3; 3)= P(X1 4)= P(X1 p0 17 Printed with FinePrint trial version - purchase at www.fineprint.com p2 p3 p4 =0) P(X2 = 0) = 2/225; =0) P(X2 = 1) + P(X1 =1) P(X2 = 0)= 22/225; =1) P(X2 = 2) + P(X1 =2) P(X2 = 1)= 91/225; =2) P(X2 = 2) = 7/45 Vậy luật phân phối X laø : X P 2/225 22/225 1/3 91/225 7/45 10 Cụ thể p1 18 Bài 2.13: Một máy sản xuất sản phẩm với tỉ lệ phế phẩm 10% Một lô hàng gồm 10 sản phẩm với tỉ lệ phế phẩm 30% Cho máy sản xuất sản phẩm từ lô hàng lấy sản phẩm Gọi X số sản phẩm tốt có sản phẩm a) Tìm luật phân phối X b) Không dùng luật phân phối X, tính M(X), D(X) Lời giải Gọi X1, X2 ĐLNN số sp tốt có sản phẩm máy sản xuất; lấy từ lô hàng Khi X1, X2 độc lập ta có: - X1 có phân phối nhò thức X1 ∼ B(n1, p1); n1 = 3; p1 = 0,9 Cụ thể ta có: P(X = 0) = C 3p0q = (0,1)3 = 0, 001; đó: p0 = P(X = 0)= P(X1 = 0)P(X2 = 0) = 1/120000; p1 = P(X = 1)= P(X1 = 0)P(X2 = 1) + P(X1 = 1)P(X2 = 0) = 1/2500; p2 = P(X = 2) = P(X1 = 0)P(X2 = 2) + P(X1 = 1)P(X2 = 1) + P(X1 = 2)P(X2 =0) = 291/40000 p3 = P(X = 3) = P(X1 = 0)P(X2 = 3) + P(X1 = 1)P(X2 = 2) + P(X1 = 2)P(X2 =1) + P(X1 = 3)P(X2=0) = 473/7500 p4 = P(X = 4) = P(X1 = 1)P(X2 = 3) + P(X1 = 2)P(X2 = 2) + P(X1 = 3)P(X2 = 1) = 10521/40000 p5 = P(X = 5) = P(X1 = 2) P(X2 = 3) + P(X1 = 3)P(X2 = 2) = 567/1250 p6 = P(X = 6) = P(X1 = 3)P(X2 = 3) = 1701/8000 Vậy luật phân phối X là: P(X = 1) = C 3p1q = 3(0, 9)(0,1)2 = 0, 027; X P 1/120000 1/2500 291/40000 473/7500 10521/40000 576/1250 1701/8000 P(X = 2) = C p q = 3(0, 9) (0,1) = 0, 243; 2 P(X = 3) = C 3p 3q = (0, 9)3 = 0, 729 - X2 có phân phối siêu boäi X2 ∼ H(N2, N2A, n2); N2 = 10; N2A = 7; n2 = (vì lô hàng gồm 10 sản phẩm với tỉ lệ phế phẩm 30%, nghóa lô hàng gồm sản phẩm tốt sản phẩm xấu) Cụ thể ta có: CC C = 1) = C C C = 2) = C C C = 3) = C C C P(X = 0) = = ; 120 = 21 ; 120 = 63 ; 120 35 = 120 10 P(X 3 10 P(X 10 P(X 10 a) Ta có X = X1 + X2 Luật phân phối X có dạng: - b) Vì X = X1 + X2 X1 , X2 độc lập nên ta có: Kỳ vọng X M(X) = M(X1) + M(X2) = n1p1 + n2 p2 = 4,8 (với p2 = N2A/N2) Phương sai X D(X) = D(X1) + D(X2) = n1p1q1 + n2 p2q2(N2-n2)/(N2-1)= 0,76 Baøi 2.14: Cho hai hộp I II, hộp có 10 bi; hộp I gồm bi đỏ, bi trắng hộp II gồm bi đỏ, bi trắng Rút ngẫu nhiên từ hộp I hai bi bỏ sang hộp II, sau rút ngẫu nhiên từ hộp II ba bi a) Tính xác suất để bi trắng b) Gọi X đại lượng ngẫu nhiên số bi trắng có ba bi rút từ hộp II Tìm luật phân phối X Xác đònh kỳ vọng phương sai X Lời giải Gọi X ĐLNN số bi trắng có bi rút từ hộp II Ai (i = 0, 1, 2) biến cố có i bi trắng (2-i) bi đỏ có bi lấy từ hộp I Khi A0, A1, A2 hệ biến cố đầy đủ, xung khắc đôi ta có: X P p0 p1 p2 p3 p4 p5 p6 19 Printed with FinePrint trial version - purchase at www.fineprint.com 20 CC C P(A ) = C C C P(A ) = C C C P(A ) = 2 = 16 = ; 45 10 1 10 2 2 28 ; 45 8 = 10 45 Với k = 0, 1, 2, theo công thức xác suất đầy đủ, ta có P(X = k) = P(A0)P(X = k/A0) + P(A1)P(X = k/A1) + P(A2)P(X = k/A2) a) Xác suất để ba bi trắng là: Mà P(X = 3) = P(A0)P(X = 3/A0) + P(A1)P(X = 3/A1) + P(A2)P(X = 3/A2) CC C P(X = / A ) = C C C P(X = / A ) = C C C P(X = / A ) = = ; 220 = 10 ; 220 = 20 220 12 12 6 12 nên P(X= 3) = 73/2475 b) Luật phân phối X có dạng: X P 28 C 4C 16 C5C7 C 6C + + = 179 / 825; 3 45 C 45 C 45 C p = P(X = 0) = 12 12 12 28 C 4C 16 C 5C7 C 6C + + = 223 / 450; p1 = P(X = 1) = 3 45 C12 45 C12 45 C12 1 2 28 C 4C 16 C5C7 C 6C + + = 1277 / 4950; 3 45 C12 45 C12 45 C12 p = P(X = 2) = 2 p3 = P(X= 3) = 73/2475 Suy luaät phân phối X là: X P 179/825 223/450 1277/4950 73/2475 Từ suy kỳ vọng X M(X) = 1,1 phương sai X D(X) = 0,5829 Bài 2.15: Có ba lô sản phẩm, lô có 20 sản phẩm Lô thứ i có i+4 sản phẩm loại A (i = 1, 2, 3) a) Chọn ngẫu nhiên lô từ lô lấy sản phẩm Tính xác suất để sản phẩm lấy có sản phẩm loại A b) Từ lô lấy sản phẩm Gọi X tổng số sản phẩm loại A có sản phẩm lấy Tìm luật phân phối X tính Mod(X), M(X), D(X) Lời giải p0 p1 p2 p3 đó, tương tự ta có: a) Gọi C biến cố sản phẩm lấy có sản phẩm loại A Gọi A1, A2, A3 biến cố chọn lô I, II, III Khi A1, A2, A3 hệ đầy đủ, xung khắc đôi P(A1) = P(A2) = P(A3) = 1/3 Theo công thức xác suất đầy đủ, ta có: P(C) = P(A1)P(C/A1) + P(A2)P(C/ A2)+ P(A3)P(C/A3) Theo Công thức xác suất lựa chọn: 21 Printed with FinePrint trial version - purchase at www.fineprint.com 22 CC C )=CC C )=CC C P(C / A1 ) = 15 = 525 ; 1140 = 546 ; 1140 = 546 1140 20 P(C / A 2 14 20 P(C / A 13 20 2.16: Một người có chìa khóa bề giống nhau, có chìa mở cửa Người tìm cách mở cửa cách thử chìa mở cửa (tất nhiên, chìa không mở loại ra) Gọi X số chìa khóa người sử dụng Tìm luật phân phối X Hỏi người thường phải thử chìa mở cửa? Trung bình người phải thử chìa mở cửa? Lời giải Ta thấy X ĐLNN rời rạc nhận giá trò: 1, 2, 3, Luật phân phối X có dạng: Suy P(C)= 0,4728 b) Luật phân phối X có daïng: X P p0 p1 p2 p3 Gọi Bj (j = 1, 2, 3) biến cố lấy sp loại A từ lô thứ j Khi B1, B2, B3 độc lập 15 ; P(B1 ) = ; 20 20 14 P(B2 ) = ; P(B2 ) = ; 20 20 13 P(B3 ) = ; P(B3 ) = 20 20 P(B1 ) = Ta coù − " X = " = B1B2B3 ⇒ P(X = 0) = P(B1 )P(B2 )p(B3 ) = 273 / 800 − " X = 1" = B1B2B3 + B1B2B3 + B1B2B3 ⇒ X P Vậy luật phân phối X X P 273/800 71/160 151/800 21/800 Từ luật phânphối X ta suy mode, kỳ vọng phương sai X : - Mode: Mod(X) = - Kỳ vọng: M(X) = 0,9 - Phương sai: D(X) = 0,625 23 Printed with FinePrint trial version - purchase at www.fineprint.com p4 P(X=1) = P(A1) = 2/5 P(X = 2) = P(A1 A ) = P(A1 )P(A / A1 ) = (3 / 5)(2 / 4) = / 10; P(X = 3) = P(A1 A A ) = P(A1 )P(A / A1 )P(A / A1 A ) = (3 / 5)(2 / 4)(2 / 3) = / P(X = 4) = P(A1 A A A ) = P(A1 )P(A / A )P(A / A A )P(A / A1 A A ) = (3 / 5)(2 / 4)(1 / 3)(2 / 2) = / 10 Vaäy luaät phân phối X là: X P − " X = " = B1B2B3 + B1B2B3 + B1B2B3 ⇒ − " X = " = B1B2B3 ⇒ P(X = 3) = P(B1 )P(B2 )P(B3 ) = 21 / 800 p3 Goïi Aj (j = 1,2, 3, 4) biến cố chìa khóa chọn lần thứ j mở cửa Khi đó: P(X = 1) = P(B1 )P(B2 )P(B3 ) + P(B1 )P(B2 )P(B3 ) + P(B1 )P(B2 )P(B3 ) = 71 / 160 P(X = 2) = P(B1 )P(B2 )P(B3 ) + P(B1 )P(B2 )P(B3 ) + P(B1 )P(B2 )P(B3 ) = 151 / 800 p1 p2 2/5 3/10 1/5 1/10 Từ luật phân phối ta suy ra: - Mode X Mod(X) = - Kỳ vọng X M(X) = ∑ xipi = Vậy người thường phải thử chià mở cửa Trung bình người phải thử chìa mở cửa Bài 2.17: Một người thợ săn có viên đạn Người săn với nguyên tắc: bắn trúng mục tiêu ngay, không săn Biết xác suất 24 trúng đích viên đạn bắn 0,8 Gọi X đại lượng ngẫu nhiên số viên đạn người sử dụng săn a) Tìm luật phân phối X b) Tìm kỳ vọng phương sai X X P p2 p3 p4 Goïi Aj (j = 1,2, 3, 4) biến cố viên đạn thứ j trúng đích Khi đó: Lời giải a) Ta thấy X ĐLNN rời rạc nhận giá trò: 1, 2, , Luật phân phối X có daïng: X P p1 p2 p3 p4 p5 Goïi Aj (j = 1,2, , 5) biến cố viên đạn thứ j trúng đích Khi ñoù: P(A j ) = 0, 8; P(A j ) = 0, P(A j ) = 0, 8; P(A j ) = 0, Ta coù: P(X = 2) = P(A1 A ) = P(A )P(A ) = 0, 8.0, = 0, 64; P(X = 3) = P(A1 A A + A1 A A ) = P(A1 A A ) + P(A1 A A ) = P(A1 )P(A )P(A ) + P(A1 )P(A )P(A ) = 0, 2.0, 8.0, + 0, 8.0, 2.0, = 0, 256 P(X = 4) = P(A1A A + A 1A A + A1 A A + A1 A A ) Ta coù: P(X=1) = P(A1) = 0,8 = P(A1 )P(A )P(A ) + P(A1 )P(A )P(A ) + P(A1 )P(A )P(A ) + P(A1 )P(A )P(A ) P(X = 3) = P(A1 A A ) = P(A1 )P(A )P(A ) = 0, 2.0, 2.0, = 0, 032; Vậy luật phân phối X là: = 0, 2.0, 2.0, + 0, 8.0, 2.0, + 0, 2.0, 8.0, + 0, 2.0, 2.0, = 0,104 P(X = 2) = P(A1 A ) = P(A1 )P(A ) = 0, 2.0, = 0,16; P(X = 4) = P(A1 A A A ) = P(A1 )P(A )P(A )P(A ) = 0, 2.0, 2.0, 2.0, = 0, 0064; P(X = 5) = P(A1 A A A ) = P(A1 )P(A )P(A )P(A ) = 0, 2.0, 2.0, 2.0, = 0, 0016 Vậy luật phân phối X là: X P 0,8 0,16 b) Từ luật phân phối X ta suy ra: - Kỳ vọng X M(X) = 1,2496 - Phương sai X D(X) = 0,3089 0,032 0,0064 0,0016 X P 0,64 0,256 0,104 b) Từ luật phân phối X ta suy ra: - Kỳ vọng X M(X) = 2,464 - Phương sai X D(X) = 0,456704 Bài 2.18: Một người thợ săn có viên đạn Người săn với nguyên tắc: bắn viên trúng mục tiêu ngay, không săn Biết xác suất trúng đích viên đạn bắn 0,8 Gọi X đại lượng ngẫu nhiên số viên đạn người sử dụng săn a) Tìm luật phân phối X b) Tìm kỳ vọng phương sai X Lời giải a) Ta thấy X ĐLNN rời rạc nhận giá trò: 2, 3, Luật phân phối X có dạng: 25 Printed with FinePrint trial version - purchase at www.fineprint.com 26 ... www.fineprint.com BÀI GIẢI a) Xác suất có chai bia Sài Gòn bò bể XÁC SUẤT THỐNG KÊ P(X ≥ 1) = − P(X = 0) = − (GV: Trần Ngọc Hội – 2009) CHƯƠNG ĐẠI LƯNG NGẪU NHIÊN VÀ PHÂN PHỐI XÁC SUẤT Bài 2.1: Nước giải. .. bò diệt vơiù xác suất 80% Nếu có viên trúng mục tiêu bò diệt với xác suất 20% a) Tính xác suất để mục tiêu bò diệt b) Giả sử mục tiêu bò diệt Tính xác suất có 10 viên trúng Lời giải Tóm tắt:... 1) Tính xác suất để bi trắng 2) Tính xác suất bi đen, bi trắng 3) Giả sử viên lấy có bi trắng.Tính xác suất để bi trắng hộp thứ b) Chọn ngẫu nhiên hộp từ hộp lấy ngẫu nhiên bi Tính xác suất bi

Ngày đăng: 19/11/2017, 20:31

TỪ KHÓA LIÊN QUAN

w